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Background: It is often difficult to obtain sufficient quantity of RNA molecules for gene expression profiling under
many practical situations. Amplification from low-input samples may induce artificial signals.

Results: We compared the expression measurements of low-input mRNA samples, from 25 pg to 1000 pg mRNA,
which were amplified and profiled by Smart-seq, DP-seq and CEL-seq techniques using the lllumina HiSeq 2000
platform, with those of the paired high-input (50 ng) mMRNA samples. Even with 1000 pg mRNA input, we found

that thousands of genes had at least 2 folds-change of expression levels in the low-input samples compared with
the corresponding paired high-input samples. Consequently, a transcriptional signature based on quantitative
expression values and determined from high-input RNA samples cannot be applied to low-input samples, and vice
versa. In contrast, the within-sample relative expression orderings (REOs) of approximately 90% of all the gene pairs
in the high-input samples were maintained in the paired low-input samples with 1000 pg input MRNA molecules.

Similar results were observed in the low-input total RNA samples amplified and profiled by the Whole-Genome
DASL technique using the lllumina HumanRef-8 v3.0 platform. As a proof of principle, we developed REOs-based
signatures from high-input RNA samples for discriminating cancer tissues and showed that they can be robustly

applied to low-input RNA samples.

Conclusions: REOs-based signatures determined from the high-input RNA samples can be robustly applied to
samples profiled with the low-input RNA samples, as low as the 1000 pg and 250 pg input samples but no longer
stable in samples with less than 250 pg RNA input to a certain degree.

Keywords: Low-input RNA samples - amplification artificial signals - relative expression orderings - transcriptional

signatures

Background

Gene expression profiling based on microarray and RNA
sequencing techniques allows us to comprehensively
characterize RNA transcripts present in a biological sam-
ple. However, it is often difficult to obtain sufficient quan-
tity of RNA molecules for gene expression profiling under
many practical situations. For example, minimally invasive
tissue biopsy techniques, such as fine needle aspiration cy-
tology, core needle biopsy and gastrointestinal endoscopy,
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are widely used clinically but minimum samples are ex-
tracted [1-3]. For another example, in formalin-fixed
paraffin-embedded tissue samples with abundant clinical
information, the amount of RNA is often limited due to
partial RNA degradation [4, 5]. In the studies of rare cell
population, single cell [6, 7] or the samples taken with the
laser capture microdissection [8] technique, the amount
of RNA molecules is also extremely low.

It is critical to overcome this challenge to leverage the
power of low-input sampling techniques for biomedical
applications. For this type of samples, multiple rounds of
pre-amplification are necessary prior to the measure-
ments of gene expression levels. Thus, a number of low-

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-017-4280-7&domain=pdf
mailto:wang.xianlong@139.com
mailto:guoz@ems.hrbmu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Liu et al. BMC Genomics (2017) 18:913

input RNA amplification techniques prior sequencing
have been developed using PCR or in vitro transcription
(IVT) to synthesize enough cDNA or cRNA, such as
Smart-seq (switching mechanism at 5'-end of the RNA
transcript) [9], DP-seq (primer-based RNA-sequencing
strategy) [10] and CEL-seq (cell expression by linear
amplification and sequencing) [11]. However, current
low-input amplification techniques usually bring a large
bias due to the inherent defects in the amplification
principles [12]. For example, CEL-seq incorporating IVT
can result in 3’ biases due to two rounds of reverse
transcription before the linear amplification [11, 13].
Smart-Seq, using PCR to synthesize cDNA, is a nonlin-
ear amplification process, and its efficiency is sequence-
dependent [9, 13]; a long transcript may be truncated
due to inefficient cDNA synthesis during the amplifica-
tion process [14, 15]. It has been reported that the amp-
lification bias always exists in lowly expressed genes and
genes with abundant CG and long length [16-18]. As a
result, it is uncertain whether the expression values mea-
sured after the amplification can represent the real gene
expression levels or not.

