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Abstract

Background: Structured non-coding RNAs play many different roles in the cells, but the annotation of these RNAs is
lacking even within the human genome. The currently available computational tools are either too computationally
heavy for use in full genomic screens or rely on pre-aligned sequences.

Methods: Here we present a fast and efficient method, DotcodeR, for detecting structurally similar RNAs in genomic
sequences by comparing their corresponding coarse-grained secondary structure dot plots at string level. This allows
us to perform an all-against-all scan of all window pairs from two genomes without alignment.

Results: Our computational experiments with simulated data and real chromosomes demonstrate that the

presented method has good sensitivity.

Conclusions: DotcodeR can be useful as a pre-filter in a genomic comparative scan for structured RNAs.
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Background

Non-coding RNAs (ncRNAs), which are RNAs not trans-
lated into proteins, have many different functions within
the cells. In the current version of the human genome
(Ensembl 86.38, June 2016), there are 22,219 non-coding
genes and 20,441 protein coding genes annotated, indi-
cating that ncRNAs are of great importance. While
RNA-sequencing (RNA-seq) is routinely used to locate
ncRNA transcripts [1], computational methods for detect-
ing ncRNAs are needed since some ncRNAs are so lowly
expressed that they can be hard if not impossible to detect
in RNA-seq data without prior knowledge. Furthermore,
not all ncRNAs are expressed in all cell types, which also
complicates detection of novel ncRNAs with experimen-
tal methods. A significant part of the ncRNAs have a
secondary structure, which is conserved between species.
This structural conservation can be used to computation-
ally locate ncRNA genes in the genomes [2].
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Comparative methods, which in this case focus on
structural conservation, are significantly more accurate
than methods based on single sequences. Comparative
structure prediction can be classified into three groups,
namely: align-then-fold, fold-then-align and simultane-
ous align-and-fold approaches [3]. The most accurate
methodology is the last one, and its pioneering work
based on dynamic programming is presented by Sankoff
[4]. This algorithm, however, requires too high computa-
tional cost in terms of run-time and memory usage for
any practical use. To circumvent this problem, restricted,
approximated or alternative versions of the Sankoff-
style algorithm, including FOLDALIGN [5-8], Dynalign
[9-11], CMfinder [12], LocARNA [13, 14], Murlet
[15], RAF [16] and DAFS [17], have been published
with/without application to ncRNA discovery. However,
these methods are still too slow to perform an all-against-
all scan of all windows from genomic sequences.

Examples of the align-then-fold algorithms are RNAz
[18], evofold [19] and PETfold [20]. While these meth-
ods are fast and deliver accurate results, they also require
that the input sequences have been aligned correctly.
Because these methods rely on sequence alignment, they
are limited to sequences with high sequence similarity.

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-017-4309-y&domain=pdf
mailto: ykato@rna.med.osaka-u.ac.jp
mailto: hull@rth.dk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Kato et al. BMC Genomics (2017) 18:935

The impact of sequence similarity on structural alignment
has been discussed by Torarinsson et al. [21] and Gardner
etal. [22].

To predict whether two structures are similar, the dis-
tance between the two RNA secondary structures can
be calculated. This can be done by calculating the tree
edit distance between the dot bracket representation
of the RNA secondary structures as in RNAdistance
[23, 24], or by calculating the distance between two vec-
tors based on the base-pairing probability dot plots as
done by RNApdist [23, 24]. A relaxed base pair score [25],
which is a generalized base pair metric, has also been
proposed to gain a more biologically realistic distance.
From another viewpoint of image analysis, a few studies
have been proposed where the distance is derived from a
combination of histogram correlations and a geometrical
distance measure [26—28].

GraphClust [29] clusters structured RNA sequences
based on hashing of the RNA structures, followed by
refinement of the clusters using structural alignment.
RNAsscClust [30] extends GraphClust to include infor-
mation from multiple sequences when multiple align-
ments of RNAs are used as input. Structator [31] uses
affix arrays to map known RNA structures to the genome
very fast.

