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Abstract

Background: Genomic regions of autozygosity (ROA) arise when an individual is homozygous for haplotypes inherited
identical-by-descent from ancestors shared by both parents. Over the past decade, they have gained importance for
understanding evolutionary history and the genetic basis of complex diseases and traits. However, methods to infer
ROA in dense genotype data have not evolved in step with advances in genome technology that now enable us to
rapidly create large high-resolution genotype datasets, limiting our ability to investigate their constituent ROA patterns.

Methods: We report a weighted likelihood approach for inferring ROA in dense genotype data that accounts for
autocorrelation among genotyped positions and the possibilities of unobserved mutation and recombination events,
and variability in the confidence of individual genotype calls in whole genome sequence (WGS) data.

Results: Forward-time genetic simulations under two demographic scenarios that reflect situations where inbreeding
and its effect on fitness are of interest suggest this approach is better powered than existing state-of-the-art methods to
infer ROA at marker densities consistent with WGS and popular microarray genotyping platforms used in human and
non-human studies. Moreover, we present evidence that suggests this approach is able to distinguish ROA arising via
consanguinity from ROA arising via endogamy. Using subsets of The 1000 Genomes Project Phase 3 data we show that,
relative to WGS, intermediate and long ROA are captured robustly with popular microarray platforms, while detection of
short ROA is more variable and improves with marker density. Worldwide ROA patterns inferred from WGS data are found
to accord well with those previously reported on the basis of microarray genotype data. Finally, we highlight the
potential of this approach to detect genomic regions enriched for autozygosity signals in one group relative to another
based upon comparisons of per-individual autozygosity likelihoods instead of inferred ROA frequencies.

Conclusions: This weighted likelihood ROA inference approach can assist population- and disease-geneticists working
with a wide variety of data types and species to explore ROA patterns and to identify genomic regions with differential
ROA signals among groups, thereby advancing our understanding of evolutionary history and the role of recessive

variation in phenotypic variation and disease.
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Background

Genomic regions of autozygosity (ROA) reflect homozy-
gosity for haplotypes inherited identical-by-descent (IBD)
from an ancestor shared by both maternal and paternal
lines. Common ROA are a source of genetic variation
among individuals that can provide invaluable insight into
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how population history, such as bottlenecks and isolation,
and “sociogenetic” factors, such as frequency of consan-
guineous marriage, influence genomic variation patterns.
Population-genetic studies in worldwide human popu-
lations over the past decade have found ROA ranging in
size from tens of kb to multiple Mb to be ubiquitous and
frequent even in ostensibly outbred populations [1-28]
and to have a non-uniform distribution across the genome
[7, 10, 13, 18] that is correlated with spatially variable gen-
omic properties [2—4, 18] creating autozygosity hotspots
and coldspots [18]. ROA of different sizes have different
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continental patterns both with regards to their total
lengths in individual genomes [12, 18, 22, 24, 26-28] and
in their distribution across the genome [18] reflecting the
distinct forces generating ROA of different lengths. Stud-
ies of ROA in the genomes of ancient hominins [29-31]
and early Europeans [32] have provided unique insights
into the mating patterns and effective population sizes of
our early forbearers. In non-humans, ROA patterns have
provided insights into the differential histories of woolly
mammoth [33], great ape [34, 35], cat [36], canid [37-43],
and avian [44] populations, while in livestock breeds they
have contributed to our understanding of their origins, re-
lationships, and recent management [42, 45—62] and the
lasting effects of artificial section [59, 62-75], as well as in-
formed the design of ongoing breeding [76, 77] and con-
servation [48, 58, 78] programs [79].

In contemporary human populations, increased risks
for both monogenic [80-84] and complex [85-92] disor-
ders as well as increased susceptibility to some infectious
diseases [93—95] have been observed among individuals
with higher levels of parental relatedness. While the as-
sociation between parental relatedness and monogenic
disease risk has been known for more than a century
[96], associations with complex and infectious diseases
potentially reflect elevated levels of autozygosity as a
consequence of prescribed and unintentional inbreeding
[97] that enrich individual genomes for deleterious vari-
ation carried in homozygous form [98, 99]. Indeed, gen-
omic autozygosity levels have been reported to influence
a number of complex traits, including height and weight
[100-103], cognitive ability [103-105], blood pressure
[106-113], and cholesterol levels [113], as well as risk
for complex diseases such as cancer [86, 87, 114-118],
coronary heart disease [86, 119-121], amyotrophic lateral
sclerosis (ALS) [122], and mental disorders [123, 124].
These observations are consistent with the view that vari-
ants with individually small effect sizes associated with
complex traits and diseases are more likely to be rare than
to be common [125-128], are more likely to be distributed
abundantly rather than sparsely across the genome
[9, 129], and are more likely to be recessive than to
be dominant [9, 130]. Recent studies investigating
ROA and human disease risk have identified both
known and novel loci associated with standing height
[131], rheumatoid arthritis [132], early-onset Parkin-
son’s disease [133], Alzheimer’s disease [134, 135],
ALS [122], schizophrenia [4, 136], thyroid cancer
[118], and Hodgkin lymphoma [117, 137]. Thus, just
as ROA sharing among affected individuals has facili-
tated our understanding of the genetic basis of
monogenic disorders [138] in both inbred [139-142]
and more outbred [143-145] families, it also repre-
sents a potentially powerful approach with which to
further our understanding of the genetic etiology of
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complex disorders [146] of major public health con-
cern worldwide.

In both population- and disease-genetic studies, ROA
are frequently inferred from runs of homozygous geno-
types (ROH) present in genome-wide single nucleotide
polymorphism (SNP) data obtained using high-density
microarray platforms [147]. A popular program for ROH
identification is PLINK [148], which uses a sliding win-
dow framework to find stretches of contiguous homozy-
gous genotypes spanning more than a certain number of
SNPs and/or kb, allowing for a certain number of miss-
ing and heterozygous genotypes per window to account
for possible genotyping errors. While a number of more
advanced ROA identification approaches have been pro-
posed [149, 150], a recent comparison found the PLINK
method to outperform these alternatives [151]. We re-
cently proposed to infer ROA using a sliding-window
framework and a logarithm-of-the-odds (LOD) score
measure of autozygosity [1, 152] that offers several key
advantages over the PLINK method [18]. First, it is not
reliant on fixed parameters for the number of heterozy-
gous and missing genotypes when determining the auto-
zygosity status of a window, instead incorporating an
assumed genotyping error rate, making it more robust
to missing data and genotyping errors. Second, it incor-
porates allele frequencies in the general population to
provide a measure of the probability that a given window is
homozygous by chance, allowing homozygous windows to
be more readily distinguished from autozygous windows.
These important advances would be expected to provide
greater sensitivity and specificity for the detection of ROA
in high-density SNP genotype data, particularly in the
presence of the higher and more variable genotype error
rates in next-generation sequence (NGS) data [153, 154].

A shortcoming of the LOD method is that correlations
between SNPs within a window that occur as a conse-
quence of linkage disequilibrium (LD) are ignored, lead-
ing to overestimation of the amount of information that
is available in the data and potentially false-positive de-
tection of autozygosity signals. In addition, the LOD
method does not account for the possibility of recent re-
combination events onto very similar haplotype back-
grounds that might give the appearance of autozygosity
when paired with a non-recombined haplotype [155].
Such a scenario would, for example, arise when ROA are
detected in microarray-based genotype data that com-
prises information at only a limited set of positions
within a genomic interval and is therefore blind to unob-
served genetic differences that make the apparently
identical haplotypes distinct.

Here, we report an improved LOD-based ROA infer-
ence method that accounts for the non-independence
between SNPs and the likelihoods of unobserved muta-
tion and recombination events within a window. We
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compare the performance of this new method against
the original LOD method as well as PLINK [148] and a
recently reported method implemented in the BCFtools
software package [156] in simulated genetic datasets.
We then evaluate how ROA inference is influenced by
the source and density of interrogated markers using the
26 human populations included in Phase 3 of The 1000
Genomes Project [157], considering the entire whole-
genome sequence (WGS) dataset as well as subsets
representing SNPs present in the exome and included
on two commonly used Illumina BeadChips. We show
that population differences in genome-wide ROA pat-
terns inferred from WGS data using our improved LOD-
based method recapitulate those observed in our earlier
BeadChip-based study that used the original LOD
method [18]. Finally, we highlight the unique ability of
our improved LOD-based method to identify genomic
regions enriched for autozygosity signals in one group
relative to another without first inferring ROA through
the direct comparison of weighted LOD scores, finding
nine regions that significantly differ in the strength of
their autozygosity signals between apparent subgroups
within the Asian Indian Gujarati, Punjabi, and Telugu
populations. Our improved ROA inference method will
assist population- and disease-geneticists working with a
wide variety of data types and species to explore ROA
patterns and to identify genomic regions with differential
ROA signals, thereby facilitating our understanding of
the role of recessive variants in phenotypic variation and
disease.

Results
Weighted likelihood autozygosity estimator
We previously reported an ROA inference approach that
was based on a number of earlier methods [1, 152] in
which a likelihood-based autozygosity estimator is ap-
plied in a sliding window framework where window size
is defined as a fixed number of SNPs [18]. In this ap-
proach, within window w in individual i from population
j, the LOD score of autozygosity is calculated across the
K SNP markers within window w, where we observe
genotype Gy at the X SNP that has state X, which
equals 1 if the SNP is autozygous and 0 otherwise.
R Pr(Gy|Xi = 1)
LOD(w,i) = kz:; log10<Pr(Gk|Xk — 0)> (1)

The per-SNP likelihoods of autozygosity and non-
autozygosity are based on Hardy-Weinberg proportions
(Table 1) and include population-specific allele frequen-
cies and an assumed rate of genotyping errors and muta-
tions €. Missing genotypes are ignored in this algorithm;
that is, they have a log-likelihood of zero. The log-
likelihood of autozygosity for homozygous SNPs is
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Table 1 Per-SNP likelihoods of autozygosity and non-
autozygosity

Gk Pr(6k| Xk = 1) PY(GA Xk = O)
AA (1 = &)fy; + efa fa,

AB 2EfAJfBJ Z&JfBJ

BB (1 —&)fg;+ efg, féJ

Missing 1 1

Frequencies of alleles A and B in population j are denoted by f,; and fg),
respectively, and the assumed rate of genotyping errors and mutations by &

positive and decreases exponentially as a function of
allele frequency (Additional file 1: Figure S1A). The log-
likelihood of autozygosity for heterozygous SNPs is in-
stead negative and equal to log;o (g), thus acting as a
penalty for the presence of heterozygous genotypes
within a window.

To address the apparent shortcomings of the LOD
score method, we developed a weighted LOD-based
method (wLOD) that accounts for non-independence
among SNPs and the probabilities of recombination and
mutation within window w.

xCorr(py, [p1, Pi])
X Pr(Gi|X; =1)

wLOD(w,i) = ; logyg ( Pr(Gr|Xx = 0)) x Pr(no recombination|(g,_,,g;])
- X Pr(no mutation|u, [p,_y, py])

(2)

Here, we adapt the approach of Chen et al. [158] to in-
corporate LD information into the wLOD(w, i) estimator,
weighting the log-likelihood of SNP k by the reciprocal
of the sum of pairwise LD between SNP k and all other
SNPs within window w calculated as

1

Corr(pka [plvpK]) = m (3)

and bounded in the interval [1/K,1]. An intuitive explan-
ation for this correction is that when a number of SNPs
are highly correlated they provide redundant informa-
tion. By weighting the log-likelihood for SNP k as a
function of its correlation with all other SNPs within
window w it contributes only the unique autozygosity in-
formation it possesses to wLOD(w, i).

LD reflects historical recombination and mating pat-
terns in a population and is largely insensitive to the ef-
fects of mating patterns within the last few generations
that can, through recombination events onto very simi-
lar haplotype backgrounds, lead to false-positive auto-
zygosity signals [155]. If a recombination event occurred
in the recent past we would want to place the ROA
boundary at that position. However, the direct detection
of such events becomes increasingly challenging as the
distance between genotyped positions increases, particu-
larly when their genotype patterns are highly correlated.
Thus, we also weight the log-likelihood of SNP k by the
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probability of no recombination events having occurred
within the genomic interval bounded by SNP k-1 and
SNP k in the last M generations, calculated based upon
their genetic map position g (in Morgans) as previously
described [10, 159]:

Pr(no recombination|[g,_;,g]) = e~ (e-i1) (4)

Here, M reflects the expected minimum number of mei-
oses since the most recent common ancestor (MRCA) for
a pair of IBD haplotypes [148], tuning the sensitivity of the
wLOD estimator to the expected age of IBD haplotypes
underlying ROA without limiting it to only ROA of that
age. In a population-genetic context, M can be set based
upon effective population size estimates and the probabil-
ity that a pair of individuals share a common ancestor M
generations in the past [160], while in a disease-genetic
context M can instead be set based on known relation-
ships between affected individuals.