Several studies attempted to prove that gene expres-
sion profiling can be performed on low-input RNA sam-
ples like high-input RNA samples by showing that the
gene expression profiles of low-input RNA samples are
significantly correlated with those of the matched high-
input RNA samples [19-21]. However, a high correlation
between two measurements does not guarantee that the
two measurements are congruent, which brings uncer-
tainty to the application of most current disease signa-
tures based on risk scores which are calculated using the
measurement values of the signature genes. Therefore,
for a transcriptional signature based on the quantitative
expression levels, the risk score thresholds determined
from high-input RNA samples may be not applicable to
low-input RNA samples, and vice versa. It has been re-
ported that quantitative transcriptional signatures lack
robustness for clinical applications due to measurement
batch effects [22], variations of the tumor epithelial cell
proportions in tissues sampled from different sites of a
tumor [23, 24] and partial RNA degradation during sam-
ple preparation [25, 26]. Another type of disease signa-
ture is based on the within-sample relative expression
orderings (REOs) of gene pairs [27, 28], which have been
identified for predicting the prognosis of colorectal can-
cer [29], non-small cell lung cancer [30], ER+ breast
cancer [31] and other cancers [32, 33]. These REOs-
based signatures are robust against various measurement
biases introduced by experimental batch effects and plat-
form differences [34], partial RNA degradation [26] and
uncertain sampling sites within the same cancer tissue
[24]. Thus, we hypothesized that the REOs of gene pairs
within individual samples, especially those with large
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rank differences, might also be robust against the biases
introduced by the RNA amplification procedures.

Through comparing gene expression profiles between
the samples with low-input mRNA, ranging from 25 pg to
1000 pg mRNA profiled by the Illumina HiSeq 2000 plat-
form, and their paired high-input 50 ng mRNA samples,
we found that there were thousands of genes with at least
2 folds-change (FC) in their expression values even when
the input mRNA was 1000 pg. We evaluated the propor-
tions of REOs of gene pairs in the high-input RNA sam-
ples maintained in the low-input RNA samples, and found
that the proportions were approximately 90% even when
the input mRNA was as low as 1000 pg and the input total
RNA samples was as low as 250 pg, which suggests that
REOs measured in the low-input samples were robust
against amplification. Similar results were also found in
the low input total RNA ranging from 10 pg to 1000 pg
profiled by the Illumina HumanRef-8 v3.0 platform com-
pared with the 100 ng input total RNA samples. As a case
study to demonstrate the robustness of REOs-based signa-
tures, we developed REOs-based signatures from high-
input RNA samples for discriminating cancer tissues and
showed that they can be robustly applied to low-input
RNA samples.

Results

Large amplification bias of low-input RNA samples

Based on two datasets (GSE50856 and GSE17565, see
Fig. 1) measured by Illumina HiSeq 2000 and Illumina
HumanRef-8 v3.0 platforms, respectively, we evaluated
the amplification fidelity of low-input RNA samples
amplified by several techniques through comparison
with the corresponding high-input RNA samples using
the FC values.

In the SFM-Smart group of dataset GSE50856, there
were respectively 60.56, 64.00, 65.76 and 66.95% of genes
with a FC value larger than or equal to 2 in the expres-
sion values between 1000 pg, 100 pg, 50 pg and 25 pg
mRNA samples compared with the paired high-input
samples. As the amount of RNA in the diluted low input
samples decreased, the percentage of genes with at least
2 FC increased. Similar results were also observed in the
other five groups of dataset GSE50856 (Fig. 2). In the
SFM-smart data, the coefficient of variation (CV) of FCs
increased from 0.18 to 0.33 as the quantity of the input
RNA decreased from 1000 pg to 25 pg (Additional file 1:
Figure 1Sa). Similar results were observed in the data for
SEM-DP, SEM-CEL, AA100-Smart, AA100-DP, AA100-
CEL, Raji and MCEF-7 (Additional file 1: Figure 1Sa, b
and c). Thus, a large amplification bias exists for the
three amplification techniques even the amplification
begins from 1000 pg mRNA input.