Unfortunately, most of the methods stated above either
focus on the folding of known RNA genes and not on find-
ing RNA structures in long genomic sequences, require
correctly aligned input sequences, or have high compu-
tational costs. Thus, there is a lack of tools that can be
used to quickly predict structured RNAs in ‘unalignable’
genomic sequences.

In this work, an alignment-free approach to the compar-
ative genomic screen for structured ncRNAs is presented,
which can be used as a first step of a complete pipeline for
the de novo prediction of structured RNAs. The algorithm
is intended to be a pre-filter that significantly reduces the
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input space without removing the structured RNAs. The
output of the method can then be used as input for more
precise, but slower methods.

The computational method DotcodeR, DOT plot
enCODEr for RNA is presented in this paper. It uses struc-
tural similarity to search for RNA structures in genomic
sequences. DotcodeR applies a sliding window framework
and employs coarse-grained secondary structure dot plots
to compare two potential structured RNA regions. The
coarse-grained secondary structure dot plots are trans-
formed into binary vectors, and the similarity of two
vectors is calculated as a simple dot product. Due to speed
of the dot product calculation, the all-against-all com-
parison of all window pairs from two chromosomes is
feasible even without anchoring the windows on alignable
sequences. To test the method, a search for ncRNAs con-
served between human chromosome 21 and mouse chro-
mosome 19 was conducted, and the results indicate that
DotcodeR can be used to locate known structured RNAs
while reducing the search space by 97.1%. This shows that
the method is suitable as a pre-filter in genomic screen.

Methods

DotcodeR overview

The purpose of the method DotcodeR is to locate struc-
tured RNAs conserved between two genomic sequences.
To this end, subsequences are extracted from the genomic
sequences, and these subsequences are compared to each
other by calculating the dot product of binary vectors that
reflect local ensemble secondary structures. The score is
used to predict whether the subsequences have a similar
RNA structure or not (see Fig. 1).

Secondary structure dot plot

The binary vectors used in the dot product are based on
the base-pairing probabilities. This section describes how
the base-pairing probabilities are calculated.
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Fig. 1 A schematic diagram of DotcodeR. Potential structured RNA genes are assumed to be taken from the sliding windows in two genomic
sequences, which are shown as gray rectangles. In this figure the windows are drawn to be non-overlapping but in reality adjacent windows
overlap. All windows from one sequence are compared to all windows from the other sequence as indicated by the thin blue lines. For these
sequence windows, the secondary structure dot plots are computed using the partition function-based method. Coarse-grained dot plots (binary
vectors) are then obtained by the conversion rule stated in the main text. Finally, a structural similarity score can be calculated by dot product
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Let x = x1x...x; be an RNA sequence, where x; €
{A,C,G,U} for 1 < i < j < L. The RNA sequence x
can fold into a secondary structure y, which consists of
canonical base pairs such as A-U, G-C and G-U. The pos-
terior probability p;; that x; is paired with x; given the RNA
sequence x can be calculated by

pij:— e RT,

where Z = Zye S e~ is the partition function over
the set S(x) of all secondary structures of x, Sj;(x) is the
set of all secondary structures of x with x; and x; paired,
G(y) is the free energy of y, R is the gas constant, and T
is the temperature. In the actual case, p;; is calculated by
dynamic programming that employs additional partition
functions including Z; defined over all secondary struc-
tures on a sequence interval [i,/] (see [32] for further
details).

When addressing a genomic screen for structured RNAs
with a sliding window of fixed size w, we need to know
‘local’ base-pairing probabilities within that window. A
good solution is to consider the partition function Z};"
over all secondary structures on the interval [, j] with the
window [ u, u + w] folded. More specifically, ZZ’W = Zj if
(i1 Slu, u+ w), and Zi™ = 0 otherwise. The local base-
pairing probability pg’w can also be calculated by dynamic
programming using these partition functions (see [33] for
details).