Finally, we account for the potential presence of unob-
served genetic differences within the genomic interval
bounded by SNP k-1 and SNP k by weighting the log-
likelihood of SNP k by the probability of no unobserved
mutation events having occurred within the genomic
interval in the last M generations, calculated based upon
their physical map position p (in bp) and a per-base mu-
tation rate p using an approach adapted from MacLeod
et al. [161]:

Pr(no mutation|u, [py_1, pi]) = e 2Muppir) (5)

As evident in Figure S1B (Additional file 1), the re-
combination and mutation weightings reduce the log-
likelihood of SNP k as a function of its distance from
SNP k- 1, reflecting the increased likelihood of recom-
bination and mutation events going undetected as the
size of the uninterrogated region increases. At M =7, the
log-likelihood of SNP k is reduced by ~ 50% at an inter-
marker distance of ~300 kb and ~85% at ~ 100 kb.
When the wLOD method is applied to high-density SNP
genotype datasets, such as that created by WGS, the re-
combination and mutation weighting will have a min-
imal effect on the wLOD score of window w. However,
when applied to lower-density SNP genotype data, such
as that created by genotyping microarrays—particularly
those available for non-human species such as dogs and
cows—the much larger inter-marker distances in these
datasets will lead the recombination and mutation
weighting to have a much larger effect on the wLOD
score of window w.

It can also be seen that as M decreases the magnitude
of the change in the weighting with increasing distance
also decreases; thus, wLOD scores in populations with
small effective population sizes or in disease studies
where affected individuals share a more recent common
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ancestor (smaller M) will be adjusted to a lesser extent
than those with larger effective population sizes or
where affected individuals share a more distant common
ancestor (larger M).

Properties of the wLOD estimator

To investigate how the LD, recombination, and mutation
corrections implemented in the wLOD estimator influ-
ence per-window autozygosity likelihoods, we compared
them with those of the LOD estimator using The 1000
Genomes Project Phase 3 dataset that contains phased
genotypes for 84,801,880 genetic variants discovered
using a low-coverage WGS approach in 2436 unrelated
individuals from 26 human populations (Table 2) [157].
To approximate a typical microarray-based SNP geno-
typing study, we first developed a subset of this dataset
that contained 2,166,414 autosomal SNPs that are
present on the popular Illumina HumanOmni2.5-8
BeadChip (“Omni2.5 dataset” henceforth). In all ana-
lyses, 4 was set to 1.18 x 10 [162] and & was set to
471 x 107, the average rate of discordance across sam-
ples between genotypes in our Omni2.5 dataset and
those obtained for 1693 of the 2436 individuals directly
with the Ilumina HumanOmni2.5 BeadChip [157]. Un-
less otherwise stated, M was set to seven, a conservative
value broadly reflecting the average of effective popula-
tion size estimates for populations included in The 1000
Genome Project [157, 160, 163]. Window size was varied
in an arbitrary interval [Ko, K,] in which K is increased
in 10 SNP increments (i.e. K,, = Ky + [10 x n]).

The genome-wide distribution of wLOD scores for all
windows in the Omni2.5 dataset is bimodal and centered
around O (Fig. la), with wLOD scores under the left-
hand mode favoring the hypothesis of non-autozygosity,
whereas those under the right-hand mode favor the
autozygosity hypothesis. The area under the right-hand
mode decreases as a function of window size as ROA
are progressively covered by fewer but longer windows.
In addition, while the location of the right-hand mode
does not change appreciably with window size, there is a
noticeable shift toward lower wLOD scores in the left-
hand mode with increasing window size, likely reflecting
the larger number of heterozygous SNPs in non-
autozygous compared with autozygous regions and their
greater cumulative effect on wLOD scores with increas-
ing window size. This shift progressively increases the
distance between the non-autozygous and autozygous
modes until either the autozygous mode disappears (Fig.
1b) or the intermodal distance begins to decrease instead
(Additional file 1: Figure S2), both potentially reflecting
the point above which window lengths exceed those of
the majority of ROA in the sample set. In this scenario,
as window size increases, autozygous windows increas-
ingly overlap non-autozygous regions flanking shorter
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Table 2 Populations included in Phase 3 of The 1000 Genomes Project

Population Geographic region N Consanguinity?

D Name Frequency Reference(s)
ESN Esan Africa 94 - -

GWD Gambian Africa 109 - -

LWK Luhya Africa 96 - -

MSL Mende Africa 80 - -

YRI Yoruban Africa 107 51.20% [253]

GBR British Europe 89 0.40% [254]

CEU European American Europe 97 0.20% [255]

FIN Finnish Europe 98 0.17% [256]

1BS Iberian Europe 107 1.99% [257-261]

TSI Toscani Europe 104 - -

BEB Bengali Central/South Asia 84 5.00% [182]

GIH Gujarati Central/South Asia 101 4.90% [182]

PIL Punjabi Central/South Asia 96 0.90% [182]

STU Sri Lankan Tamil Central/South Asia 9% 38.20% [182]

TU Telugu Central/South Asia 101 30.80% [182]

CDX Dai East Asia 92 21.30% [181]

JPT Japanese East Asia 103 4.80%

KHV Kinh East Asia 94 - -

CHB Northern Han East Asia 101 1.16% [181, 262, 263]
CHS Southern Han East Asia 102 3.43% [181, 263]
ASW African American Admixed 55 - -

ACB Afro-Caribbean Admixed 94 - -

CLM Colombian Admixed 89 2.83% [255, 257, 264]
MXL Mexican American Admixed 62 0.80% [255, 257]

PEL Peruvian Admixed 84 1.90% [255, 264, 265]
PUR Puerto Rican Admixed 101 3.30% [260]

?Consangunity frequencies were obtained from http://www.consang.net

ROA leading them to encompass greater numbers of het-
erozygotes within these non-autozygous regions, deflating
their wLOD scores. Whether the autozygous mode disap-
pears or shifts toward lower wLOD scores is likely deter-
mined by the abundance of ROA and their levels of
support in the sample set: sets with fewer ROA and ROA
with generally lower wLOD scores lose their autozygous
mode while those with large numbers and higher wLOD
scores have it shift toward the non-autozygous mode.
Nevertheless, the location of the minimum between the
two modes does shift subtly toward higher wLOD scores
with increasing window size, reflecting the expected in-
crease in scores for autozygous windows as a function of
the number of SNPs within the window. The periodicity
observed in the genome-wide score distribution of the ori-
ginal LOD estimator [18] is absent with the wLOD estima-
tor, indicating that this property was a reflection of LD
among SNPs within the window.

To evaluate how the improvements incorporated into
the wLOD estimator (Eq. 2) influence per-window scores
as compared to the original LOD estimator (Eq. 1), we
compared wLOD and LOD scores in the Omni2.5 dataset
with a window size of 150 SNPs (Additional file 1: Figure
S3A), the largest value that produced a clear bimodal
wLOD score distribution in all 26 populations (Additional
file 1: Figure S4). Across populations, per-window wLOD
scores differed from their corresponding LOD scores by
between -103.87 and 454.07 (Additional file 1: Figure
S3B) with the range and average of wLOD and LOD score
differences increasing as a function of a population’s geo-
graphic distance from East Africa (p=0.8460 with P =
5.029 x 10°° and p = 0.8846 with P =4.961 x 107/, respect-
ively), reflecting increasing LD [164, 165] and decreasing
genetic diversity [97, 166—169]—leading to larger dis-
tances between polymorphic SNPs—with distance from
Africa. Among the six admixed populations included in
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Fig. 1 Distribution of genome-wide wlLOD scores in European Americans. a Each line represents the Gaussian kernel density estimates of the pooled
wLOD scores from all 97 individuals in the European American (CEU) population at window sizes between 40 and 200 SNPs in 10 SNP increments in the
Omni2.5 dataset. The largest window size that produced a clear bimodal distribution (150 SNPs) is shown in black. b The change in intermodal distance
with increasing window size in the CEU population. These patterns are representative of those observed in all other populations in the dataset

Phase 3 of The 1000 Genomes Project, those of mixed Af-  location of the minima between the autozygous and
rican and European ancestry (ACB and ASW) had smaller = non-autozygous modes is significantly negatively corre-
ranges and averages of wLOD and LOD score differences  lated with the proportion of autozygous LOD windows
than those of mixed of Amerindian and European ances-  that transition to the non-autozygous wLOD mode (r =
try (CML, MXL, PUR, and PEL), consistent with the lower ~ -0.8654, P = 1.156 x 10~%; Additional file 1: Figure S5B).
LD [170-172] and higher genetic diversity [169, 173] of In contrast, across populations only 0.055-5.015% of
admixed African-European populations compared with  all windows in the non-autozygous mode with the LOD
Amerindian-European populations. estimator were present in the autozygous mode with the
Across populations, 5.15-47.93% of all windows in the =~ wLOD estimator (Additional file 1: Figure S3D), poten-
right-hand “autozygous” mode with the LOD estimator tially reflecting false-negative autozygosity signals re-
were present in the left-hand “non-autozygous” mode ported by the LOD estimator as a consequence of
with the wLOD estimator (Additional file 1: Figure S3C)  heterozygotes in high LD with a larger number of homo-
potentially reflecting false-positive autozygosity signals  zygotes that, in one possibility, might reflect genotyping
reported by the LOD estimator as a consequence of errors. The proportion of windows was highest in most
non-independence among homozygous SNPs that cu-  African populations and lowest in most European popu-
mulatively give the mistaken impression of autozygosity. lations, with broadly similar values observed in Central/
The proportion of windows was lowest in African popu-  South and East Asian populations. This pattern is the
lations and highest in most European populations, in-  opposite of that observed with the putative false-positive
creasing incrementally through Central/South Asian and  windows above, and can also be explained by population
East Asian populations. This pattern can be explained by  differences in the location of the autozygous mode and
population differences in the location of the autozygous its shift toward lower scores with the wLOD estimator.
mode and its shift toward lower scores with the wLOD  The addition of a single heterozygote to an autozygous
estimator. Modal LOD and wLOD scores in the autozy- window in the European populations has a greater chance
gous mode are generally smallest and most similar in  of transitioning it from the autozygous to non-autozygous
European populations and highest and least similar in  mode than in the African populations since the autozy-
African populations (Additional file 1: Figure S5A). gous mode is situated much closer to the minima between
Thus, for a given unit decrease in score between the the two modes (Additional file 1: Figure S5).
LOD and wLOD estimators, an autozygous LOD window Overall, the much larger numbers of windows transi-
has a greater chance of transitioning to the non- tioning from the autozygous to the non-autozygous mode
autozygous wLOD mode in Europeans populations than  than vice versa between the LOD and wLOD estimators
in African populations. Consistent with this hypothesis, accord with the expectation that the LOD estimator fre-
the magnitude of the difference between modal LOD  quently overestimates the amount of information available
and wLOD scores in the autozygous mode and the in the data leading it to falsely report autozygosity signals
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particularly in genomic regions with higher levels of LD,
while it underestimates the amount of information much
less frequently.

ROA inference with the wLOD estimator

To infer ROA with our wLOD method, we must select
an appropriate wLOD score threshold above which gen-
omic windows are considered autozygous. A natural
threshold above which to consider a window as autozy-
gous is the location of the minimum between the non-
autozygous and autozygous modes in its wLOD score
distribution [18]. Sample size was not observed to appre-
ciably influence the location of the minimum between
the non-autozygous and autozygous modes (Additional
file 1: Figure S6). However, across 100 random samples
of individuals greater consistency in its determination
was observed with increasing sample size, particularly
compared with sample sizes of less than 10 individuals,
indicating that 10 or more individuals should be used to
ensure a robust estimate of the threshold is obtained. All
windows with wLOD scores above threshold are consid-
ered autozygous [18], and overlapping autozygous win-
dows are joined to define ROA.

As each SNP is included in multiple windows (i.e. a
SNP is included in 50 different windows at a window
size of 50), SNPs near the boundaries of true ROA will
be included in both autozygous and non-autozygous
windows as the sliding window enters and leaves the
ROA. To improve the accuracy of ROA inferences when
using a sliding-window approach, we require a SNP to
be covered by a certain proportion of autozygous win-
dows before it is placed within an ROA [148], with an
overlap fraction of 0.25 previously recommended for use
with the original LOD ROA inference method [174].

Accuracy of the wLOD estimator

To evaluate the sensitivity and specificity of the wLOD
method to detect ROA in dense genotype data, we simu-
lated 50 independent replicates of genetic data under
two demographic scenarios that are broadly representa-
tive of situations in which inbreeding and its effect on
fitness are of interest as previously described [175] except
that we considered a non-uniform distribution of recom-
bination rates across the simulated chromosomes and
allowed all base pairs to be mutatable (see Methods). Sce-
nario 1 considered a small partially isolated population of
constant effective size (N.=75) that receives approxi-
mately one migrant per generation, simulated for 150 gen-
erations (4350 years for a generation time of 29 years
[176]). Scenario 2 considered a medium sized closed
population (N.=500 simulated for 100 generations
[2900 years]). Each simulated dataset consisted of a single
250 Mb chromosome upon which ~750,000 polymorphic
single-nucleotide variants (SNVs) segregate, consistent
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with the SNV density and length of chromosome 1 in The
1000 Genomes Project Phase 3 WGS data.

Separately for each simulated dataset, we applied the
wLOD estimator considering windows of between 50
and 500 SNPs (in 10 SNP increments), and a proportion
of overlapping autozygous windows used to construct
ROA of between 0 and 50% (in 1% increments). We
then calculated three measures of how well inferred
ROA agreed with true ROA reported by the simulation
program. First, we calculated the power of the wLOD
method to detect true ROA, defined here as the total
length of true ROA that is overlapped by inferred ROA
divided by the total length of true ROA. Second, we cal-
culated its false positive rate as the total length of in-
ferred ROA that does not overlap with true ROA
divided by the total length of inferred ROA. Finally, for
all true ROA detected with the wLOD method, we calcu-
lated the ratio of inferred ROA length and true ROA
length for all ROA. Here, ratios greater than one indi-
cates a tendency to overcall ROA by falsely including
non-autozygous regions near the boundaries of true
ROA, while ratios below one indicate a tendency to in-
stead undercall an ROA by falsely excluding true autozy-
gous regions near the boundaries of true ROA [174].