For the Raji group of dataset GSE17565, there were
12.02, 23.79, 41.73, 57.84% of genes with a FC value
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Fig. 1 Datasets in this study. a The GSE50856 dataset was divided into 6 groups: SFM-Smart, SFM-DP, SFM-CEL, AA100-Smart, AA100-DP and
AA100-CEL. Each group had four low input mRNA levels, 1000 pg, 100 pg, 50 pg and 25 pg, and each level had two technical replicates. b The
GSE17565 dataset was divided into 2 groups: Raji and MCF-7. Each group had four low input total RNA levels, 1000 pg, 250 pg, 50 pg and 10 pg,
and each level had two technical replicates

larger than or equal to 2 in the expression values, re-
spectively, in the 1000 pg, 250 pg, 50 pg, 10 pg samples
compared with the paired high-input samples. Similar
results were also observed for the MCE-7 group (Fig. 2).
Obviously, the amplification procedure has a profound
negative impact on the measurements of gene expres-
sion levels of the low-input samples.

Robustness of REOs against amplification bias

Using the same datasets, we evaluated the consistency
scores between the low-input samples and the high-
input samples, i.e. the proportions of the REOs of the
gene pairs in the high-input RNA samples maintained in
the low-input samples. All genes from the gene expres-
sion profiles were involved in the REO gene pairs.

In the SFM-Smart dataset GSE50856, 88.53 and
88.63% of the stable REOs in the high-input mRNA
samples were respectively kept in the two 1000 pg input
mRNA technical replicates. Obviously, the REOs of gene
pairs with small rank differences (ie., close expression
levels) tend to be sensitive to random measurement vari-
ations [34]. After excluding 10% of pairs with the

smallest rank differences, the percentages increased to
91.36 and 91.46% in the two 1000 pg input mRNA tech-
nical replicates, respectively. The percentage of the
stable REOs in the high-input samples that were kept in
the low input technical replicates, termed the consistency
scores for short, decreased gradually when the input
mRNA decreased. The consistency scores for the two
100 pg input technical replicates decreased to 85.66 and
85.36%, respectively, and increased to 88.24 and 87.92%
after excluding the bottom 10% of the gene pairs in the
high-input mRNA samples. For the two 50 pg input tech-
nical replicates, the consistency scores were 83.84 and
83.29%, respectively, and increased to 86.27 and 85.67%,
respectively, after excluding the bottom 10% of the stable
gene pairs. For the two 25 pg input technical replicates,
the consistency scores were 82.11 and 81.99%, respect-
ively, and increased to 84.39 and 84.26% after excluding
the bottom 10% of the gene pairs (Fig. 3a). Similar results
were also found in the SFM-DP (Fig. 3b), SEM-CEL
(Fig. 3c), AA100-Smart (Additional file 1: Figure S2a),
AA100-DP (Additional file 1: Figure S2b) and AA100-
CEL groups (Additional file 1: Figure S2c). As shown in
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Fig. 2 Amplification bias. Proportion of genes with at least 2 folds-change of expression values
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Fig. 3 Maintenance of REOs after excluding 0% to 10% gene pairs (a) The consistency scores between high-input RNA samples and low-input
RNA samples of all gene pairs (blue) and after excluding 10% of the pairs with the smallest expression differences in the paired high-input RNA
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excluding 10% of the gene pairs with
the smallest expression differences
in high-input RNA samples

all of gene pairs

the (Additional file 1: Figure S3, Figure S4), the per-
centage of the stable REOs in the high-input samples
that were kept in each of the low input technical
replicates increased when more gene pairs with small
rank differences in the high-input samples were
excluded.

