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Abstract

Background: Whole genome re-sequencing data from dogs and wolves are now commonly used to study how
natural and artificial selection have shaped the patterns of genetic diversity. Single nucleotide polymorphisms,
microsatellites and variants in mitochondrial DNA have been interrogated for links to specific phenotypes or signals
of domestication. However, copy number variation (CNV), despite its increasingly recognized importance as a
contributor to phenotypic diversity, has not been extensively explored in canids.

Results: Here, we develop a new accurate probabilistic framework to create fine-scale genomic maps of segmental
duplications (SDs), compare patterns of CNV across groups and investigate their role in the evolution of the
domestic dog by using information from 34 canine genomes. Our analyses show that duplicated regions are
enriched in genes and hence likely possess functional importance. We identify 86 loci with large CNV differences
between dogs and wolves, enriched in genes responsible for sensory perception, immune response, metabolic
processes, etc. In striking contrast to the observed loss of nucleotide diversity in domestic dogs following the
population bottlenecks that occurred during domestication and breed creation, we find a similar proportion of CNV
loci in dogs and wolves, suggesting that other dynamics are acting to particularly select for CNVs with potentially
functional impacts.

Conclusions: This work is the first comparison of genome wide CNV patterns in domestic and wild canids using
whole-genome sequencing data and our findings contribute to study the impact of novel kinds of genetic changes
on the evolution of the domestic dog.
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Background
The dog (Canis familiaris) was domesticated from the
gray wolf (C. lupus) [1–4] more than 10,000 years ago, al-
though when and where domestication happened as well
as the role of humans in the process have been focus of
intense debate [5–10]. Beginning several hundred years
ago, modern dog breeds were established as isolated gene
pools, in parallel with strong artificial selection for specific
physical and behavioral phenotypes favored by humans. A
large number of dog breeds have been developed since
then, which has resulted in a broad variety of traits and
exceptional phenotypic variation [11].
Detecting and understanding the footprint that domesti-

cation left in the canine genome is an area of active re-
search. To this end, genetic variation in dogs and wolves
has been extensively studied using single nucleotide poly-
morphisms (SNPs) and microsatellites [12–16]. These
studies have shown that nucleotide diversity is between 1.5
and 2 times lower in dogs than in wolves as a result of a 9
to 16-fold reduction in the effective population size associ-
ated with dog domestication [4, 17, 18]. Selective breeding
further led to reduction in variation, longer linkage disequi-
librium (LD) blocks and a lower number of haplotypes
among purebred dogs compared to wolves and “village
dogs”, which have not gone through the breeding process
[15, 17, 19–22]. This reduction in diversity is striking in
the light of the great phenotypic variation observed in
modern dog breeds [12]. Several studies have focused on
the identification of functional variants responsible for
phenotypic changes associated with domestication [23] or
contributing to phenotypic variation of the modern dog
breeds [11, 19, 24–29].
Although CNV contributes to phenotypic differences and

genetic diseases [28, 30–32], structural variation in multiple
canine genomes has not been thoroughly interrogated yet
genome-wide. Absolute copy number (CN) values in short
genomic windows can be predicted computationally from
whole genome sequencing experiments [33–40] and this
approach has been used to study CNV patterns in many
species. A number of studies have investigated CNV in dogs
and wolves using experimental approaches, namely array
comparative genomic hybridizations (aCGH) [30, 41–45]
and intensity data from SNP genotyping arrays [46]. How-
ever, these techniques are limited to relatively low CN re-
gions [47], produce CN values relative to the CN in the
reference individual [48], have strong limitation in size of
the detectable structural variants [49, 50] and only the parts
of the genome in which probes have been placed can be in-
terrogated [47].
In the present study, we aimed to investigate CNV regions

in dogs and wolves. However, the analysis of the genome-
wide patterns of segregating CNV across a set of individuals
is a challenging task and requires precise estimates of the
absolute CN of each CNV locus for each of the individual