As can be seen in Fig. 2a, large numbers of false posi-
tive ROA calls are made by the wLOD method with a
window size of 50 SNPs, decreasing markedly as the
window size and the proportion of overlapping windows
required during ROA construction increases. These pat-
terns are consistent with the observation that false posi-
tive ROA calls are very small—on average 16.97 kb
(standard deviation [SD] =3.85) with a window size of
50 SNPs—and therefore delineated by a few erroneous
autozygous windows that progressively fail to meet the
required threshold during ROA calling as the window
overlap fraction increases. Once window size reaches
~90 SNPs, the wLOD estimator is able to distinguish
autozygosity from homozygosity-by-chance with great
precision. Conversely, numbers of false negative ROA
calls increase as a function of window size and overlap
fraction (Fig. 2b). These patterns are consistent with the
expectation that as window size increases smaller ROA
increasingly go undetected (Additional file 1: Figure
S7A), likely as a result of them being spanned by pro-
gressively fewer but larger windows and their autozygos-
ity signal being increasingly masked by the inclusion of
non-autozygous flanking regions in the wLOD score cal-
culation. Similarly, higher overlap fractions also lead to
small ROA spanned by just a small number of autozy-
gous windows increasingly going undetected (Additional
file 1: Figure S7D) as they fail to meet the required
threshold. Nevertheless, overall power to detect ROA
with the wLOD method only decreases slightly as win-
dow size and overlap fraction increase (Fig. 2c),
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ROA lengths of about 1 is shown in black

Fig. 2 Performance of the wLOD method across different window sizes and overlap fractions. For scenario 1 and the 750,000 polymorphic SNV
datasets, a three-dimensional (3D) bar graph depicting the average number of falsely discovered ROA (a) as well as 3D scatterplots depicting the
average number of false negative ROA (b), average power (c), and average ratio of inferred and true ROA lengths (d) reported by the wLOD
method for each window size and overlap fraction across the 50 replicates are shown. In each graph, the point representing the smallest combin-
ation of window size and overlap fraction that had an average number of falsely discovered ROA of 0 and an average ratio of inferred and true
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consistent with the expectation that at larger window
sizes (Additional file 1: Figure S7B) and overlap fractions
(Additional file 1: Figure S7E) the sliding window ap-
proach will have increasing difficulty in detecting smaller
ROA but nonetheless retains high power to detect lon-
ger ROA. Finally, ratios of inferred to true ROA length
increase as a function of window size and decrease as a
function of overlap fraction (Fig. 2d), reflecting the ten-
dency of the wLOD method to overcall the boundaries
of smaller ROA at larger window sizes (Additional file 1:
Figure S7C) and smaller overlap fractions (Additional
file 1: Figure S7F) with those of longer ROA affected to
a much lesser extent. All together, these patterns suggest
that a suitable point within the parameter space at which
to evaluate the sensitivity and specificity of the wLOD

method will be the smallest window size and overlap
fraction combination at which no false-positive ROA are
inferred and the average ratio of inferred to true ROA
length is approximately one (Additional file 2: Table S1),
striking a balance between sensitivity to detect smaller
ROA and the overall accuracy of ROA calls.

To evaluate how SNV density influences the sensitivity
and accuracy of ROA inference with the wLOD method,
we created three subsets of the simulated WGS datasets
that reflect the SNV densities of commonly used human
microarray-based  genotyping platforms: Illumina’s
HumanOmni2.5-8 (125,000 SNVs) and OmniExpress-24
(50,000 SNVs) BeadChips and Affymetrix’s Genome-
Wide Human SNP 6.0 Microarray (80,000 SNVs). In
addition, we included subsets with SNV densities
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consistent with the genotyping platforms used by ROA
studies in cattle and dogs: Illumina’s Bovine HD (80,000
SNVs) and Canine HD (18,000 SNVs) BeadChips. ROA
inference accuracy was evaluated exactly as described
above for the WGS datasets at the optimal window size
and overlap fraction determined separately for each SNV
density and demographic scenario (Additional file 2:
Table S1). Interestingly, optimal window size varied only
slightly across the different SNV densities, lying between
60—130 SNPs and 70-120 SNPs for scenarios 1 and 2,
respectively, but nevertheless increasing as a function of
SNV density. The optimal window overlap fraction did
however vary more widely, increasing as a function of
SNV density and lying between 7-37% and 5-32% for
scenarios 1 and 2, respectively.

As would be expected, the power of the wLOD method
to detect ROA increases as a function of ROA length
and the density of SNV in the genetic dataset (Fig. 3).
While ROA longer than 1 Mb are captured extremely
well (>99.7%) at all SNV densities explored, the detec-
tion of ROA shorter than ~1 Mb decreases appreciably
as a function of SNV density. Nevertheless, even with
only ~ 18,000 SNVs (1 SNV every ~ 14 kb) the wLOD
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method is able to capture 96.3 and 89.0% of ROA under
scenarios 1 and 2, respectively, with this increasing to
99.9% for both scenarios with 750,000 SNVs (1 SNV
every ~ 333 bp). However, false discovery rates do in-
crease dramatically with decreasing SNV density, par-
ticularly for smaller ROA (Fig. 3) where they jump from
0.0045 to 0.0069 with 750,000 SNVs to 0.0445 and
0.1362 with 18,000 SNVs for scenarios 1 and 2, respect-
ively, while longer ROA are much less affected: 0.0010
and 0.0001 with 750,000 SN'Vs increasing to 0.0200 and
0.0495 with 18,000 SNVs for ROA =5 Mb, respectively.
It should be noted that these false discovery rates are
solely the result of overcalling true ROA and not errone-
ous ROA calls. This is reflected in the ratios of inferred
to true ROA length (Fig. 3) that increase with decreasing
SNV density, particularly for smaller ROA, and
approach—but never quite reach—one with increasing
ROA length.

Overall, these findings indicate that the wLOD method
is well powered to detect ROA with high sensitivity and
good specificity at a wide range of SNV densities that
are consistent with WGS as well as popular microarray-
based platforms that are commonly used in human and
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Fig. 3 Performance of the wLOD method at different SNV densities. Line graphs showing how average power (top), false discovery rate (middle),
and ratio of inferred and true ROA length (bottom) across 50 replicate genetic simulations change with increasing ROA length for each SNV
subset under (a) scenario 1 and (b) scenario 2. Each comparison was performed at the optimal combination of window size and overlap fraction
for that scenario and SNV subset (Additional file 2: Table S1). The grey vertical lines denote 500 kb (dashed) and 1.5 Mb (dotted), frequently applied
length thresholds used to categorize ROA arising due to LD (< 500 kb) and inbreeding (> 1.5 Mb) in humans [9]. Note that in scenariol, power to
detect ROA > 1 Mb with 18,000 SNVs surpasses that with 50-125,000 SNVs as a consequence of the optimal overlap fraction used: the overlap
fraction of 0 used for the 18,000 SNV dataset is much lower than the 0.15-0.22 fractions used for the 50-125,000 SNV datasets. Consequently,
greater power to detect ROA > 1 Mb is achieved with 18,000 SNVs than is possible with 50-125,000 SNVs through less stringent placement of
ROA boundaries, but at the expense of more frequent overcalling of ROA (inflated false discovery rate)
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non-human studies of ROA, and in particular long ROA
that are of interest in studies of Mendelian and complex
diseases and traits. In the simulations, both the optimal
window size and the optimal overlap fraction increased
logarithmically as a function of SNV density (R* = 0.9814
and R” = 0.8868, respectively, when considering their av-
erages across scenarios). Fitting these averages against
the natural logarithm of average SNV density D across
all 50 replicates of their respective SNV subset, this sug-
gests that as a rule of thumb future studies apply the
wLOD method at a window size equal to 16.400 x
log.(D) +218.020 and an overlap fraction equal to
0.0736 x log.(D) + 0.8063. Based upon these equations,
and calculating SNV density as the number of autosomal
SNPs on the microarray divided by the total length of
the target species’ autosomal genome, guideline settings
for window size and overlap fraction with the commonly
used human and non-human genotyping microarrays
are: 111 SNPs (33%), 103 SNPs (29%), 85 SNP (21%), 81
SNPs (19%), and 59 SNP (9%) for Illumina’s Huma-
nOmni5, HumanOmni2.5, Bovine HD, OmniExpress,
and Canine HD BeadChips, respectively, and 85 SNPs
(21%) for the Affymetrix Genome-Wide Human SNP 6.0
Microarray. Considering the range of autosomal SNVs
observed in the WGS data available for the 26 popula-
tions in Phase 3 of The 1000 Genomes Project (12—24
million SNV [157]) a window size of 128—140 SNPs and
an overlap fraction of 40-45% would be recommended
for WGS datasets. Nevertheless, the modest effect win-
dow size has on power to detect longer ROA across the
simulated SNV densities (Additional file 1: Figure S8)
would suggest that the use of more conservative (i.e. lar-
ger) window sizes will not greatly impact the ability of
future studies to detect longer ROA of interest regard-
less of the source and density of the SNV data being an-
alyzed. The window overlap fraction used in ROA
construction can then be tailored to meet the needs to
detect shorter ROA (Additional file 1: Figure S9) and to
accurately place ROA boundaries (Additional file 1:
Figure S10), where less restrictive (i.e. smaller) fractions
can greatly improve the detection of shorter ROA with-
out significantly impacting the accuracy of longer ROA
inferences.

Performance of wLOD against existing ROA detection
methods

We have shown the wLOD method to be well powered
to detect ROA in genetic datasets consistent with WGS
and microarray-based genotyping. We next evaluated
how the power and false discovery rate of the wLOD
method compared with those of three current methods
designed specifically to detect ROA in dense genotype
data using the datasets simulated above: the original
LOD method, the naive genotype counting method
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implemented in PLINK [148], and the recently reported
hidden Markov model (HMM) method implemented in
the RoH function of BCFtools [156]. We do not consider
here the ROA inference methods of GERMLINE [150]
and Beagle [177] as they have been previously shown to
underperform compared with the methods implemented
in PLINK [151] and BCFtools [156] in simulated data
that most closely reflects genetic variation patterns
found in Europeans; given the notably higher power of
PLINK and BCFtools in these comparisons, we consider
it unlikely that the outcome would be substantially dif-
ferent with simulated data consistent with non-
European populations that have notably different LD
patterns from European populations [164, 165]. Since
the false discovery and boundary placement properties
of the sliding-window-based LOD and PLINK methods
would be expected to differ from those of the wLOD
method due to their different underlying models, separ-
ately for each dataset we identified the optimal window
size and overlap fraction for the LOD method (Add-
itional file 2: Table S2) and PLINK (always a window size
of 50 SNPs and overlap fraction of zero) as described
above; the BCFtools method was applied using default
settings. It should be noted that we apply PLINK here to
the entire dataset to provide an “all else being equal”
comparison with the other methods; however, it is gen-
erally recommended to apply it to minor allele frequency
(MAF) and LD-pruned datasets to minimize the number
of spurious ROH calls [148, 151]. Thus, its power and
false-positive rates of ROA detection reported here are
expected to be inflated and deflated, respectively, relative
to those after MAF- and LD-pruning.

For both scenario 1 and 2, all four methods were able
to detect >99.5% of ROA on average with 750,000 SN'Vs
(Fig. 4a and d, respectively), representative of the density
of SNVs observed in WGS data. Nevertheless, the wLOD
method outperformed both the original LOD method as
well as PLINK and BCFtools, particularly at shorter ROA
lengths. Interestingly, power with BCFtools became in-
creasingly erratic at longer ROA lengths, most notice-
ably in scenario 1 (small partially isolated populations),
for reasons that remain enigmatic. However, while the
wLOD method had a lower false discovery rate than the
LOD method, it was notably higher than that of
BCFtools and PLINK. Again, it should be noted that this
elevated false positive rate solely reflects the overcalling
true ROA due to the sliding-window approach employed
and not erroneous ROA calls, with such overcalling eas-
ily reduced through the use of a more stringent overlap
fraction but at the expense of power to detect short
ROA. Nevertheless, average ratios of inferred to true
ROA length were broadly similar across the wLOD,
LOD, and BCFtools methods, where they are highest for
extremely short ROA and decrease exponentially with
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Fig. 4 Performance of the wLOD method compared with existing methods. Line graphs showing for scenarios 1 (a—c) and 2 (d-f) and subsets
consistent with WGS (750,000 SNV; a & d) and the lllumina HumanOmni2.5-8 (125,000 SNV; b & e) and HumanOmniExpress-24 (50,000 SNV; ¢ & f)
BeadChips how average power (top), false discovery rate (middle), and ratio of inferred and true ROA length (bottom) across 50 replicate genetic
simulations change with increasing ROA length. The grey vertical lines denote 500 kb (dashed) and 1.5 Mb (dotted), frequently applied length
thresholds used to categorize ROA arising due to LD (< 500 kb) and inbreeding (> 1.5 Mb) in humans [9]
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increasing ROA length until they approach—but never
quite reach—one, although ratios with BCFtools were
marginally lower than those with the wLOD and LOD
methods in scenario 2. Conversely, average ratios with
PLINK decreased noticeably as a function of ROA leng-
th—reaching 0.47 in scenario 1 and 0.81 in scenario
2—consistent with the expectation that as a conse-
quence of its naive model, PLINK will have a tendency
to undercall ROA or return fragmented ROH calls
across their span as a function of the distribution of het-
erozygous genotypes within the ROA, which would be
expected to be most numerous near its boundaries.