For all the 164,238,402 gene pairs which had the same
REOs among two technical replicates of the high-input
samples in the Raji dataset GSE17565 measured by the Illu-
mina HumanRef-8 v3.0 platform, 92.09 and 92.43% were
respectively kept in the two technical replicates with
1000 pg input total RNA. The consistency scores increased
to 94.83 and 95.08%, respectively, after excluding the bot-
tom 10% gene pairs with the smallest rank differences. For
the two 250 pg input technical replicates, the consistency
scores for all the stable gene pairs were 88.87 and 89.20%,
respectively, and increased to 91.49 and 91.76% after ex-
cluding the bottom 10% of the gene pairs. For the two
50 pg input technical replicates, the consistency scores were
81.06 and 74.52%, respectively, and increased to 83.39 and
76.42% after excluding the bottom 10% of the gene pairs.
For the two 10 pg input technical replicates, the consistency
scores were 69.32 and 70.58%, respectively, and increased
to 70.87 and 72.23% after excluding the bottom 10% of the

gene pairs (Fig. 3d). Similar results were also found in the
MCE-7 group (Additional file 1: Figure S4d).

Taken together, the above results showed that the
REOs of gene pairs were robust against the amplification
bias for the 1000 pg and 250 pg input samples but no
longer stable in samples with less than 250 pg RNA in-
put to a certain degree.

Performance of REOs-based signatures in low-input RNA
samples

As a proof of principle that REOs-based signature iden-
tified from high-input RNA tissue samples are robust in
low-input RNA samples, we collected 69 high-input
RNA samples of lymphoma tissues from the GSE55267
dataset and 54 high-input RNA samples of breast cancer
tissues from the GSE29431 dataset to search a REOs-
based signature for discriminating the two types of tis-
sues (Table 1). We obtained 106,213 highly stable gene
pairs that have the same REOs in all lymphoma tissue
samples and breast cancer tissue samples, respectively,
but the REO patterns were reversal between the two tis-
sue types. From these 106,213 gene pairs, we selected 3
gene pairs (Table 2) with the largest geometric mean of
the average absolute rank difference in the lymphoma
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Table 1 High-input RNA tissue samples used in this study

Tissue Sample Type GEO ID Sample Size
Lymphoma GSES55267 69
Breast cancer GSE29431 54
Lymphoma GSE53820 81
Breast cancer GSE10780 30
COAD TCGA 41
Normal tissues paired with COAD TCGA 41
Colon tumor tissues GSE10950 25
Colon normal tissues GSE10950 25
Colorectal tumors (CRC) GSE81861 272
Normal mucosas paired with CRC GSE81861 157

tissue samples and the average absolute rank difference
in the breast cancer tissues samples (see Materials and
Methods). The results showed that when k = 3 both sen-
sitivity and specificity were 100%. Thus, these three gene
pairs with the highest R; values, as described in Table 2,
were selected as the classification signature. Using the 3
gene pairs as signature, we classified a given sample ac-
cording to the majority vote rule. If 2 or 3 REOs of the 3
gene pairs in a sample were consistent with the REO
patterns in the lymphoma tissue samples, the sample
was identified as a lymphoma tissue sample; otherwise,
the sample was identified as a breast cancer tissue sam-
ple. In the training datasets, obviously, all of the lymph-
oma tissues samples and the breast cancer tissue
samples were correctly classified using the signature. In
the independent validation dataset, consisting of 81
high-input RNA samples of lymphoma tissue from the
GSE53820 dataset and 30 high-input RNA samples of
breast cancer tissue from the GSE10780 dataset, all of
the samples were correctly classified.

We further applied the REOs-based signature to dis-
tinguish Raji and MCEF-7 cell lines profiled with high-
input with 100 ng total RNA and low-input samples
with as low as 50 pg total RNA from the GSE17565
dataset. All the 8 high-input Raji cell line samples, 8
high-input MCF-7 cell line samples, 12 low-input Raji
cell line samples and 12 low-input MCF-7 cell line sam-
ples were correctly classified. This case study demon-
strates that a REOs-based transcriptional signature
identified from the high-input RNA tissue samples can
be applied to classify low-input samples robustly.