A secondary structure dot plot for an RNA sequence is
a base-pairing probability matrix for that sequence, where
each (i,/) element is p;j (or pZ.’W). Note that we have only to
consider upper triangular part of the matrix because of the
relationship i < j. A dot plot for a given RNA sequence can
be computed by the partition function-based approach
stated above, which is implemented by RNAfold [23] for
global base-pairing probabilities and RNAplfold [33] for
local pairing probabilities in the ViennaRNA package [24].
In this work, we used RNAplfold to compute dot plots that
correspond to local base-pairing probabilities.

Binary vectors

The binary vector is constructed from a given dot plot
using a sliding window of fixed size 2d + 1. It should be
noted that the window introduced here is different from
the previous one of size w for genomic screen, and it is
arranged in the diagonal-like way on the dot plot (see
‘Moving window’ in Fig. 2 as an example of d = 1). It is
also to be noted that the moving window has two shapes
depending on the first position of the window center put
on the diagonal (e.g. ‘L’ shape and its inverse for d = 1 as
shown in Fig. 2). Let p;; denote a local base-pairing prob-
ability in the dot plot, which corresponds to the central
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position of the window, and 6 be a threshold. Here we con-
sider the following rule that converts pairing probabilities
within the window into a binary digit b € {0, 1}:

1. if the next of cell (i, /) in the window is (i 4 1,):

., .
pij+ Y= (pHgU,[g] +pi+f%]’j+tgj) "0

d
pi+ 251 (Pi—L%J,i—r%1 +p"+f%”+tgj) =0

2. else if the next of cell (i, /) in the window is (i,j + 1):

d
pij+ 251 (pi—r%L/—L%J +p“”%“”%1) -0
e h=0if

d
pij+ s (piff%LJ'*L%J +Pi+L%J,;‘+[%1) L8

Note that in the above conditions, ‘next’ means a cell in
the fixed window, and we set the parameters as d = 1 and
6 = 0.1 in the subsequent computational experiments.

Based on this conversion rule, a coarse-grained dot plot
can be defined as a binary vector obtained by performing
the following pseudo code (see also Fig. 2):

1: procedure MAKE BINARY VECTOR

2 set the window on the upper left corner on the
diagonal in the dot plot

3 while the window lies on the diagonal

4 while the window lies in the dot plot

5: convert the probabilities within the win-
dow into a binary digit

6: move the window by one anti-diagonal step

7: concatenate the resulting binary digits in the
processing order

8: move back the window to the start position on
the anti-diagonal

9: slide the window by one lower right diagonal
step

10: concatenate the resulting binary vectors in the

processing order

For windows that do not contain exactly 2d + 1 prob-
abilities on the boundary of the dot plot, the summing
operation is performed with probabilities available in that
window.

DotcodeR

Figure 1 illustrates how DotcodeR works when a pair
of genomic sequences is given. Two potential structured
RNA genes (subsequences) are picked up by the sliding
window in the two genomic sequences. Note that the win-
dow is to be moved along the genomes by some step size s,
which is smaller than the window size w. First, the binary
vectors are calculated for all windows in the two genomes.
Once these coarse-grained dot plots are computed, dot
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Fig. 2 Anillustration for explaining how to create a binary vector from an example RNA sequence. A moving window with 2d + 1 cells (d = 1 in this
example) is shown in the ‘Moving window’ row. The range that the window can move along one anti-diagonal is shown by shaded cells in dot
plots, and a black cell in the window corresponds to p;; used in the main text. Note that an asterisk in the dot plot indicates a high probability of
forming a base pair at the corresponding position, and the other cells without asterisk show zero probability. The window starts moving at the
upper left corner on the diagonal and moves to the anti-diagonal way, which is indicated by the arrow shown in the ‘Moving window’ row. When all
the cells of the window reaches the boundary of the dot plot, the window is moved back to the start position of this anti-diagonal scan and slidden
by one lower right diagonal step. Note that at this moment the shape of the window is changed, e.g. the inverse ‘L’ shape into the ‘L’ shape. Repeat
this scan until the window crosses over the lower right corner of the dot plot. Bold digits in the ‘Binary vector’ row are also embedded in the ‘Final
binary vector, which are shown by bold digits in the calculation order

products are calculated in all-against-all comparison of
the vectors from the two genomes to quantify the struc-
tural similarity of the subsequences.