Overall, these observations would suggest that model im-
provements implemented in the wLOD estimator (Eq. 2)
that account for the confounding effects of LD, recom-
bination, and mutation in the autozygosity likelihood cal-
culation provide improved sensitivity and specificity in
ROA calling over the original LOD estimator (Eq. 1). Add-
itionally, they indicate that the wLOD method’s sliding
window approach, which combines evidence for autozyg-
osity across multiple SNVs, provides improved sensitivity
to detect ROA compared with the HMM method of
BCFtools, albeit with slightly decreased accuracy in ROA
boundary placement.
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When we consider simulated datasets consistent with
those of genotyping microarrays we observe similar pat-
terns to those observed with 750,000 SNVs (Fig. 4 and
Figure S11 [Additional file 1]). For both scenarios 1 and
2, the wLOD method consistently outperforms the LOD
method as well as BCFtools and PLINK in terms of
power, particularly at shorter ROA lengths. False discov-
ery rates with the wLOD method are consistently lower
than those with the LOD method but remain slightly
higher than those with BCFtools, while ratios of inferred
to true ROA length remain similar across the wLOD and
LOD methods and BCFtools. As SNV density decreases
from 750,000 SNVs down to 18,000 SNVs several pat-
terns emerge. First, the difference in power between the
wLOD and LOD methods decreases as a function of
SNV density (Additional file 1: Figure S11B and D), dis-
appearing faster under scenario 2 (large closed popula-
tions) than under scenario 1 (small partially isolated
populations). These patterns are consistent with the view
that in datasets containing fewer SNVs, LD confounds
the inference of ROA appreciably less than in datasets
containing many SN'Vs. Consequently, the LD correction
implemented in the wLOD estimator (Eq. 2) increasingly
becomes less important as SNV density decreases, lead-
ing the LOD and wLOD estimators to provide broadly
similar autozygosity likelihoods. Nevertheless, false dis-
covery rates with the wLOD method are consistently
lower than those with the LOD method, in agreement
with the expectation that as SNV density decreases the
probabilities of unobserved recombination and mutation
events between genotyped SNVs increases, with the re-
combination and mutation corrections implemented in
the wLOD estimator (Eq. 2) enabling it to better account
for these events than the LOD estimator (Eq. 1). Second,
ratios of inferred to true ROA length with the PLINK
method become more similar to those of the other three
methods with decreasing SNV density. This pattern is
consistent with the expectation that as SNV density de-
creases, the number of heterozygous genotypes within
ROH will also decrease, allowing PLINK to increasingly
detect the entire ROA. Finally, the performance of
BCFtools decreases as a function of SNV density, al-
though an appreciable loss of power only manifests
when we reach 18,000 SNVs and is more pronounced in
scenario 2 than in scenario 1 (Additional file 1: Figure
S11B and D), suggesting that its HMM is sensitive to the
effects of extended LD among sparsely distributed SN'Vs,
a situation frequently encountered in closed populations
due to elevated levels of general inbreeding. It should be
noted, however, that BCFtools was designed for next-
generation whole-genome and -exome data analysis and
not for sparser microarray-derived genotype datasets, so
its decline in performance in such datasets is to be
somewhat expected.
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Contrary to expectations based on frequent discrepan-
cies in the autozygosity status of windows with the
wLOD and LOD estimators in The 1000 Genomes Pro-
ject Phase 3 populations (Additional file 1: Figure S3), in
our simulated datasets the wLOD method only provided
modest improvements in power and false discovery rate
over the original LOD method (Fig. 6 and Figure S11
[Additional file 1]). How can we reconcile the high simi-
larity of ROA calls with the LOD and wLOD methods in
the simulated datasets with the appreciable differences
in per-window autozygosity inferences made by their
underlying estimators in The 1000 Genomes Project
Phase 3 data? Considering the simulated datasets con-
taining ~125,000 SNVs, which have a comparable SNV
density to that of The 1000 Genomes Project Phase 3
Omni2.5 dataset investigated in Figure S3 (Additional
file 1), and the same window size of 150 SNPs, across
the 50 replicates for scenario 1 0.519% (SD =0.496) of
windows were autozygous with the LOD estimator but
not the wLOD estimator, while 2.808% (SD = 1.260) were
autozygous with the wLOD estimator but not the LOD
estimator; for scenario 2 the values were 0.153% (SD =
0.169) and 5.364% (SD = 1.594), respectively. While the
proportion of windows autozygous with the wLOD esti-
mator but not the LOD estimator in the simulated data-
sets is similar to that observed in The 1000 Genomes
Project Phase 3 populations (Additional file 1: Figure
S3D), the proportion of windows autozygous with the
LOD estimator but not the wLOD estimator is about two
orders of magnitude lower than the values observed in
The 1000 Genomes Project Phase 3 populations (Add-
itional file 1: Figure S3C). Thus, while we observe the
expected gain in sensitivity through a reduction in the
contribution of occasional heterozygotes within ROH
with the wLOD estimator that enables improved detec-
tion of shorter ROA comprised of common haplotypes,
we do not observe the expected inflation in LOD scores
due to the confounding effects of LD among genotyped
positions that leads to increased false positive ROA calls.

Based on their underlying models, we would expect
the LOD (Eq. 1) and wLOD (Eq. 2) estimators to provide
highly similar inferences in situations where autozygosity
patterns align almost perfectly with LD patterns among
genotyped SNVs and are investigated with a sufficiently
high density of SNVs that the probabilities of unob-
served mutation and recombination events are effect-
ively zero. The most parsimonious explanation for the
surprisingly high similarity of ROA calls made by the
LOD and wLOD methods in the simulated datasets is
therefore that LD patterns in these simulated datasets
do not faithfully recapitulate the complexity of those
found in real populations who have experienced much
more complex histories than those simulated here, limit-
ing the impact of the LD correction (Eq. 3) incorporated
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into the wLOD estimator. We therefore expect to ob-
serve appreciably greater improvements in the sensitivity
and specificity of ROA calls with the wLOD method
compared with the LOD method in real genetic data
than in our simulated datasets.

Effect of genotyped SNV density on ROA inference in real
data

We have shown the wLOD method to be well powered
to detect ROA in genetic datasets consistent with WGS
and microarray-based genotyping, and to outperform a
number of existing methods in terms of power, although
the overcalling of ROA due to its sliding window ap-
proach creates slightly higher rates of false discovery
than a recently reported HMM model approach. While
our simulations suggest that the wLOD method has
>99.8% power to detect ROA longer than 1 Mb across
SNV densities that are consistent with those frequently
used in human population- and disease-genetic studies
(Fig. 4), they do not capture the diversity of historical
events and sociogenetic processes that have influenced
genomic autozygosity patterns in contemporary world-
wide human populations. Thus, we next sought to evalu-
ate how robust ROA inferences are among genotype
datasets created via WGS and whole-exome-sequencing
(WES) as well as with the popular Illumina Huma-
nOmni2.5-8 and OmniExpress-24 BeadChips using The
1000 Genomes Project Phase 3 data.

We first developed a WGS dataset comprised of all
75,071,695 SN'Vs that passed our quality control criteria
(see Methods). Next, we developed a subset of the WGS
dataset that was restricted to only the 1,830,512 SNVs
that are located within the genomic regions captured by
the Roche Nimblegen SeqCap EZ Human Exome Library
v3.0 system to mimic a whole-exome-sequencing (WES)
dataset (“WES dataset” henceforth). Finally, we devel-
oped a subset of the Omni2.5 dataset that was com-
prised of the 676,445 SNPs that are also present on the
Illumina OmniExpress-24 BeadChip (“OmniExpress
dataset” henceforth). As the wLOD method explicitly ac-
counts for LD among genotyped positions within a given
window (Eq. 3) we do not consider LD pruned datasets.
Similarly, since homozygosity for minor alleles at low to
rare frequencies in the population is most informative
for autozygosity inference with the wLOD estimator
(Additional file 1: Figure S1A), we also do not consider a
minor allele frequency (MAF) pruned datasets.

For the WGS, Omni2.5 and OmniExpress datasets we
applied the wLOD method at the window size and over-
lap fraction suggested by our simulation analyses given
their average SNV density across populations: 125 SNPs
(40%), 95 SNPs (25%), and 80 SNPs (18%), respectively.
As the SNV density of the WES dataset closely

Page 13 of 33

resembles that of the WGS dataset in the genomic re-
gions it covers, we used the same window size and over-
lap fraction settings in both the WES and WGS datasets.
For all datasets, 4 was set to 1.18 x 1078 [162] and M
was set to seven, a conservative value broadly reflecting
the average of effective population size estimates for
populations included in The 1000 Genome Project [157,
160, 163]. For the Omni2.5 and OmniExpress datasets €
was set to 4.71 x 107%, the average rate of discordance
across samples between genotypes in our Omni2.5 data-
set and those obtained for 1693 of the 2436 individuals
directly with the Illumina HumanOmni2.5 BeadChip
[157], while in the WGS and WES datasets € was instead
set separately for each genotype as one minus its re-
ported likelihood. This has the potential to improve the
accuracy of ROA calls in NGS datasets by incorporating
the uncertainty of each genotype call into the wLOD score
calculation, an important potential source of erroneous
ROA calls in the context of their often higher and more
variable per-genotype error rates compared with
microarray-derived datasets [153, 154]. As such, autozy-
gous windows comprised of SNVs with low quality geno-
types have a greater chance of being false-positive signals
than those with higher quality genotypes, while low qual-
ity heterozygous genotypes—that in one possibility may
be genotype calling errors—located in runs of higher qual-
ity homozygous genotypes have the potential to mask true
autozygous signals.

Comparing ROA inferred in the WGS and Omni2.5
datasets, we find Omni2.5 ROA to be frequently longer
than their corresponding WGS ROA and in most cases
to completely encompass the WGS ROA (Fig. 5a). The
magnitude of their length discrepancies decreases with
increasing ROA length, consistent with the expected ef-
fects of decreased SNV density on the accuracy of in-
ferred ROA boundaries. In addition, while all Omni2.5
ROA are present in the set of WGS ROA, the reverse is
not true (Fig. 5b). Many short ROA (<500 kb) inferred
in the WGS dataset are not found in the Omni2.5 data-
set, with the fraction of missing ROA decreasing with in-
creasing distance from Africa, reflecting the effect of
increasing LD [164, 165] on our ability to infer shorter
ROA with the sparser set of SNVs in the Omni2.5 data-
set. Concordance between the WGS and Omni2.5 data-
sets for intermediate (500 kb to 1.5 Mb) and long (>
1.5 Mb) ROA is generally high, although in many popu-
lations the fraction of WGS ROA missing in the set of
Omni2.5 ROA remains nontrivial. These fractions gener-
ally increase as a function of distance from Africa, likely
reflecting the reduction in haplotype diversity with de-
creasing genetic diversity [97, 166—169] decreasing our
ability to distinguish autozygosity from homozygosity-
by-chance, particularly over extended genomic regions
when genotypes are only available for a fixed set of SNVs
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that were selected for their generally high level of poly-
morphism worldwide.

Similar patterns are observed when we compare ROA
inferred in the Omni2.5 and OmniExp datasets, where
almost all OmniExp ROA are present in the set of
Omni2.5 ROA (Additional file 1: Figure S12B) and en-
compass their generally shorter corresponding Omni2.5
ROA (Additional file 1: Figure S12A). While many short
ROA inferred in the Omni2.5 dataset are not found in
the OmniExp dataset, both intermediate and long ROA
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are captured extremely consistently between the two
datasets despite their different SNV densities. Likewise,
when we compare ROA inferred in the WGS and WES
datasets, almost all WES ROA are present in the set of
WGS ROA (Additional file 1: Figure S13B) and tend to
encompass their generally shorter corresponding WGS
ROA (Additional file 1: Figure S13A). However, while
numbers of short and intermediate ROA inferred in the
WGS dataset but not the WES dataset are much higher
than in the same comparison between the WGS and
Omni2.5 datasets (Fig. 5), the numbers of long ROA in-
ferred in the WGS dataset but not the WES dataset are in-
stead similar. This indicates that the non-uniform and
often sparse distribution of SN'Vs in the WES dataset does
not impact the inference of long ROA more than would
be expected following a general reduction in SNV density.

Opverall, these findings are consistent with the higher
density of SN'Vs in the WGS dataset and the presence of
many more rare and low-frequency SNVs detected by
NGS compared with microarray-based genotyping plat-
forms—which are particularly informative about auto-
zygosity under our likelihood model (Additional file 1:
Figure S1A)—greatly improving our ability to infer
ROA. Nevertheless, many long ROA that are of interest
in Mendelian and complex disease studies are well cap-
tured by the sets of SNVs included on Illumina’s Huma-
nOmni2.5-8 and OmniExpress-24 BeadChips. However,
the sparse and non-uniform genomic distribution of
SNVs in the WES dataset creates difficulties when infer-
ring short and intermediate ROA with the wLOD
method, despite the presence of rare and low-frequency
SNVs, while long ROA are instead captured almost as
well as with genotyping microarrays. We therefore do
not recommend using the wLOD method to infer ROA
in WES datasets generated by future studies.