Table 2 The 3 gene-pair signature

Gene pair No. Gene A° Gene B®
1 MMP3 RGS13
2 EPCAM CD37
3 EPCAM STAP1

?Gene A had a higher expression level than Gene B in breast cancer tissues
and MCF-7 cell lines
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As a second case study, we identified a REO-based
signature from high-input RNA samples for discriminat-
ing primary colorectal tumors from normal colorectal
tissues and showed that it can be robustly applied to
low-input RNA samples summarized from single-cell
RNA-seq data. Firstly, using the 41 colon adenocarcin-
oma samples and paired normal samples from TCGA,
we identified two lists of gene pairs, each with identical
REOs in all samples of the primary colorectal tumor tis-
sue and the corresponding normal tissue, respectively.
From the above two lists of gene pairs, 20,390 gene pairs
were found to have reversal REOs between the tumor
tissues and the normal tissues. Because there were an
abundance of dropout events that led to zero expression
values for approximately 90% of the genes measured in
the single-cell data, it would be inappropriate to select
only a few gene pairs as the diagnostic signature. There-
fore, all the reversal gene pairs were directly used as the
signature. In the training dataset, the 20,390 gene pairs
correctly classified all the cancer and normal samples ac-
cording to the majority voting rule. Then, we collected
an independent dataset from GSE10950 with 25 high-
input RNA samples of paired colon tumor tissues and
colon normal tissues to validate this signature. Because
only 18,227 gene pairs of the 20,390 gene pairs were
measured in this dataset by the Illumina human Ref-8
v2.0 platform, these 18,227 gene pairs were used to clas-
sify the samples according to the majority voting rule
and all the samples were correctly classified. However,
with the same strategy, 272 colorectal tumor epithelial
cells and 157 normal epithelial cells from the GSE81861
dataset could not be correctly classified. This result is
not surprising since a cell contains only approximately
10 pg RNA and 90% of genes were measured with zero
expression values. The REOs of gene pairs in such small
input RNA samples would be unstable as demonstrated
above. To address this issue, we constructed a pooled
dataset from the single-cell RNA-seq results.

In the GSE81861 dataset, the 272 tumor epithelial cells
and the 157 normal epithelial cells were extracted from
11 patients of primary colorectal tumors and paired nor-
mal tissues; however, there were no annotation on pa-
tients’ information. We randomly assigned the 272
colorectal tumor epithelial cells into 11 samples with ap-
proximately equal number of cells: 10 samples each with
25 single cells and a sample with 22 single cells. Each
simulated disease sample contains approximately 250 pg
RNA. Similarly, the 157 normal epithelial cells were also
randomly assigned into 10 samples each with 14 single
cells and a sample with 17 single cells. Each sample ap-
proximately contains 140 pg RNA. In each sample, we
calculated the sum of the measurement values for each
gene to represent the expression levels of the genes [19].
Then, the REO signature with 20,390 gene pairs
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constructed from the high-input RNA samples was ap-
plied to classify the simulated low-input RNA samples
from the single-cell data. Because only 18,308 gene pairs
of the 20,390 gene pairs were measured in single cells by
the Illumina HiSeq 2000 platform, we used the mea-
sured 18,308 gene pairs to classify the samples according
to the majority voting rule. This random experiment was
repeated for 100 times. The results showed that the
average sensitivity and specificity were 100 and 73.55%,
respectively. As demonstrated in the above Section, the
REOs of gene pairs in the input samples with less than
250 pg RNA input tends to be less robust against the
amplification bias. Therefore, for the 18,308 gene pairs,
we respectively excluded 10 and 20% of pairs with the
smallest average rank differences in either the normal
samples or the disease samples, and used the remained
gene pairs to classify the samples. For 100 random ex-
periments, while the average sensitivity was kept at
100%, the average specificity increased to 91.82% (or
100%) when 10% (or 20%) of the gene pairs with the
smallest average rank differences in either the normal
samples or the disease samples were excluded.

Discussion

It is crucial to develop reliable analysis methods for the
precise monitoring of global gene expression levels in lim-
ited clinical tissues in many research areas of biological
and medical disciplines. For those methods based on
quantitative gene expression values such as differential
genes and risk score signatures, there exists large uncer-
tainty for the low-input RNA samples due to inherent
amplification bias and technical noise in the amplification
procedures. However, the relative expression orderings of
gene pairs are tolerant to these issues, which suggests us
that we should take the advantage of the robustness of
REOs to gain more reliable biological insight.