genomes. The accuracy of all the existing methods for abso-
lute CN inference decreases rapidly as CN increases, and
thus, nearly all of the studies of CNV diversity up to date
are limited to biallelic loci with segregating alleles CN1 and
CN2 per haplotype [40, 51, 52]. In addition, methods based
on read depth only produce point estimates and do not pro-
vide confidence intervals, which are extremely important to
distinguish between true CN variability and increased tech-
nical noise (especially for higher CN values) [53]. This is an
important caveat considering that, as reported in humans,
population differentiation in loci with a high number of
copies might be an important contributor to phenotypic dif-
ferences [40, 54, 55]. Here, we designed a new probabilistic
framework of the read depth based approach for accurate
absolute CN inference and CNV detection, which enabled
us to perform a comprehensive genome-wide analysis of the
patterns and dynamics of CNV loci across the entire range
of CNs in a set of 34 canid genomes.

Results
We analyzed a set of 34 sequenced individuals at a mean
initial coverage of 16.8X [4, 56, 57]. Our dataset included
12 dogs (C. familiaris), 16 gray wolves (C. lupus), 2 red
wolves (C. rufus), 3 coyotes (C. latrans) and 1 golden
jackal (C. aureus) (Table 1) from diverse populations and
breeds across Europe, America and Asia [57].
We generated individual genome-wide fine-scale CN

profiles using a previously published method [33]. Further,
we developed and applied a new probabilistic approach,
which allowed us to overcome some of the limitations of
the previous methods by estimating probabilities for each
CN and broaden the analysis to include loci of high CN.

Validation
We validated our computational predictions with the avail-
able aCGH data [43] for 14 of the samples that are com-
mon in both studies (Table 1). We compared “digital”
log2ratios between the reference individual (“bxr”) and
each of the other samples included in the aCGH study
[43], which showed a high correlation with the aCGH log2-
ratios (mean correlation coefficient R = 0.77 ± 0.06,
Additional file 1: Table S1). Additionally, 95.4 ± 3.3% of
windows with sample specific CN gains relative to the ref-
erence individual (Boxer) have passed the validation
threshold (See METHODS and Additional file 1: Table S1).
Boxer specific duplications had a lower validation rate
(69.3 ± 6.8%), most likely as a result of sequencing biases
specific to this sample (Additional file 1: Figure S1).

Genomic duplications
Duplicated genomic regions spanned 114.05 Mbps
(43.44 Mbps in autosomal chromosomes and 70.69
Mbps in unplaced scaffolds) or about 5% of the size of
dog autosomes. Dogs have 111.82 Mbps of duplicated
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sequence, gray wolves 111.46 Mbps and related canids
109.74 Mbps. We found, that 79% of the genomic du-
plications were present in all the individuals (89.72
Mbps in total, 24.03 Mbps in chromosomes and 65.70
Mbps in unplaced scaffolds), 93.04 Mbps (~83%) were
present in all the dogs and 95.53 Mbp (~86%) in all the
wolves (Fig. 1a). Dogs and gray wolves showed the same

average amount of duplicated sequence per individual
(104.21 ± 1.89 and 105.54 ± 0.71 Mbps, respectively, Fig.
1b) and 38.22 Mbps were duplicated in at least one in-
dividual from each subspecies excluding unassembled
scaffolds (Fig. 1c). The average length of duplicated
segments did not depend on the sample coverage
(Additional file 1: Figure S2).