Classification of ROA

ROA of different lengths reflect homozygosity for haplo-
types inherited IBD from common ancestors at different
depths in an individual’s genealogy: longer ROA most
likely arise due to recent ancestors and shorter ROA due
to more distant ancestors. We previously advocated that
ROA be classified into G length-based classes using a
Gaussian mixture model approach applied on their phys-
ical map lengths (in bp) that groups ROA based upon
their supposed ages [18]: (A) short ROA that measure
tens of kilobases and that are of the length at which
baseline patterns in LD in a population produce auto-
zygosity through the pairing of two copies of the same
ancient haplotype, (B) intermediate length ROA that
measure hundreds of kilobases to several Mb and that
are likely the result of background relatedness—recent
but unknown kinship between parents due to limited ef-
fective population sizes—and (C) long ROA that
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measure multiple megabases and are likely the result of
recent parental relatedness (e.g. consanguinity). The
choice of G =3 was motivated by the observation that at
G > 3, the additional classes were not discrete; that is,
they were encompassed by one of the existing classes
(Additional file 1: Figure S14A and C).

This classification approach is limited by the imperfect
correlation between physical map lengths and genetic
map lengths (Additional file 1: Figure S15), a more ac-
curate representation of the relationship between ROA
length and age [178, 179] that is not confounded by the
non-uniform genomic distribution of recombination
rates [180]. If we instead classify ROA based on their
genetic map length (in cM) using a Gaussian mixture
model we find that regardless of the number of classes
considered they are always discrete (Additional file 1:
Figure S14B and D). This would suggest that the original
loss of discreteness when classifying based upon physical
map length may reflect the confounding effects of phys-
ically long but genetically short (and vice versa) ROA on
the overall length distribution. Nevertheless, regardless
of whether physical or genetic map lengths are used the
overall pattern of fit with increasing class number re-
mains highly similar (Additional file 1: Figure S14A and
B, respectively), where Bayesian Information Criterion
(BIC) likelihoods plateau at around G =5 with the WGS
and Omni2.5 datasets and at around G =4 classes with
the OmniExpress dataset (not shown). The smaller class
number for the OmniExpress dataset compared with the
WGS and Omni2.5 datasets is consistent with the ex-
pectation that smaller ROA will be poorly captured by
its sparser set of SNVs, ultimately leading to the loss of
the shortest ROA class detected in the WGS and
Omni2.5 datasets. Note that for all populations the max-
imum BIC likelihood is reached at G > 5. Future studies
investigating fine scale ROA patterns may wish to con-
sider values of G at which BIC is maximized, however
for illustrative purposes we consider G =5 here since the
increase in BIC at G > 5 is small.

When considering a five-class classification scheme,
the longest class (G =5) contains ROA that likely arise
from recent parental relatedness and the penultimate
longest class (G =4) contains ROA that likely arise from
recent population processes, while the shortest classes
(G=1-3) contain ROA arising through the pairing of
two copies of much older haplotypes that have common
ancestors at different times in the distant past. Sample
size was observed to have a greater effect on ROA classi-
fication (Additional file 1: Figure S16) than on wLOD
score threshold (Additional file 1: Figure S6), with the
proportion of ROA whose classification differed from
that assigned when all available individuals are used de-
creasing as a function of sample size. Importantly, the
proportion of misclassifitd ROA decreases with
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increasing ROA class, with those in the longest class (G
=5) infrequently misclassified (mean =0.052 with SD =
0.029 across all 26 populations at a sample size of 25)
while those in shorter classes were more frequently af-
fected (mean = 0.092 with SD = 0.046, mean = 0.091 with
SD = 0.045, mean = 0.083 with SD = 0.045, and mean =
0.068 with SD=0.042, for G=4 to 1, respectively).
These observations indicate that sample size is an im-
portant factor when classifying ROA using a Gaussian
mixture model, but in general samples sizes of at least
25 individuals should provide reasonably robust classifi-
cation of ROA using this approach, particularly longer
ROA that are of interest in genetic studies on Mendelian
and complex diseases.

Geographic properties of the wLOD method

We have shown the wLOD method to be well powered
to detect ROA in genetic datasets consistent with WGS
and microarray-based genotyping, while our investiga-
tion of a Gaussian mixture model approach for ROA
classification based upon their genetic map lengths indi-
cates the presence of five ROA classes in The 1000 Ge-
nomes Project Phase 3 populations, a higher number
than was used in our earlier study of the Human Gen-
ome Diversity Panel (HGDP) and International HapMap
Project (Phase 3) populations that used a microarray-
derived dataset and classified ROA based upon their
physical map lengths [18]. We thus next explored the
population-genetic properties of the wLOD estimator
and its inferred ROA.

Evidence of separate endogamic and consanguinity
autozygosity signals in Asian Indians

In four of the five Asian Indian populations—Gujarati
(GIH), Telugu (ITU), Punjabi (PJL), and Sri Lankan
Tamil (STU)—as well as in the East Asian Dai (CDX)
population, as window size increased a third mode ap-
peared in their wLOD score distribution that divided the
right-hand autozygous mode in two (Fig. 6a). While an
apparent third mode also appeared in the wLOD score
distribution of the Bengali (BEB) Asian Indian popula-
tion, it was not as well defined as those of the other pop-
ulations. As window size increased further, the area
under both autozygous modes decreased until the left-
hand autozygous mode disappeared followed sometime
later by the right-hand autozygous mode. Notably, the
distributions of all other populations in our dataset did
not develop this third mode, and trimodality was not ob-
served in the distribution of LOD scores for any of the
26 populations.

The appearance of a trimodal distribution in these six
populations potentially reflects the effects of two distinct
cultural processes that occur in India and among the
Dai: consanguinity [181, 182] and endogamy [183,
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Fig. 6 Influence of cultural processes on the distribution of wLOD scores. a Gaussian kernel density estimates of the pooled wLOD scores from all
individuals in the Asian Indian Gujarati (GIH) and Telugu (ITU) populations at window sizes 200 and 220 SNPs, respectively. These patterns are
representative of those observed in the Asian Indian Punjabi (PJL) and Sri Lankan Tamil (STU) populations as well as the East Asian Dai (CDX)
population, which are excluded from the plot for clarity as their traces overlap significantly those of the GIH and ITU. b Gaussian kernel density
estimates of the proportion of windows comprising each inferred ROA that are present in the right-most autozygosity mode in the Asian Indian
GIH, ITU, PJL, and STU populations. ROA in the CDX population are almost exclusively in the left-most mode and it was excluded for clarity. The
Asian Indian Bengali (BEB) population was excluded as we could not robustly distinguish between the two autozygous modes

184]—the restriction of marriages to within a predefined autozygous modes. Conversely, if the trimodal distribu-
group of lineages or villages. In this scenario, the right- tion is just an idiosyncrasy of the wLOD estimator we
hand autozygous mode represents ROA due to consan-  would instead expect ROA to be delineated by a random
guinity that are enriched for alleles rare in the general —mix of windows drawn from the two autozygous modes.
population that segregate within inbred families, while  To investigate how windows in the putative endogamy-
the left-hand autozygous mode represents ROA due to  and consanguinity-associated modes cluster to form in-
endogamy that are enriched for alleles present at low ferred ROA, separately for each population exhibiting a
frequency in the general population that segregate clear trimodal wLOD score distribution, we constructed
within specific endogamic groups. Compatible with this ROA from windows with wLOD scores above the mini-
hypothesis, the three populations with the strongest tri- mum between the non-autozygous and left-most autozy-
modal pattern (STU, ITU, and DAI) have higher re- gous modes in their wLOD score distribution [18]. Next,
ported frequencies of consanguinity (38.2% [182], 30.8%  for each inferred ROA, we calculated the proportion of
[182], and 21.3% [181]) than those with weaker trimodal their underlying autozygous windows that had wLOD
patterns (BEB, 5.0% [182]; GIH, 4.9% [182]; PJL, 0.9% scores within the right-most putative consanguinity-
[182]). For example, the consanguinity-associated mode associated mode (i.e. above the minimum between the
of the ITU is much larger than the endogamy-associated  two autozygous modes).
mode, while the reverse is true for the GIH (Fig. 6a), Inferred ROA were found to frequently be delineated
consistent with consanguinity being the primary force by windows drawn predominantly from one of the two
generating ROA in the ITU while endogamy is the dom-  autozygous modes (Fig. 6b). A large well-defined peak
inant force in the GIH. To the best of our knowledge, is observed at low proportions, representing those ROA
none of the other populations included in Phase 3 of comprised of >90% of windows drawn from the left-
The 1000 Genomes Project practise endogamy; conse- hand endogamy-associated mode. A more diffuse peak
quently, we do not observe the emergence of a separate  is observed at higher proportions, representing those
endogamy-associated autozygous mode in their wLOD  ROA comprised of >80% of windows drawn from the
score distributions. right-hand consanguinity-associated mode. The dis-
If trimodal distributions are indeed a reflection of the persed appearance of the peak representing putative
wLOD method being able to disentangle autozygosity  consanguinity-associated ROA can be explained as a re-
signals arising from endogamy and consanguinity pro- flection of the fact that the two autozygous modes are
cesses we would expect inferred ROA to be delineated not distinct. At the ends of ROA arising via consan-
predominantly by windows from only one of the two  guinity, the wLOD scores of windows will naturally
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decrease as they increasingly span non-autozygous re-
gions and overall support for autozygosity declines,
leading them to increasingly fall within the endogamy-
associated mode. Consequently, we would expect ROA
arising via consanguinity to contain a small proportion
of windows in the endogamy-associated mode, with the
proportion varying based upon the overall strength of
the autozygous signal (ie. ROA conferring generally
higher wLOD scores will have lower proportions of
windows in the endogamy-associated mode). Neverthe-
less, across populations, 68.9% (PJL) to 84.5% (CDX) of
all ROA had >80% of their component windows drawn
from a single autozygous mode.

Additional support for trimodality in the wLOD score
distribution reflecting distinct autozygosity signals aris-
ing from endogamy and consanguinity processes is pro-
vided by a comparison of how the proportion of
windows drawn from the consanguinity-associated mode
changes with ROA length (Additional file 1: Figure S17).
Almost all ROA longer than 5 Mb are comprised pre-
dominantly of windows drawn from the consanguinity-
associated mode (>90%), while proportions among ROA
shorter than 5 Mb are much more variable. This pattern
is consistent with the expectation that ROA arising via
consanguinity will in general be much longer than those
arising via endogamy.

Overall, the properties of ROA constructed from the
trimodal wLOD score distributions present in the Asian
Indian and East Asian Dai populations are compatible
with the wLOD method being capable of disentangling
autozygosity signals that arise from different cultural
processes at sufficiently large window sizes. However,
further work in well-defined populations that practise
both endogamy and consanguinity will be required to
fully evaluate this apparent property of the wLOD
method.

Population patterns in ROA

To evaluate how genome-wide patterns in ROA inferred
with the wLOD method and classified into five classes
via a Gaussian mixture model applied to their genetic
map lengths accord with those of earlier studies, we next
performed the first high-resolution survey of ROA pat-
terns in The 1000 Genomes Project Phase 3 populations
based upon ROA inferred in the WGS dataset as de-
scribed above.

Consistent with previous studies [12, 18, 22], ROA of
different lengths have different continental patterns
among the 26 populations included in Phase 3 of The
1000 Genomes Project, both with regards to their total
lengths (Additional file 1: Figure S18) in individual ge-
nomes as well as in their non-uniform distributions
across the genome (Additional file 1: Figure S19) that
are correlated with spatially variable genomic properties
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such as recombination rate (Additional file 1: Figure
S20) and signals of natural selection (Additional file 1:
Figure S21), reflecting the distinct forces generating
ROA of different lengths. Total lengths and numbers of
ROA in the shortest (G =1-3) and to some extent in-
termediate (G =4) classes increase with distance from
Africa, rising in a stepwise fashion in successive contin-
ental groups (Additional file 1: Figure S18), in agreement
with the observed reduction in haplotype diversity with
increasing distance from Africa [164, 185-187]. Those of
the longest class (G =5) do not show a similar stepwise
pattern, instead exhibiting higher and more variable
values in populations where consanguinity in more fre-
quent (Table 2) and inbreeding coefficient estimates are
generally higher [188]. Notably, the East Asian Dai have
remarkably high total lengths of short ROA (G =1-3),
potentially reflecting their small population size—~1.2
million in Yunnan province, China [189], where The
1000 Genomes Project samples were collected—and
complex evolutionary history [190, 191].

Recombination and natural selection

The strength of the correlation between the genomic
distribution of ROA and recombination rate decreases
with increasing ROA class (Additional file 1: Figure
S20), consistent with the expectation that the patterns of
genetically shorter ROA will be determined by recom-
bination to a greater extent than longer ROA, which due
to their more recent origins have had fewer opportun-
ities for recombination events to systematically influence
their patterns. Conversely, the correlation between ROA
patterns and signatures of natural selection is strongest
for class 2-3 ROA, and to some extent intermediate
class 4 ROA, while it is very weak for the shortest (G =
1) and longest (G=5) ROA classes (Additional file 1:
Figure S21). These patterns are compatible with natural
selection having primarily influenced genomic diversity
patterns in the distant past, with autozygosity for the
relics of haplotypes that arose during those events mani-
festing as class 2—4 ROA, dependent upon how long ago
the event occurred.