We compared serially diluted RNA samples to evalu-
ate the impact of amplification techniques for low-input
RNA samples on the gene expression profile measure-
ments. As displayed in the study, thousands of genes
had at least 2 folds-change of expression measurements
in the low-input RNA samples compared with the paired
high-input RNA samples due to the amplification pro-
cedure. Consequently, for the transcriptional signatures
based on the quantitative expression levels, the risk
threshold values determined from high-input RNA sam-
ples could not be applied to low-input RNA samples
directly and vice versa. In contrast, we found that ap-
proximately 90% of REOs of gene pairs in high-input
RNA samples were maintained in the diluted 1000 pg,
low-input mRNA samples which were amplified and
profiled by Smart-seq, DP-seq and CEL-seq techniques
using the Illumina HiSeq 2000 platform. For the low-
input total samples which were amplified and profiled by
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the Whole-Genome DASL technique using the Illumina
HumanRef-8 v3.0 platform, at least 90% of REOs of gene
pairs in the high-input samples were maintained in the
diluted 1000 pg and 250 pg input samples but unstable
in the 50 pg and10 pg input samples to a certain degree.

Our REO-based method facilitates gene expression
profiling analysis in the context where the starting RNA
material is extremely limited. A problem with the
current study is that we cannot find appropriate data to
verify the clinical value of the REOs-based signature. For
the future study, it is worthwhile to further evaluate the
method using clinically meaningful low-input RNA data
such like tissues from minimally invasive tissue biopsy
techniques and single-cell samples.

Conclusions

Thousands of genes have at least 2 folds-change of ex-
pression measurements in low-input mRNA and total
RNA samples compared with the corresponding paired
high-input samples. In contrast, most of the REOs of
gene pairs in the high-input samples are maintained in
the diluted low-input samples. Therefore, REOs-based
disease signatures determined from high-input samples
can be robustly applied to low-input samples.

Methods

Data sources and data preprocessing

All the gene expression data analyzed in this study were
downloaded from the GEO database (http://www.ncbi.
nlm.nih.gov/geo/), as described in details in Fig. 1 and
Table 1. In Fig. 1, there are 2 datasets including mRNA
sequencing data and whole genome gene expression data
which were used to evaluate the amplification bias. In
Table 1, there are, in total, 6 datasets of high-input RNA
tissue samples, including 4 sets which were used to ob-
tain the classification signature between breast cancer
and lymphoma cancer and 2 datasets which were used
to obtain the classification signature between colon
tumor tissues and normal tissues.

The gene expression profiles of dataset GSE50856
were measured by the Illumina HiSeq 2000 platform for
the low-input mRNA samples collected from day-4
embroid bodies of mouse embryonic stem cells (mESCs)
differentiated in serum free media with and without
Activin A treatment. The control samples were labeled
with “SFM” and the Activin A-treated samples were la-
beled with “AA1000”. The low-input samples were amp-
lified and profiled by Smart-seq, DP-seq and CEL-seq
techniques using the Illumina HiSeq 2000 platform, with
those of the paired high-input (50 ng) mRNA samples.
Based on the amplification methods and cell line treat-
ment status, the dataset was divided into 6 groups:
SEM-Smart, SEM-DP, SEM-CEL, AA100-Smart, AA100-
DP and AA100-CEL. Each group had four input levels,
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1000 pg, 100 pg, 50 pg and 25 pg, and each level had
two technical replicates. The gene expression profile of
dataset GSE17565 was measured by the Illumina
HumanRef-8 v3.0 platform for two cell lines, Raji and
MCE-7. The dataset was divided into 2 groups: Raji and
MCE-7. The low-input total RNA samples were ampli-
fied and profiled by the Whole-Genome DASL tech-
nique using the Illumina HumanRef-8 v3.0 platform
using the Illumina HumanRef-8 v3.0 platform, with
those of the paired high-input (100 ng) total RNA sam-
ples. There were four input levels, 1000 pg, 100,250 pg,
50 pg and 25 10 pg as well for both cell lines, and every
input level had two technical replicates (Fig. 1).