The theoretical run-time of this genomic scan algo-
rithm is evaluated as follows. We let L denote the length
of the longer genomic sequence of the two. The first
step that computes the local base-pairing probability
matrices by RNAplfold, requires O(Lw?) time for each

genome [33]. The second step needs O ((L;izw)z

) compar-
isons of windows between the two genomic sequences.
The binary vectors are O(w?) long, and hence it takes
O(w?) to calculate the dot product between two vectors.

Therefore, the run-time of DotcodeR can be evaluated as
2.2
o) (Lw2 + 7@7‘:;) w )

Datasets

Benchmark data

To benchmark the method, a positive dataset consist-
ing of known structured RNAs was created. It is based
on sequences from the Rfam 12.0 database [34]. The
sequences in the dataset were selected in the following
way:

1. Remove sequences that have unpaired nucleotides in
columns with at least 80% gaps;
2. Remove sequences that have more than 20% gaps;

3. Remove sequences from families with fewer than 20
members;

4. Redundancy is reduced to at most 90% identity
within a family;

5. Randomly select five sequences from each clan.

The first two steps are aimed at removing outlier
sequences in the alignments. The consensus structure of
some families in Rfam contains very few base pairs. Many
of the structures with a low number of base pairs belong
to families with few member sequences (data not shown).
Step 3 removes a large part of these lightly structured
non-coding RNA families.

Sequences were split into two disjoint subsets for train-
ing and testing. The purpose of the training is to deter-
mine the optimal score cutoff as described in the next
section. Sequences from the same clan/family are all either
in the training or the test dataset to limit over-fitting.
Rfam contains many families from the miRNAs. These
families have the same structure to a large extent, and
all miRNA sequences were therefore grouped into one
family. This was also done for the snoRNAs for similar
reasons.

The training set has 73 families and 347 sequences,
whereas the test set contains 47 families and 210
sequences. Details of these RNA families can be found in
Additional file 1: Tables S1 and S2.
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Next, two negative datasets for each family were created
as follows:

e The ‘gene-shuffled’ dataset consists of shuffled
sequences from the positive dataset. This dataset has
the same number of negative sequences as that of the
positive dataset, and the GC-content is the same.

e The ‘genome-shuffled’ dataset consists of shuffled
sequences taken randomly from human chromosome
22 (GRCh38 [35]). The sequences in this dataset have
a GC-content similar to that of the chromosome
rather than that of the positive dataset.

All these negative sequences were shuffled while pre-
serving the dinucleotide distribution [36].

For each positive/negative sequence in the dataset, we
next created the corresponding ‘simulated short genomic
sequence’ by adding dinucleotide-shuffled sequences of
the original RNA gene to both ends of that gene. These
added sequences can be considered as flanking regions. In
the tests, the sliding window must overlap with the gene
regions.

Genomic sequences

To evaluate the performance of DotcodeR on real
genomic sequences, GRCh38 human chromosome 21 and
GRCm38 mouse chromosome 19 were used. The chromo-
somes as well as their gene annotations were taken from
Ensembl [35]. The annotated snoRNAs were further sub-
divided into H/ACA box and C/D box snoRNAs, since
these two classes have different structures. These chro-
mosomes were selected because chromosome 21 is the
smallest human chromosome, and mouse chromosome
19 is the mouse chromosome with the least amount of
sequence similarity to human chromosome 21.

Before running DotcodeR, regions annotated as repeats
were removed using the repeat-masking available from
the UCSC Genome Browser [37]. Window pairs from
regions covered by human-mouse chained BLASTZ
alignments [38] from the UCSC Genome Browser were
also removed because these regions can be investigated
using alignment-based methods.