The long-term effects of natural selection on patterns
of ROA might be expected to be most evident in gen-
omic regions encompassing genes implicated in one or
more Mendelian diseases, where purifying selection act-
ing on strongly deleterious alleles, which may occur
more frequently in such genes due to their apparent im-
portance for human health, would be expected to in-
crease levels of autozygosity relative to genes much less
frequently subjected to purifying selection. Using the
union of two previously reported lists of genes associ-
ated with autosomal dominant (669) and recessive
(1130) diseases in the Online Mendelian Inheritance of
Man (OMIM) database [192-194], we created a list
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containing genes not associated with autosomal domin-
ant or recessive diseases (24,260; “non-OMIM” hence-
forth); genes associated with both autosomal dominant
and recessive diseases were ignored. For each individual,
we then calculated the fraction of the total lengths of all
autosomal dominant, autosomal recessive, or non-
OMIM transcribed regions that are overlapped by ROA
based on their genomic positions in build hgl9 of the
University of California — Santa Cruz (UCSC) reference
genome assembly. Strikingly, regardless of the ROA
length class considered, the fraction for OMIM domin-
ant genes was almost always higher than that of non-
OMIM genes (P<107'® in all comparisons; Wilcoxon
signed rank test), while the opposite was true for OMIM
recessive genes (P <107'® in all comparisons; Additional
file 1: Figure S22). Nevertheless, the pattern is strongest
for intermediate length ROA classes (G=2-4) and
weakest for the shortest (G =1) and longest (G =5) clas-
ses. Together, these results are compatible with deleteri-
ous alleles occurring less frequently in non-OMIM
genes than in OMIM dominant genes, where they are
efficiently removed from the population via purifying se-
lection acting on both their homozygous and heterozy-
gous forms, creating increased autozygosity at lengths
consistent with population-level processes rather than
inbreeding. One possible explanation for the decreased
autozygosity around OMIM recessive genes compared
with non-OMIM genes would be increased embryonic le-
thality and/or childhood mortality with individuals homo-
zygous for deleterious recessive mutations in OMIM
recessive genes, leading to reduced autozygosity in gen-
omic regions encompassing them in the extant population.

Genes that have been the target of positive selection
might be expected to reside within genomic regions that
are more frequently autozygous in the general popula-
tion than those harboring genes that have not. Consider-
ing the fraction of each gene’s transcribed region that is
in a ROA in each individual’s genome, we compared
their median fraction across individuals in each popula-
tion (Additional file 1: Figure S23). While most genes
have a median fraction of about zero, a number of genes
that lie within genomic regions spanned by ROA in
more than 90% of individuals in a population. Across
populations, we observe 54 such instances with long
class 5 ROA that represent seven distinct genomic re-
gions (Additional file 2: Table S3), 159 with intermediate
length class 4 ROA (22 distinct regions; Additional file
2: Table S4), and 31 (nine distinct regions; Additional file
2: Table S5), seven (five distinct regions; Additional file
2: Table S6), and 480 (46 distinct regions; Additional file
2: Table S7) with short class 1-3 ROA, respectively.
While most genes in these regions fall within the non-
OMIM group, two of the genes enriched for class 4
ROA (CFCI1 and SMNI) and nine of the genes enriched
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for class 1 ROA (SLC25A20, NDUFAF3, LAMB2, GPX1,
NPRL2, ACY1, MRPS16, LCAT, and COX4I2) are from
the OMIM recessive group, while one gene enriched for
class 1 ROA is from the OMIM dominant group
(THAPI). Future investigation of genes that are un-
usually frequently overlapped by ROA in the general
population may provide new insights into the role of re-
cessive variation in human phenotypic diversity and
common disease risk as well as the genes within which
such variation acts.

Genomic distribution

Genomic distributions of shorter ROA (G =1-4) are
similar among populations from the same geographic re-
gion (Additional file 1: Figure S24B—E) and closely mir-
ror the patterns of pairwise Fst among populations
(Additional file 1: Figure S24A; Procrustes similarity
statistic £, > 0.803), while those of the longest ROA class
(G =5) vary more widely among populations (Additional
file 1: Figure S24F; ¢, = 0.466). Overall, these patterns are
consistent with the interpretation that shorter ROA (G
=1-4), for which neighboring populations have similar
patterns, reflect autozygosity that arises through popula-
tion processes on different evolutionary timescales, while
longer ROA (G =5), for which neighboring populations
do not necessarily have similar patterns, reflect autozyg-
osity that instead arises through more recent cultural
processes such as inbreeding [18].

Autozygosity hotspots

The non-uniform genomic distribution of the different
ROA classes and their variability among populations cre-
ates autozygosity hotspots that are in some instances
shared among subsets of the populations. For example,
there is a hotspot for class 4 ROA on the g-arm of
chromosome 2 that is common to three of the five Euro-
pean populations and encompasses the human lactase
gene (LCT; Fig. 7) that was not detected in our original
study of the HGDP and HapMap populations that in-
cluded 10 from Europe [18]. In this genomic region, we
observe high frequencies of intermediate length class 4
ROA in the Northern European FIN and GBR populations
as well as the European American (CEU) group, but not
in the Southern European TSI and IBS populations or any
other population in the dataset. The presence and absence
of this hotspot broadly reflects worldwide patterns in lac-
tase persistence frequency [195, 196]. Lactase persistence
is most frequent in Northwestern Europe [197, 198] where
it is caused primarily by a single mutation in LCT that
rose to high frequency as a consequence of natural selec-
tion in response to the rise of milk consumption and pas-
toralism [196, 199, 200]. It decreases in frequency through
Eastern and Southern Europe and Central/South Asia
reaching near-zero frequencies in East Asia and the
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Fig. 7 Per-population ROA frequencies within a ROA hotspot on
chromosome 2. For each ROA class, for each population, the
average proportion of individuals in that population who have an
ROA overlapping SNVs within non-overlapping 50 kb windows from
132,500,000 to 140,200,000 bp on the g-arm of chromosome 2 is
shown. Each row represents a population, and each column represents
a window. Populations are ordered from top to bottom by geographic
affiliation, as indicated by the color of their label, and within regions
from top to bottom by increasing geographic distance from Addis
Ababa (in the same order as in Figure S18 [Additional file 1]). The
intensity of a point increases with increasing average ROA frequency,
as indicated by the color scale below the figure. The SNV density of
each window and an ideogram of chromosome banding are shown in
the bottom tracks, with average recombination rate in each window
represented by a vertical black line below the ideogram, where line
heights proportional to average recombination rate. The black vertical
box demarks the location of the LCT gene, while the vertical grey box
demarks the location of the class 5 ROA hotspot in the CEU and GBR
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Americas [195, 198, 201-203], while it is present to vary-
ing degrees in admixed Mestizo [204—206] and African
American [201, 206] populations as a consequence of their
recent European ancestry. Thus, we observe high levels of
autozygosity around LCT in the GBR, FIN, and CEU po-
pulations and markedly lower but noticeable levels in the
IBS, but no observable signal in the TSI or any of the
Asian or admixed populations. While lactase persist-
ence is present at moderately high frequency in sub-
Saharan Africa it is caused by several different muta-
tions [196, 207] and the African populations included
in The 1000 Genomes Project are located predomin-
antly in historically non-milking areas of the continent
[199]. Consequently, we do not observe a similar auto-
zygosity signal in the African populations as we do in
the Northern European populations.

Interestingly, we also observe a hotspot for the longest
ROA class (G =5) at the same location in the Northern
European CEU and GBR populations ~770 kb down-
stream of the LCT gene (Fig. 7), while a weaker spike in
class 5 ROA frequency is seen in the FIN population.
This hotspot encompasses four genes within its core re-
gion (chr2:135,375,000-135,775,000) that encode a
transmembrane protein (TMEM163), an aminocarbox-
ymuconate semialdehyde decarboxylase (ACMSD), cyc-
lin T2 (CCNT2), and a mitogen-activated protein kinase
kinase kinase (MAP3KI19). The maximum normalized
haplotype-based selection statistic nS; [208] score ob-
served in the CEU, GBR, and FIN populations within the
core region is 4.980, 4.818, and 4.962, respectively, sug-
gesting that this ROA hotspot potentially reflects the
outcome of recent positive selection. However, none of
the genes within this hotspot are known to have func-
tional consequences when mutated, leaving the cause of
this ROA hotspot and its putative signals of positive se-
lection enigmatic.
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Overall, frequency patterns in this genomic region of
the different ROA classes in the Northern European
CEU, GBR, and FIN populations are consistent with
positive selection having occurred at two different time-
points. The extended haplotypes created by historical
positive selection acting on the single LCT mutation that
arose in ancestral Northern Europeans have, over subse-
quent generations, decreased appreciably in length, but
due to the marked reduction in haplotype diversity in
the surrounding region commonly create intermediate
length class 4 ROA through background population pro-
cesses. Conversely, the presence of extended IBD haplo-
types creating longer class 5 ROA in a genomic region
~770 kb away from LCT would be compatible with posi-
tive selection acting much more recently, in agreement
with the atypically high #nS; scores observed within this
region in these populations.

Statistical inference of enrichment of autozygosity signals
between groups

A unique feature of the wLOD ROA detection approach
is the availability of log-likelihoods of autozygosity for
each window in each individual examined. It is therefore
possible to directly compare the strength of autozygosity
signals between two or more groups of individuals to
identify those windows that have significantly greater
evidence for shared autozygosity signals in one group
compared with the others [152]. In one possibility, such
an approach could be used to identify genomic regions
that have stronger signals of autozygosity in affected ver-
sus unaffected individuals and thus may harbor disease-
associated mutations. Similarly, genomic regions with
significantly stronger signals of autozygosity in one sub-
set of a population compared to another other may re-
flect founder effects if there is limited gene flow between
them or the presence of adaptive alleles in one subset
but not the other that have risen to high frequency.

We demonstrate the principle of this approach using
three of the five Central/South Asian groups included in
Phase 3 of The 1000 Genomes Project who represent
subpopulations within the larger Indian population: BEB,
GIH, ITU, PJL, and STU. Genetic diversity patterns in
these five groups support the presence of two genetically
distinguishable clusters within the GIH, ITU, and PJL
(Additional file 1: Figure S25). When instead compared
pairwise, the larger of the two ITU clusters lies inter-
mediate between the smaller ITU cluster and the larger
of the two GIH, PJL, or STU clusters, while the largest
of the PJL clusters overlaps significantly with the smaller
GIH cluster (not shown). The GIH individuals were
sampled in Houston, TX, while the BEB, ITU, PJL, and
STU individuals were all sampled in the UK. Given the
intermediate locations of the larger ITU and PJL clusters
in the pairwise comparisons, they may potentially reflect
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admixed individuals within these sample sets. However,
both clusters are tightly bunched arguing against this pos-
sibility given the normal dispersion of admixed individuals
in such analyses owing to their continuum of admixture
levels [209, 210]. In another possibility, these distinct clus-
ters might represent the unintentional sampling of distinct
endogamic communities whose restrictive marital prac-
tices under the long-established Indian caste system has
made them distinguishable genetically [211].

Because we would expect differential autozygosity sig-
nals among groups to have arisen relatively recently
through population or cultural processes, window size is
not constrained by our power to detect shorter, more an-
cient, ROA. A natural window size to use when searching
for differential autozygosity signals between groups is
therefore the one whose wLOD score distribution can best
discriminate between autozygous and non-autozygous
windows. In one possibility, this can be defined as the win-
dow size that maximizes the distance between the autozy-
gous and non-autozygous modes—measured here as the
distance between the modal score in each mode (Fig. 1b
and Figure S2 [Additional file 1]). Using the WGS dataset
and optimal window sizes of 450, 580, and 610 SNVs for
the GIH, PJL, and ITU, respectively, we compared the
wLOD scores of individuals present in each of their two
clusters (Additional file 1: Figure S25) and evaluated the
significance of their observed differences with the
permutation-based approach described in Wang et al.
[152] except that here we use a Wilcoxon rank-sum test
instead of the two sample t-test suggested by Wang et al.
as it is much less sensitive to the presence of outliers but
has similar power to detect a location shift [212]. Briefly,
separately for each group, we first create a distribution of
test statistics under the null hypothesis of no difference in
wLOD scores between clusters using 1000 permutations
of cluster labels, recording for each permutation the max-
imum observed test statistic across all windows genome-
wide. Next, separately for each window, a genome-wide
adjusted P-value for the significance of the observed dif-
ferences in wLOD scores between clusters is then calcu-
lated as the proportion of the maximum genome-wide
test statistics observed in the 1000 permutations that
exceeded the test statistic obtained with the true labels for
that window. Finally, for each cluster, genomic regions
enriched for autozygosity signals in that cluster compared
with the other were defined by joining together overlap-
ping windows with a permutation P-value (Ppe;m) < 0.05.