For the GSE50856 dataset, we downloaded the mappable
reads that fell onto gene’s exons. The experiments of stand-
ard RNA-seq, Smart-seq and DP-seq are single-end RNA-
seq where every read corresponds to a single fragment.
Thus, the RPKM (reads per kilobase of exon model per mil-
lion mapped reads) and FPKM (fragments per kilobase of
exon model per million mapped reads) metrics are concep-
tually analogous [35, 36], which could be used to quantify
the gene expression level. The RPKM metric was estimated
by the formula [37]: R = (10"9*C)/NL, where C is the num-
ber of mapped reads that fell onto the gene’s exons, N is the
total number of mapped reads in the experiment, and L is
the sum of the exons in base pairs. On the other hand, The
experiment of CEL-seq is paired-end sequencing where two
reads correspond to a single fragment and only FPKM could
be used to quantify the gene expression level. For the
paired-end experiment, the FPKM value would be half of
the RPKM value. This is not always true because in some
cases only one of the two reads belonging to a fragment
might be mapped. However, for most applications this sim-
plification works [35]. The mouse mm9 genome was used
for the genome annotation. By transforming the gene bank
accession ID providing in the GSE50856 dataset into Entrez
gene ID through the Source Batch Search database (http://
source-search.princeton.edu/cgi-bin/source/sourceBatch-
Search), 20,541 genes were analyzed in this dataset.

For dataset GSE17565 measured by Illumina HumanRef-
8 v3.0 platform, dataset GSE10950 measured by Illumina
humanRef-8 v2.0 platform and dataset GSE81861 measured
by Illumina HiSeq 2000 platform, we directly downloaded
the processed data. For 4 datasets of the expression profiles
measured by Affymatrix microarrays, the raw expression
data (.CEL files) were preprocessed using the Robust Multi-
array Average algorithm [38]. For the data from TCGA, the
level 3 RNA-seq datasets (RNAseqV2 RSEM) of mRNA
were downloaded from the Broad Institute, Firehose
(http://gdac.broadinstitute.org/runs/stddata_2016_01_28/).

Evaluation on amplification bias by fold change
For each of the measured genes, we calculated the aver-
age of its expression values in the technical replicates for
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the low input and the paired high input RNA samples,
respectively, and then calculated the fold changes (FCs)
between the low input RNA samples and the paired high
input RNA samples. We also calculated the FC between
every paired low input RNA technical replicate and high
input RNA technical replicates, and then calculated the
coefficient of variation (CV) of the FCs.

Evaluation on REOs of gene pairs

Highly stable REOs of the gene pairs were obtained re-
spectively from high-input RNA samples and low input
RNA samples. We defined a REO as highly stable if the
gene pair had identical REO direction in both technical
replicates of one sample. The details are as following.
The comparison of two genes in a gene pair (G;, G;) was
viewed as an event with only two possible outcomes: the
expression level of G; was either higher or lower than
that of G; and the relative expression ordering was de-
noted as G;>G; or G;<@G; If the REO of a pair was
maintained in more than 99% of samples, the pair was
called a highly stable gene pair. The REOs of two genes
with small rank difference (i.e., close expression levels)
tend to be unstable due to measurement variations.

To compare two lists of stable REOs, the consistency
score, which was defined as k/n, was calculated, where n
was the number of the gene pairs in the high-input RNA
samples and k was the number of gene pairs with the
consistent REOs in both the high-input RNA samples
and low-input RNA samples.

REOs-based signature from high-input RNA samples for
discriminating cancer tissues

First, we identified gene pairs each with identical REO in
all samples of the two types of tissues, respectively, but
with reversal REO patterns between the two types of
samples. Then, we calculated the reversal degree for
each gene pair as following equation,

R~ \/Riym) Rijore)

where  Rjjiym) and Ry are the arithmetic means of
the absolute rank differences of the gene pair (i, j) in all
samples of the two types of tissues, respectively.