Evaluation metrics

We evaluated the predictive performance by calculat-
ing sensitivity (SEN), specificity (SPC), positive predic-
tive value (PPV), negative predictive value (NPV) and
Matthews correlation coefficient (MCC), defined by

TP TN
SEN = ———, C=———,
TP + EN TN + FP
TP TN
PPV= ———, NPV=_——
TP + FP TN+ EN
TP x TN —FP x F
MCC x TN x FN

~ /(TP + ED)(TP + FN)(TN + FD)(IN + EN)’
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where TP is the number of true positives, TN is the num-
ber of true negatives, FP is the number of false positives,
and FN is the number of false negatives.

Software

The program DotcodeR is implemented in C++ and avail-
able along with the benchmark data at https://github.
com/ykatO/dotcoder/. To compute secondary structure
dot plots, we used the ViennaRNA package 2.1.9.

Results

Benchmarking DotcodeR

A discrimination test was carried out on the benchmark
data of simulated short genomes for each RNA family as
defined in the previous section using DotcodeR along with
competitive methods. More precisely, we investigated
similarity scores calculated by the comparative methods
to discriminate between real RNA genes and shuffled ones
taken from the sliding windows. Note that here we have
three types of window comparisons, i.e. real-against-real,
real-against-shuffled and shuffled-against-shuffled ones,
and the way of evaluating performance depends on the
type of comparison. For window comparison between real
subsequences only, prediction can be evaluated as ‘per-
gene’ evaluation, where if some similarity score is larger
than a cutoff in each pair of ‘input short genomes, this
pair of genes can be evaluated as true positive (TP), oth-
erwise false negative (FN). In contrast, for comparison
including shuffled subsequences, we used ‘per-window’
evaluation, where if a score is larger than the cutoff in
each pair of ‘windows, this pair of subsequences can be
evaluated as false positive (FP), otherwise true negative
(TN). With these measures, we can evaluate the predictive
performance of each comparative method by drawing the
receiver operating characteristic (ROC) curve, employing
true positive rate and false positive rate.

As the proposed method is to be used to pre-screen for
other methods, the sensitivity of DotcodeR has to be high.
High sensitivity ensures high true positive rate, but unfor-
tunately also leads to high false positive rate. When a tool
is to be used as pre-screen, a high true positive rate is
important as it keeps the real genes in the dataset. The
false positive rate is less important since false positives will
be removed by subsequent screens. The sensitivity of 90%
on the training set was therefore selected, which resulted
in a score cutoff of 20 (see Table 1 for performance on
training and test datasets). ROC curves for DotcodeR used
on the test data can be seen in Fig. 3 and on the training
data in Additional file 1: Figure S5. A window size of 120
and a step size of 30 were used throughout all evaluations.

Sequence identity between the windows as well as
the GC-content of the sequence might influence the
performance of the method. Figure 4 (test dataset) and
Additional file 1: Figure S11 (training dataset) show the
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Table 1 Prediction accuracy of DotcodeR on each dataset of
simulated short genomes

Dataset  Negative data SEN SPC PPV NPV MCC
Training  Gene-shuffled 0906 0930 0070 0999 0.070
Genome-shuffled 0906 0932 0065 0999 0.068
Test Gene-shuffled 0.902 0925 0072 0999 0.075
Genome-shuffled 0902 0947 0087 0999 0.053

Here we used the window size of 120 nt, the step size of 30 nt and the cutoff of 20.
Note that accuracy was calculated by averaging over all results of the families in
each dataset

dependency of the score as a function of sequence identity
for different levels of score cutoffs. To calculate the scores
on the shuffled sequences, the sequences from the pos-
itive set were aligned, and the alignments were shuffled
preserving the dinucleotide content [39]. The figure shows
that sequence identity is not an important contributor to
the score. Similar figures for the score dependency on GC-
content can be seen in Additional file 1: Figures S12 (train-
ing dataset) and S13 (test dataset). These figures show
that the score is not highly dependent on the GC-content.
Hence, it is not necessary to take sequence identity or
GC-content into account when the score is evaluated. The
fluctuations especially at the high and low ranges are likely
to be due to a low number of data points.