Intriguingly, while we would not a priori expect to ob-
serve significant differences in the strength of autozygos-
ity signals between the two apparent clusters within the
GIH, ITU, and PJL sample sets, we did identify one gen-
omic region significantly enriched for autozygosity sig-
nals in cluster A compared with cluster B in both the
ITU and PJL (Fig. 8; Table 3); no regions were identified
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Fig. 8 Distribution of differential ROA signals between subgroups in the ITU and PJL. Manhattan plots showing for each window the logq (P) of
pairwise comparisons of per-individual wLOD scores in the two subgroups present in the (a) ITU (580 SNV window) and (b) PJL (610 SNV window). In
each plot, P-values for the comparison testing whether wlL.OD scores in cluster A are greater than those in cluster B (Additional file 1: Figure S25) are
shown on top with P-values for the reverse comparison shown below. P-values represent the proportion of genome-wide maximum Wilcoxon rank-
sum test statistics observed in 1000 permutations of group labels that exceed the Wilcoxon rank-sum test statistic obtained with the true labels [152].
Windows with P> 0.05 are shown in black and those with P < 0.05 are shown in orange. The horizontal grey dashed line denotes P=0.05 and while the

grey dotted line denotes P =001

in the GIH (Additional file 1: Figure S26). The genomic
region in the ITU lies within the transcription elong-
ation regulator 1 like (TCERGIL) gene that has been as-
sociated with regulation of plasma levels of the
adipokine adiponectin [213], a modulator of glucose
regulation and fatty acid oxidation [214] implicated in
obesity, diabetes, coronary artery disease and Crohn’s
disease risk [215-217]. The genomic region in the PJL
encompasses the transmembrane phosphoinositide 3-
phosphatase and tensin homolog 2 (TPTE2) gene, a
paralog of the phosphatase and tensin homolog (PTEN)
tumor suppressor [218] implicated in hepatic

carcinogenesis [219] that has been found to harbor SNPs
with significant allele frequency differences between
males and females in European and African populations
[220]. While the underlying basis for these differential
autozygosity signals remains enigmatic in the absence of
more detailed information on these individuals, their
identification highlights the potential of our approach to
identify genomic regions with differential autozygosity
signals between groups that may reflect the presence of
variants that have experienced differential selection his-
tories or that influence differences in their predisposition
to disease. Moreover, these findings highlight the need

Table 3 Genomic regions enriched for autozygosity signals in the ITU and PJL subgroups

Population Genomic region Number of MinimumP e/, RefSeq
D Name Cluster Chr Begin (bp) End (bp) Length (bp) windows genes
TU Telugu A 10 132,953,074 133,048,305 95,232 189 0013 TCERGIL
PJL Punjabi A 13 20,001,572 20,181,691 180,120 28 0.044 TPTE2
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for further investigations among well-defined endogamic
groups from India to facilitate our understanding of the
genomic consequences of the long-established caste
system.

Discussion

We have reported an improved likelihood-based estima-
tor for the detection of ROA in genome-wide SNV geno-
type data derived from either microarray platforms or
WGS that accounts for autocorrelation among geno-
typed positions and variability in the confidence of indi-
vidual genotype calls as well as the probabilities of
unobserved mutation and recombination events. Fully
accounting for LD among SNVs in a given window is
important, because in genomic regions of high LD many
pairs of individuals will share common haplotypes that
are homozygous identical-by-state but not ROA in the
sense defined here (i.e., inherited IBD from a common
ancestor). Thus, including such spurious windows would
add noise when looking for ROA for the purpose of
autozygosity mapping. The incorporation of LD in our
model reduces false-positive ROA detection, affording us
the ability to identify smaller ROA segments with greater
fidelity. An alternative approach to accounting for LD is
to prune the dataset prior to its analysis. However, since
MATF strongly influences pairwise LD estimates [221]
leading to a floor effect beyond short distances when
SNP pairs have large MAF differences, such an approach
commonly requires those SNV with MAF less than 5%
to be removed [151], which would significantly reduce
the power of the wLOD method to detect ROA by re-
moving those low-frequency and rare variants whose
homozygosity is most indicative of autozygosity under
its likelihood model (Additional file 1: Figure S1A). Fur-
ther, such pruning cannot completely remove LD from
the dataset being analyzed, with a pairwise r* threshold
of 0.5 typically applied [151]. The incorporation of LD
into the model therefore better controls for the autocor-
relation of autozygosity signals among nearby SNV than
is attainable with LD pruning, thereby improving the
specificity of the ROA it detects particularly in regions
of moderate to high LD.

Similarly, accounting for the probabilities of unob-
served recombination and mutation events in the gen-
omic interval spanned by the window becomes
increasingly important as a function of inter-marker dis-
tance, particularly in situations where these probabilities
become nontrivial such as in lower-density microarray-
derived genotype datasets. By modeling these probabil-
ities based on an assumed minimum number of genera-
tions since the MRCA of the apparent autozygous
haplotypes, which we have set here based on the re-
ported effective sizes of the populations included in The
1000 Genomes Project [157, 160, 163], we minimize the
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number of false positive ROA that can be erroneously
inferred when recombination and mutations events onto
very similar haplotype backgrounds give the appearance
of autozygosity when paired with a non-recombined
haplotype. An alternative approach would be to set an
arbitrary maximum inter-marker distance allowed when
calling ROA; dividing into two any inferred ROA that
spans an inter-marker interval greater than that max-
imum. However, this has the potential to erroneously
break-up long ROA, potentially impacting downstream
analyses that use ROA length one of their filtering cri-
teria. By incorporating mutation and recombination
weightings into the wLOD model we therefore take a
more informed and less-biased approach to this issue,
thereby improving the inference of longer ROA particu-
larly in datasets containing sparser sets of SN'Vs.

We have shown the wLOD ROA inference method to
be well-powered to infer ROA in genetic datasets con-
sistent with those generated by WGS and microarray-
based genotyping. We recommend using this method to-
gether with a model-based ROA classification approach
[18] based on genetic map lengths to distinguish ROA
arising from population-level LD patterns on different
evolutionary timescales (classes G=1-4) from those
arising from more recent cultural processes such as in-
breeding (class G =5). Our findings suggest that our in-
ference approach is robust for analyses of as few as 10
individuals. However, model-based classification requires
at least 25 individuals to provide a robust classification
solution. Moreover, to ensure allele frequency and LD
estimates used with the wLOD estimator are close to
their true value in the population, at least 30 unrelated
individuals should ideally be used in their estimation
[222, 223]. Intriguingly, our observation of trimodal
wLOD score distributions for a subset of the 26 popula-
tions analyzed here, all known to practise both endog-
amy and consanguinity to varying degrees, suggests that
this method may be able to distinguish autozygosity aris-
ing from different cultural processes that act on different
time scales. Future work within well-defined endogamic
and non-endogamic groups that practice consanguinity,
as well as within simulated datasets exploring the
breadth of possible isolation and inbreeding parameters
observed in human populations, will be required to clar-
ify this apparent property of the wLOD method and
evaluate its potential human genetics applications.

Comparisons of the ROA inferred using the wLOD
method on different microarray-derived and NGS data-
sets created from The 1000 Genomes Project Phase 3
WGS data suggest that long and to some extent inter-
mediate length ROA are captured consistently by WGS
and microarray-derived datasets. However, inference of
shorter ROA does vary substantially among the different
datasets as a consequence of the decreasing resolution
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and sensitivity attainable as the genome-wide density of
genotyped positions decreases. An observation reflected
in the notable lack of consistency between ROA inferred
in the WES dataset and those identified in the WGS
dataset. Nevertheless, population-genetic analyses of
genomic ROA patterns among the 26 populations in-
cluded in The 1000 Genomes Project on the basis of
WGS data are consistent with our previous findings in
the 64 worldwide populations included in the HGDP
[224, 225] and International HapMap Project [226] on
the basis of ~600,000 microarray-derived SNP genotypes
[18]. These observations would therefore suggest that
ROA studies using microarray-derived genotype data
have similar power to detect genomic ROA patterns,
and in particular those of longer ROA that are of inter-
est to the disease genetic community due to their en-
richment of deleterious variation carried in homozygous
form [98, 99], as those using WGS data.

We have compared the wLOD method against a com-
monly used naive genotype counting method imple-
mented in the software PLINK, as well as the recently
reported HMM method of the BCFtools software pack-
age, under two demographic scenarios in which ROA
will be of interest in population- and disease-genetic
studies. In our genetic simulations, the PLINK approach
performed surprisingly well, potentially reflecting their
relatively short duration that limited the opportunities
for new mutations to arise on the IBD haplotypes that
ultimately underlied ROA in the final generation. In-
deed, only ~4.01% and ~ 14.36% of SNVs in our simu-
lated datasets were de novo mutations not present in the
founder individuals under scenarios 1 and 2, respect-
ively, while just ~ 2.14% and ~ 2.91% of SNVs had MAF
< 5%. Conversely, across the 26 populations in The 1000
Genomes Project Phase 3 WGS data on average 56% of
SNVs had MAF <5%. Nevertheless, the wLOD method
had greater power to detect ROA versus PLINK across
all SNV densities considered here. This difference re-
flects the very limited ability of the PLINK approach,
which allows for only occasional missing or heterozy-
gous genotypes when determining the status of a win-
dow to account for possible genotyping errors and
mutations, to distinguish genomic regions that are
homozygous-by-chance from those that are autozygous.
In contrast, the wLOD method incorporates population
allele frequency and LD estimates and an assumed geno-
typing error rate as well as accounts for the probabilities
of unobserved mutations and recombination events
when inferring the autozygosity status of a window, en-
abling more rigorous assessments of the possibility of
genotyping errors and the loss of information caused by
missing data. In addition, it provides a more precise
measure of the probability that a given window is truly
autozygous rather than simply homozygous by chance.
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Thus, the greater power of the wLOD method compared
with PLINK reflects the greater number of false negative
ROA expected under the naive autozygosity model im-
plemented in PLINK.

Comparisons of the wLOD method with the recently
reported RoH function of BCFtools have consistently
shown it to have improved power to detect ROA, and
smaller ROA in particular, across all SNV densities con-
sidered here, which are representative of WGS and
microarray-based genotyping platforms. However, false
discovery rates of the wLOD method are slightly higher
than those of BCFtools, wholly reflecting a more permis-
sive placement of ROA boundaries marginally outside of
their true locations as a consequence of the sliding win-
dow approach employed. While the underlying likeli-
hood models of the wLOD and BCFtools approaches are
similar, there are two aspects of the wLOD method that
explain its higher power. First, by summing over all
SNVs within a given window, the wLOD method is bet-
ter able to detect the autozygosity signals of ROA com-
prised of older (shorter) haplotypes whose constituent
SNVs individually provide only weak to modest autozyg-
osity support than the pointwise HMM employed by
BCFtools. Second, the wLOD method adjusts each SNV’s
log-likelihood by the probabilities that no unobserved
recombination and mutation events have occurred in
the interval between it and the preceding SNV in the
last M generations (Eq. 2), where M is set based on the
expected time since the most recent common ancestor
in an individual’s maternal and paternal lineages given
the effective size of the population. BCFtools does not
account for unobserved mutations in its inference
model, and only allows for up to a single recombination
event to have occurred within a given interval [156].
Thus, for longer ROA and those comprised of older
haplotypes inherited IBD from an ancient ancestor, we
would a priori expect BCFtools to have greater difficulty
in making inferences as it will underestimate the number
of recombination events that may have occurred as these
haplotypes segregate in the general population. This may
potentially underlie the noticeably erratic patterns ob-
served with its power to detect ROA greater than 1.5 Mb
in the higher SNV density simulated datasets (Fig. 4).

Finally, the wLOD method distinguishes itself from
BCFtools and PLINK through its ability to directly detect
genomic regions enriched for autozygosity signals in one
population or group compared with one or more others
without requiring the inference of ROA first. We have
applied this approach within the Gujarati (GIH), Punjabi
(PJL), and Telugu (ITU) Asian Indian groups, comparing
wLOD scores in two distinct clusters of individuals iden-
tified via multidimensional scaling of allele sharing dis-
similarities (Additional file 1: Figure S25). We identified
two genomic regions enriched for autozygosity signals in
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one of the two clusters, one in the ITU and another in
the PJL, that contain genes implicated in the regulation
of metabolism and the risk for developing liver cancer,
respectively (Table 3). If we instead set a more permis-
sive threshold of Pp.m < 0.1 when defining enriched re-
gions, we identify an additional seven genomic regions
marginally enriched for autozygosity in one cluster com-
pared with the other (Additional file 2: Table S8). One of
the seven regions was identified on chromosome 2 in
ITU cluster A and contains two genes: G6PC2, a pancre-
atic glucose-6-phosphatase implicated in the modulation
of fasting plasma glucose levels [227] that is a major tar-
get of cell-mediated autoimmunity in diabetes [228], and
the ATP-binding cassette transporter gene ABCB11, mu-
tations in which cause autosomal recessive progressive
familial intrahepatic cholestasis [229, 230]. In addition, a
region on chromosome 17 also identified in ITU cluster
A contains seven genes that include USHIG, mutations
in which cause autosomal recessive deafness in both
humans [231, 232] and mice [233, 234]. Finally, a region
on chromosome 16 identified in PJL cluster A contains
four genes including the mechanically-activated ion chan-
nel gene PIEZO1, mutations in which cause autosomal re-
cessive generalized lymphatic dysplasia [235, 236] as well
as autosomal dominant hemolytic anemia [237, 238].

The presence of genes that cause autosomal recessive
diseases in three of the seven marginally significant
regions—a highly unlikely observation (P < 0.008 across
1000 random draws of genomic regions of equivalent
size)—suggests the intriguing possibility that, if these
clusters do indeed represent distinct endogamic commu-
nities, they may be the hallmark of cultural and natural
selection processes related to the differential presence of
deleterious genetic variants in these genes. Future com-
parative autozygosity analyses of well-defined endogamic
communities within the different subpopulations of
India considering much larger sample sizes than were
available here will facilitate our understanding of the
genomic consequences of the long-established caste sys-
tem and further clarify its potential role in contributing
to genetic predisposition in complex disease risk and
negative health outcomes.