Second, the gene pairs with reversal REOs were sorted
in a descending order according to their reversal de-
grees. Obviously, the larger the R; value, the larger the
reversal degree of the REO is between the two types of
samples. Third, we selected the top k gene pairs, where k
is an odd integer ranging from 1 to the total number of
candidate gene pairs to classify the samples based on the
majority vote rule. The value of k was chosen as the
smallest number of gene pairs that reached the highest
geometric mean of the sensitivity and specificity in the
classification tests. Then, the selected gene-pair signature
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was tested in independent tissue samples measured with
high-input RNA and in the cell line data measured with
low-input RNA.

Performance evaluation

We called lymphoma tissue samples, colorectal tumor
epithelial cells as positive samples, breast cancer tissue
samples, Normal mucosa’s epithelial cells paired with
colorectal tumor as negative samples, and evaluated the
performance of the classification signature using sensi-
tivity and specificity which are calculated as follows:

sensivity — P
ensivity = TP+ EN
TN
ficity —
Specificity TN + EP

where TP, TN, FP and FN denote the number of true
positives, true negatives, false positives and false nega-
tives, respectively.

Statistical software for analysis

All statistical analyses were performed using the R 3.1.3
(http://www.r-project.org/). The main analyses codes are
provided in the (Additional file 2).

Additional files

Additional file 1: Figure S1. The coefficient of variation (CV) of FCs. (a)
The coefficient of variation (CV) of FCs in the three groups of SFM-DP,
SFM-CEL and SFM-Smart respectively in the 25 pg, 50 pg, 100 pg and 1000 pg
RNA quantity (b) (c) Similar as the Figure a. Figure S2. Maintenance of REOs
after excluding 0 to 10% gene pairs. (a) The consistency scores between
high-input RNA samples and low-input RNA samples of all gene pairs (blue)
and after excluding 10% of the pairs with the smallest expression differences
in the paired high-input RNA samples (pink) in the group of AA100-Smart (b)
(c) (d) Similar as the Figure a. Figure S3. Maintenance of REOs after excluding
0 to 30% gene pairs. The consistency scores between high-input RNA samples
and low-input RNA samples of all gene pairs, after excluding 0, 5, 10, 15, 20
and 30% of the pairs with the smallest expression differences in the paired
high-input RNA samples in the group of AAT00-Smart (b) (c) (d) Similar as the
Figure a. (PDF 606 kb)

Additional file 2: The main analyses codes used in this research. (R 4 kb)
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AAT00: Activin A treatment; AA100-CEL: Mouse embryonic stem cells
differentiated in control serum free media (SFM) and the collected RNA
amplified and profiled by CEL-seq using the lllumina HiSeq 2000 platform;
AA100-DP: Mouse embryonic stem cells differentiated in control serum free
media (SFM) and the collected RNA amplified and profiled by DP-seq using
the lllumina HiSeq 2000 platform; AA100-Smart: Mouse embryonic stem cells
subjected to Activin A treatment (AA100) and the collected RNA amplified
and profiled by Smart-seq using the lllumina HiSeq 2000 platform; CEL-

seq: Cell expression by linear amplification and sequencing; COAD: Colon
adenocarcinoma; CRC: Colorectal tumors; DP-seq: Designed Primer-based
RNA-sequencing strategy; FC: Fold change; GEO: Gene Expression Omnibus;
REOs: Within-sample relative expression orderings; SFM: Serum free media;
SFM-CEL: Mouse embryonic stem cells differentiated in control serum free
media (SFM) and the collected RNA amplified and profiled by CEL-seq using
the lllumina HiSeq 2000 platform; SFM-DP: Mouse embryonic stem cells
differentiated in control serum free media (SFM) and the collected RNA
amplified and profiled by DP-seq using the lllumina HiSeq 2000 platform;
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SFM-Smart: Mouse embryonic stem cells differentiated in control serum free
media (SFM) and the collected RNA were amplified and profiled by Smart-
seq using the lllumina HiSeq 2000 platform; SMART: Switching mechanism at
5"-end of the RNA transcript
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