Next, the discriminative performance of DotcodeR on
the test set was investigated by comparing DotcodeR
and RNApdist [24]. RNApdist is designed to calculate
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Fig. 3 ROC curves showing predictive performance of the
comparative methods on the test set of simulated short genomes.
Comparison was carried out between DotcodeR and RNApdist. Here
we used the window size of 120 nt and the step size of 30 nt. Note
that accuracy was calculated by averaging over all results of the
families in the dataset. The terms ‘gene-shuffled’ and
‘genome-shuffled’ refer to how the negative datasets were generated
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Fig. 4 DotcodeR score as a function of sequence identity on the test
set of simulated short genomes. The scores used in the y-axis are
averaged over scores in all the families contained in the datasets. The
min cutoff cmin € {0, 20,40} means that we consider only scores of at
least cmin to investigate the relationship

distances between RNA secondary structure ensembles,
which can be obtained by aligning profile vectors cre-
ated from dot plots. Figure 3 illustrates ROC curves for
these two approaches. As it can be seen, DotcodeR outper-
forms RNApdist, which is not surprising since RNApdist
was designed with other purposes in mind. ROC curves
for respective methods and families can be found in
Additional file 1: Figures S6-S9.

DotcodeR’s and RNApdist’s run-time and memory
usage were measured on a family named IRES_Picorna,
which needed the longest computation time among all
families in the test set. Table 2 indicates that DotcodeR
runs significantly faster for this type of comparison,
whereas both methods have similar memory consump-
tion.

Additional file 1: Figure S10 shows the effect of window
size (size: 50 or 120 nt) and step size (size: 10 or 30 nt).
A window size of 120 nt is better than a smaller window
size of 50 nt. The window size of 120 nt fits very well with
the length distribution of the structures in Rfam and has

Table 2 Run-time of each comparative method on the
IRES_Picorna family of length 253 nt in the test set of simulated
short genomes

Method # of processors used Time (s) Memory (MB)
DotcodeR 1 6.00 4.46
RNApdist 1 144.55 4.60

Note that these results are only from real-against-real window comparison. The best
performance is shown in bold face. This test was serially done on a server with Intel
Xeon CPU 2.00 GHz with 8 cores and 65 GB memory
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also been found to be optimal for other methods based
on fixed window sizes (RN Az [18] for example). A smaller
window size of 50 nt was tested to see if it would give a
better signal as it makes it more likely to find a window
that only overlaps an RNA structure rather than a mixture
of RNA structures and unstructured sequences. A larger
window size would add more unstructured sequences to
most windows due to the Rfam length distribution, and
longer RNAs are likely to be found as series of windows
predicted to be RNA. ncRNAs longer than 120 nt would
be expected to show up as stretches of high scoring win-
dows. Additional file 1: Figure S16 shows the performance
for step sizes of 10, 30 and 50 nt. Here, a smaller step size
unsurprisingly leads to better performance, but this better
performance comes at the cost of increasing the run-time.
Step size of 30 nt is nine times faster than step size of 10
nt, but 2.8 times slower than step size of 50 nt. The figure
shows that a step size of 30 nt provides a good trade-off
between speed and performance.

Additional file 1: Figure S14 shows the DotcodeR score
as a function of the offset between the two structures for
the real-against-real sequences in the test set. The figure
shows that the DotcodeR score is highest when the two
structures are not offset or offset by one, which is d used
in the screen. Additional file 1: Figure S15 shows ROC
curves for the training and test datasets using different
values of d.