Conclusions

To facilitate community adoption of the wLOD ROA in-
ference method as well as classification based on genetic
map length via a Gaussian mixture model, we have im-
plemented these approaches in the software GARLIC
(Genomic Autozygosity Regions Likelihood-based Infer-
ence and Classification) [174] that can be downloaded at
https://github.com/szpiech/garlic. As a guide, analysis of
the 97 individuals in the CEU population on a Dell Pre-
cision T7600 workstation running RedHat Enterprise
Linux (v.7.3) with multi-threading support enabled (16x
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2,60 GHz threads total) took ~ 2% minutes for the
OmniExp dataset, ~ 6% minutes for the Omni2.5 data-
set, and ~40 min for the WGS dataset, and occupied at
most ~ 3 Gb, ~7 Gb, and ~ 20 Gb of RAM, respectively.
Future enhancements planned for GARLIC’s core engine
are expected to significantly reduce its runtime and
memory usage. We also provide a searchable online
database of ROA inferred in The 1000 Genomes Project
Phase 3 populations and a ROA genome browser based
on the /Browse browser interface [239] in which to ex-
plore their genomic distribution with respect to various
genomic features and properties available at http://pem-
bertonlab.med.umanitoba.ca/das.php.

Methods

Genotype datasets

Release v5a of Phase 3 of The 1000 Genomes Project
(accessed March 29th, 2015) provides phased genotypes
at 84,801,880 genetic variants in 2504 individuals from
26 worldwide human populations discovered using a
low-coverage WGS approach [157]. During the genotype
phasing, occasional positions with missing genotypes
were imputed; consequently, our datasets contain no
missing data. We first developed a subset of this WGS
dataset in which to perform individual-level quality con-
trol prior to developing different subsets in which to
evaluate the performance of the wLOD method. In all
subsets we applied a common set of quality-control pro-
cedures described in Pemberton et al. [240] to remove
low-quality variants (Additional file 1: Figure S27).

Individual-level quality control

To independently verify the putative unrelatedness and
population labeling of individuals reported by The 1000
Genomes Project Consortium, we developed a prelimin-
ary Omni dataset comprised of the 2,165,831 autosomal,
48,458 X-chromosomal, and 543 Y-chromosomal SNPs
in The 1000 Genomes Project data that are present on
the Illumina HumanOmni2.5-8 BeadChip (stage 1; Add-
itional file 1: Figure S27). Across the 1693 individuals for
which genotypes derived using the HumanOmni2.5-8
BeadChip were also available, genotype concordance be-
tween the WGS- and BeadChip-derived genotypes lay
between 0.99431 and 0.99986 (mean =0.99953, SD =
0.00041). We identified intra- and inter-population pairs
of individuals related closer than first cousins as well as
those individuals whose reported sex or population la-
bels were likely to be erroneous as described in Pember-
ton et al. [240]. Using these approaches, we identified six
individuals whose reported sex is likely to be erroneous,
47 individuals who did not cluster genetically with other
individuals sharing the same population label, and 14
intra-population and one inter-population pairs of close
relatives (Additional file 2: Table S9).
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Preparation of final datasets

Removing one individual from each intra-population
relative pair, both individuals from the inter-population
relative pair, and the 53 individuals whose reported sex
or population labels were suspected to be erroneous (68
total individuals; Additional file 2: Table S9), we devel-
oped four subsets of The 1000 Genomes Project data
that were restricted to the 2436 unrelated individuals
and autosomal biallelic variants (stage 2; Additional file 1:
Figure S27).

First, we developed a WGS dataset comprised of
75,071,695 SNVs. Second, we developed a WES dataset
comprised of the 1,830,512 SNVs that are present within
the regions captured by the Roche Nimblegen SeqCap
EZ Human Exome Library v3.0 system. Third, we devel-
oped an Omni2.5 dataset comprised of the 2,166,414
SNPs that are present on the Illumina HumanOmni2.5-8
BeadChip. Fourth, as ~96% of all markers present on the
Mlumina HumanOmniExpress-24 BeadChip are also
present on the HumanOmni2.5-8 BeadChip, we devel-
oped an OmniExpress dataset comprised of the 676,445
SNPs in the Omni2.5 dataset that are present on the
HumanOmniExpress-24 BeadChip.

Geographic distances

The geographic distance of each population from Addis
Ababa, Ethiopia, was calculated as in Rosenberg et al.
[241] with the use of waypoint routes, based on the
sampling location reported by The 1000 Genomes Pro-
ject [157].

Simulation of genetic and true ROA datasets

Simulation procedure

For two demographic scenarios, we generated 50 inde-
pendent replicates of genetic datasets using a forward-
in-time process as previously described [175]. In their
original approach, prior to performing the simulation
steps Kardos et al. placed N predetermined polymorphic
SNV onto the chromosome’s genetic map by randomly
sampling N unique genetic map positions in the range 0
tO Zmax (the user-defined genetic map length of the sim-
ulated genome), only converting genetic map positions
to physical map positions based upon a fixed user-
defined recombination rate to physical map distance re-
lationship when writing the simulated datasets to file.
Here, we modified their approach to instead create a
non-uniform distribution of recombination rates across
the simulated chromosome and allow any base pair to
mutate during the simulation.

If we let g, represent the genetic map position
assigned to physical map position p, which is equal to
the base pair count from the beginning of the chromo-
some. Based on the user-defined values for g,,,. and re-
combination rate 6, all values of g lie within the interval
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[0, gax) and all values of p lie within the interval [1. .
(@max!0) x 1,000,000]. To begin, we created a backbone
of genetic and physical map positions onto which we will
place all other positions, randomly drawing (g,,./0) + 1
values of g and assigning them in increasing order to p
in the range [1. . (g,.4./6)] (i.e. every Mb). Next, we ran-
domly chose N values of p to be predetermined poly-
morphic SNVs, and then randomly assigned each a value
of ¢ based upon the backbone interval in which it was
located, again ensuring that values of g always increase
as a function of p. Finally, all values of p that were not
among the set of predetermined SNVs were assigned a
value of g through interpolation onto the construct cre-
ated by the values of p and g assigned to the predeter-
mined SNVs. This approach created a non-uniform
relationship between physical and genetic map distance
along the simulated chromosome that is similar to that
observed on real human chromosomes (not shown).

To extend the method of Kardos et al. to enable any
base pair on the simulated chromosome to mutate, for
each individual in each generation, the number of muta-
tions that occur during each meiosis was drawn from a
Poisson distribution with mean p x [(g,,4./6) x 1, 000,
000], where p is mutation rate. The base pairs to be mu-
tated were then chosen at random from all (g;,,,/6) x 1,
000, 000 possible positions without replacement. Muta-
tions were tracked and then incorporated into the geno-
types of individuals in the analyzed dataset; all
monomorphic positions were removed during dataset
construction.

In all simulations, we set g,,,. to 325 cM, 6 to 1.3 cM/
Mb [242], and p to 1.18 x 1078 [162], and scaled 6 and U
by a factor of 10 to increase genetic diversity in the final
generation [243]. N was chosen separately for each sim-
ulated scenario such that the final number of poly-
morphic SNVs in the dataset (both predetermined and
de novo) was ~750,000; N = 725,000 for scenario 1 and
N =650,000 for scenario 2. Because predetermined poly-
morphic SNVs can become fixed over the course of the
simulation, their numbers in the analyzed datasets lay
between 679,256 and 717,855 (25,788-31,503 de novo
SNVs) for scenario 1 and between 633,582 and 638,675
(103,871-110,077 de novo SNVs) for scenario 2. The
simulated WGS datasets used in the analyses contained
50 individuals randomly chosen from among the 75
present in the final generation with genotypes for
709,862-746,963 polymorphic SNVs in scenario 1 and
737,957-748,572 polymorphic SNVs in scenario 2. The
125K, 80K, 50K, and 18K subsets of the WGS datasets
contained between 117,113-123,766, 74,953-79,211,
46,846-49,507, and 16,865-17,823 polymorphic SNVs,
respectively, for scenario 1, and between 121,833—
122,815, 77,973-78,602, 48,733-49,126, and 17,544—
17,686 polymorphic SNVs for scenario 2.
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To better mimic real genetic datasets, we randomly in-
troduced genotyping errors separately into each simu-
lated dataset at a rate of 0.001, a conservative value that
is similar to but slightly higher than the average rate of
genotype discordance across 1693 individuals between
genotypes in their WGS data and those obtained at the
exact same SNVs with the Illumina HumanOmni2.5
BeadChip [157], and we set € to this value in all analyses.
Analysis of the simulated pedigrees found the parents of
individuals in the final generation to have a common an-
cestor on average three generations in the past for sce-
nario 1 (all between 1 to 5 generations) and four
generations in the past for scenario 2 (all between 1 to 7
generations) and M was set to these average values when
analyzing their respective datasets.

Parameters used in the application of PLINK, LOD, and
BCFtools methods

For PLINK, we allowed at most 2% of SNPs to have het-
erozygous genotypes and 5% of SNPs to have missing
genotypes for a window to be inferred to be autozygous
[151]. The LOD method and BCFtools were applied
using the same allele frequency estimates and error rate
e as the wLOD method, while BCFtools additionally in-
corporated genetic map positions and performed Viterbi
training with initial transition probabilities between
autozygous and non-autozygous states and vice versa of
6.6 x107% and 5.0 x 107, respectively, to optimize its
underlying model prior to ROA inference [156].

Application of the wLOD estimator to real data

To minimize the number of variables that varied in
within-dataset comparisons, we used a single set of allele
frequencies when calculating wLOD scores at all window
sizes considered. To account for sample-size differences
among populations, we used a resampling procedure to
estimate the allele frequencies, sampling 100 non-
missing alleles with replacement and calculating allele
frequencies from these 100 alleles. As a consequence of
the resampling procedure, it was possible for an individ-
ual to possess an allelic type whose frequency was esti-
mated to be 0 in the sample of 100 alleles. SNV
positions at which this scenario was encountered were
treated as missing when calculating wLOD scores for all
windows containing the positions in individuals that had
the allelic type of frequency 0.

As our datasets contained phased genotypes, in the
LD correction applied in the wLOD estimator (Eq. 3) LD
was estimated with the correlation coefficient r° [244]
using a resampling procedure to account for the possible
influence of sample size on homozygosity-based LD sta-
tistics [222]. For each pair of SNPs, we randomly sam-
pled 55 individuals—the smallest population sample size
in our dataset (Table 2)—without replacement and the
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LD computation was performed using those 55 individ-
uals. Note that we used a single set of LD estimates when
calculating wLOD scores at all window sizes considered.

In the recombination rate correction applied in the
wLOD estimator (Eq. 4), the genetic map position of each
marker in the Omni2.5 dataset and its subsets were down-
loaded from the Laboratory of Computational Genetics at
Rutgers University (http://compgen.rutgers.edu). The gen-
etic map position of each marker in the WES and WGS
datasets was determined by interpolation onto the Rutgers
linkage-physical map [245] based on their UCSC Build
hg19 physical map position.

Due to computer memory requirements for Gaussian
kernel density estimation, the wLOD score distributions
used to determine the autozygosity score thresholds in the
WGS dataset considered only twenty individuals chosen at
random. Based on our investigation into the effect of sam-
ple size on score threshold (Additional file 1: Figure S6), we
do not expect this approach to have biased our detection of
ROA in the WGS dataset. All genome-wide windows were,
however, considered when determining optimal window
sizes in the Omni2.5, OmniExpress, and WES datasets.

Classification of ROA

We ran unsupervised Gaussian fitting of the ROA length
distribution using the mclust package (v.5.2) [246] in the
R statistical software (v.3.3.3) [247], allowing component
magnitudes, means, and variances to be free parameters.
BIC likelihoods with increasing number of components
(G) were calculated using the function mclustBIC, while
final classification under the five component model was
performed using the function Mclust. Violin plots [248]
of total lengths of ROA in individual genomes were pro-
duced separately for each length class using the vioplot
function from the vioplot package in R.

Genomic distribution and geographic patterns of ROA
The frequency at which each SNV was present in ROA in
each population was calculated as described in Pemberton
et al. [18]. To compare the genomic distribution of ROA
across populations, we calculated mean ROA frequencies
in non-overlapping 50 kb windows across all SNVs poly-
morphic in that population that were within the window,
and excluding windows that lay within the centromere
and telomeres. To evaluate the similarity of ROA fre-
quency patterns among populations, we performed clas-
sical (metric) multidimensional scaling (MDS) separately
for each ROA length class based on a matrix of ROA fre-
quency dissimilarities between all pairs of populations, cal-
culated as one minus the Pearson correlation coefficient
(r) of their mean ROA frequencies across windows. We
then applied MDS to this matrix using cmdscale in R.

We compared population patterns in the MDS based
on ROA frequencies to an MDS based on a matrix of
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pairwise Fst among populations calculated with our
WGS dataset and the method of Hudson et al. [249] ac-
cording to the recommendations of Bhatia et al. [250].
The similarity of patterns in our MDS of ROA dissimi-
larities and those in the MDS of Fgr was evaluated with
the Procrustes method [251].

Relationship between ROA and genomic variables

For each ROA length class, we investigated recombin-
ation rate and haplotype-based nS; selection scores
[208] for correlations with ROA frequency across the au-
tosomes. Population-based recombination-rate estimates
were obtained from Phase 3 of The 1000 Genomes Pro-
ject [157] (downloaded ]uly14th, 2014), and nS; values
for each of the 26 populations were calculated in the
WGS dataset considering only SNVs with MAF > 0.05
and normalization of unstandardized scores in 100
genome-wide frequency bins with selscan [252]. Com-
parisons between ROA frequency and recombination
rate and nS; were performed as described in Pemberton
et al. [18] considering the mean value of each variable in
non-overlapping 50 kb windows, excluding windows
within the centromere and telomeres, calculated across
all SNV within the window for which the variable was
available. Admixed Afro-European (ASW and ACB) and
Mestizo (CLM, MXL, PEL, and PUR) populations and the
geographically imprecise CEU (Utah residents of North-
western European ancestry) group were omitted from
geographic analyses but were included in the scatterplots.
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