Genomic screen for structured RNAs

Computational performance

A genomic screen was performed on the two cleaned
chromosomes described in the ‘Genomic sequences’
section. Table 3 shows that DotcodeR reduced the search
space to 2.9% compared to a naive scan that takes all pos-
sible pairs of windows into account in the cleaned input.
Run-time for the chromosomal screen by DotcodeR on
the cleaned input is 10.2 CPU months or approximately
less than three days on a small computer cluster. When
considering a screen of the full genomes of size 3G bases,
the run-time of DotcodeR is estimated to be 925 CPU
years or 8.6 years on the same small computer cluster
(see also Additional file 1: Subsections S3.2 and S3.3 for
details). Although this number may be huge, with the use
of a large computer cluster the application of the method
to two full genomes would be feasible.
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Predictive performance
To evaluate predictive performance, the predictions of
DotcodeR were compared to the annotations of the chro-
mosomes provided by Ensembl release 85. Each exon
in the reference annotation corresponds to exactly one
window, namely the one with the biggest overlap to the
respective exon. The sensitivity is calculated, where TP is
the number of exon pairs that share the same ncRNA bio-
type, and EN is the number of exon pairs in the reference
that were not predicted. It should be noted that these pairs
between human and mouse are the same ncRNA bio-
type (e.g. miRNA-miRNA) because it is assumed that two
regions to be compared are structurally similar and thus
they are expected to belong to the same family if they have
the same biotype. Additional file 1: Table S3 shows gene
and transcript biotypes used to annotate the predicted
regions. The annotation of the ncRNAs in Ensembl ranges
from very specific RNAs like miRNA, snoRNA, snRNA
and rRNA, each of which contains a few structured RNAs,
over misc RNA, which is usually structured RNAs but
from very mixed families, to broad categories like lin-
cRNA, processed transcript (transcript biotype: lincRNA
or processed transcript) and sense intronic, which may or
may not be structured at all. It is to be noted that snoR-
NAs can be further classified into H/ACA box and C/D
box, each of which is known to form a different structure.
It is necessary to consider the strand on which the RNA
structures are located, since G-U is allowed to form a base
pair, but its complement C-A is not. There are three cases
of strand combinations in annotation, i.e. positive-against-
positive, positive-against-negative and negative-against-
negative. When evaluating performance, the fourth case
of negative-against-positive is expected to be the same
as the positive-against-negative case (RNAs on opposite
strands), and therefore these two cases are grouped as one.
Figure 5a and the corresponding numbers in Additional
file 1: Table S4 indicate that the sensitivity of 0.83 is
obtainable for the three known structured ncRNA fam-
ilies (miRNA of sensitivity 0.79, H/ACA box snoRNA
of sensitivity 0.76 and misc RNA of sensitivity 0.94) on
the positive—positive strand. Whereas this is below 0.9
selected in the training set, it is still high enough for the
method to be used as a pre-filter. The results of the RNAs
in Fig. 5 also indicate that a scan that includes the positive-
against-negative strand and the negative-against-negative

Table 3 The comparison between the number of all possible pairs of windows in input and that of pairs of windows in DotcodeR

prediction on human chromosome 21 and mouse chromosome 19

# of pairs of windows in original input

# of pairs of windows in cleaned input

# of pairs of windows in prediction Reduction (%)

3.18 x 10" 230 x 10"

6.75 x 10'0 97.07

The cleaned input was generated by removing known repeat and aligned regions from the original input. As for the prediction, we counted only the windows with score of
at least 20. Reduction is one minus fraction of the number of pairs of windows in prediction to that of pairs of windows in cleaned input
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Fig. 5 Sensitivity in predicting ncRNAs on the pair of human chromosome 21 and mouse chromosome 19 using DotcodeR. The left panel shows the
performance for the ncRNAs that are known to be structured (a), whereas the right panel is for the ncRNAs that might be or might not be structured
(b). DotcodeR was applied only to the positive strand of each chromosome, and the performance on the negative strand actually comes from
comparison between predicted regions on the corresponding positive strand and annotated regions on the negative strand. Note that sensitivity
for rRNA was removed from the figure due to its low number of annotated genes pairs, and there are no cases of processed transcripts on the
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one would significantly improve the predictions. How-
ever, this would come at the cost of a four times longer
run-time.

The sensitivity for C/D box snoRNAs is significantly
worse than that for H/ACA box snoRNAs (see Additional
file 1: Table S4). This could be due to the fact that the cor-
rect secondary structure of C/D box snoRNAs with a very
long loop is hard to predict [40, 41]. This effect is also vis-
ible in Additional file 1: Figures S1 and S2, where C/D box
snoRNA families (SNORD) tend to perform worse than
H/ACA box snoRNA families (SNORA).

For lincRNAs and processed transcripts (gene biotype:
lincRNA and processed transcript), the sensitivity is low
compared to the known structured RNAs. The function
and the structure of most lincRNAs are currently not
known, and the lack of detectable structure is therefore
not surprising. The sense intronic transcripts are tran-
scripts located inside the introns of other genes. It is well
known that many introns harbor structured RNAs.

Discussion

The sensitivity for the genomic screen on the human and
mouse chromosomes is poorer than that on the artificial
short genomes. This is not surprising since the evaluation
for the artificial short genomes is limited to comparing
sequences with the same RNA structure as these were
build from Rfam clans. In the real annotation, the struc-
tures are much more diverse as the annotated RNA struc-
tures are much broader than in Rfam. Furthermore, using

shuffled sequences in the benchmarking, though neces-
sary, may lead to an overestimation of the performance on
the benchmark data. Considering these observations, we
consider a sensitivity of 83% in the genomic screen good
enough for a pre-screen.

DotcodeR seeks to detect structured RNAs conserved
between two genomic sequences, but it should be noted
that there are a few limitations in this method. First, Dot-
codeR has the parameter of window size w for genomic
screen, which restricts the length of the RNA secondary
structure that DotcodeR can predict. DotcodeR is also
expected to have problems detecting RNA structures that
span more than one exon. Taking transcripts rather than
genomic sequences as input could solve this problem, but
the method has not been tested on this kind of data.
Thirdly, the presented method is meant to be a pre-filter
for genomic screen and thus having a high false positive
rate is acceptable.

The remaining pipeline after running DotcodeR could
be:

(1) Rerun DotcodeR with a step size of 10 and a very
high sensitivity using the output of the current scan
as input;

Then use a structural alignment method optimized for
finding local structural alignments like Foldalign [8];
Finally cluster the results with GraphClust [29] or
RNAscClust [30] to find families of structures. A
method like Structator [31] could be used to search
for missed members of the clusters.

()
3)
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The high false positive rate slows down further anal-
ysis, but a second round of DotcodeR with smaller step
size could reduce the number of false positive windows,
while keeping sensitivity high. The false negative rate is a
bigger problem since DotcodeR is intended as a pre-filter,
and any RNAs missed in this step will not be recovered
by later steps in a pipeline. However, since most RNAs
are likely to be parts of larger families, a single missed
pair of RNAs may not be a problem because the RNAs
involved may be found in pairs with other members of the
same family.

Conclusions
Genomic screens for structured RNAs play an essen-
tial role in the annotation of ncRNAs that have not yet
been annotated in public data. To this end, the algorithm
DotcodeR for de novo prediction of structured RNAs in
genomic sequences was presented. It is based on com-
parative structural information and uses a coarse-grained
secondary structure dot plots to predict if structures are
similar or not. In silico experimental results showed that
DotcodeR was able to discard genomic regions irrele-
vant to structured RNAs while keeping a good number of
existing ncRNA regions on the pair of real chromosome
sequences. This means that DotcodeR would be useful as a
pre-filter in the process of de novo prediction of ncRNAs.
As the first step in the de novo prediction, DotcodeR can
be used to quickly and efficiently select ncRNA candidates
from a large number of subsequence pairs between two
genomes. The method has high false positive rate, but still
reduces the number of window combinations with 97.1%
compared to the input set. A next step in the de novo
prediction pipeline could be to cluster the DotcodeR pre-
dictions, so that the slower rigorous methods used in the
third step would only have to be used within each cluster.
Clustering step could also help determining the function
of the predicted structure.

Additional file

Additional file 1: Supplementary Material is available online. (PDF 293 kb)
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