Table 1 Samples and sequencing coverage

Species Sample Abbreviation HMM function Raw coverage Effective coverage aCGH data Dataset Diversity analysis

Dog Chinese indigenous
dog

DogCI2 Training 9.83 – No Wang et al. No

Dog Dingo din Analysis 7.09 5.1 No Freedman et al. Yes

Dog Basenji mba Analysis 11.8 8.49 Yes Freedman et al. Yes

Dog Kerry Blue Terrier ali Analysis 21.28 15.32 No Fan et al. Yes

Dog Boxer bxr Analysis 31.27 22.29 No Fan et al. Yes

Dog English cocker cec Analysis 11.81 8.5 No Fan et al. Yes

Dog Labrador retriever dlr Analysis 12.6 9.07 No Fan et al. Yes

Dog Chinese crest jcc Analysis 19.04 13.71 No Fan et al. Yes

Dog Standard poodle osp Analysis 12.91 9.29 No Fan et al. Yes

Dog Belgium Malanois DogBM Analysis 10.11 7.57 No Wang et al. Yes

Dog German shepherd DogGS Analysis 9.56 5.61 No Wang et al. Yes

Dog Tibetan Mastiff DogTM Analysis 10.37 5.8 No Wang et al. Yes

Gray wolf Wolf Russia GW3 Training 11.1 – No Wang et al. No

Gray wolf Wolf China chw Analysis 17.94 12.91 Yes Freedman et al. Yes

Gray wolf Wolf Croatia crw Analysis 9.73 6.94 No Freedman et al. Yes

Gray wolf Israeli wolf isw Analysis 7.37 5.26 No Freedman et al. Yes

Gray wolf Wolf Great Lakes glw Analysis 26.8 19.3 Yes Fan et al. Yes

Gray wolf Wolf India inw Analysis 27.42 19.74 Yes Fan et al. Yes

Gray wolf Wolf Iran irw Analysis 30.15 21.71 Yes Fan et al. Yes

Gray wolf Wolf Italy ita Analysis 7.59 6.07 Yes Fan et al. Yes

Gray wolf Wolf Mexico mxa Analysis 25.64 18.46 Yes Fan et al. Yes

Gray wolf Wolf Mexico mxb Analysis 7.08 5.66 No Fan et al. No

Gray wolf Wolf Portugal ptw Analysis 28.46 20.49 Yes Fan et al. Yes

Gray wolf Wolf Spain spw Analysis 28.88 20.79 Yes Fan et al. Yes

Gray wolf Wolf Yellowstone ysa Analysis 28.21 20.31 Yes Fan et al. Yes

Gray wolf Wolf Yellowstone ysb Analysis 18.82 13.55 Yes Fan et al. No

Gray wolf Wolf Yellowstone ysc Analysis 8.44 6.75 Yes Fan et al. No

Gray wolf Wolf China GW4 Analysis 9.61 6.75 No Wang et al. No

Coyote Coyote California cac Training 26.87 19.35 No Fan et al. No

Coyote Coyote Alabama alc Analysis 7.69 5.54 No Fan et al. No

Coyote Coyote Midwest mwc Analysis 9.11 6.56 No Fan et al. No

Jackal Golden Jackal Kenya jaa Analysis 27.47 19.78 Yes Freedman et al. No

Red wolf Red wolf rwa Analysis 30.28 21.8 No Fan et al. No

Red wolf Red wolf rwb Analysis 7.72 6.17 No Fan et al. No

Sequences were retrieved from previously published work from Fan et al. [57], Freedman et al. [4] and Wang et al. [56]. The raw coverage is calculated from the
total number of reads before mapping and referred to the 2,413,045,422 bps of the prepared version of CanFam3.1. The effective coverage is calculated after
removing poor-quality sequencing lanes and read ends. For 14 samples aCGH data from Ramirez et al. [43] were available. Coyote, jackal and red wolf samples
were combined as a single group for the analyses
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We found that the set of genomic duplications detected
in the 34 canine samples overlapped with 433 genes anno-
tated in the CanFam3.1 dog genome assembly, an overlap
significantly higher than the random expectation
(randomization p-value = 0.0023) (Additional file 1: Figure
S3). Moreover, we found a significant enrichment of dupli-
cated genes involved in detection of chemical stimulus
and G-protein coupled receptor signaling pathways, both
with p-val < 10−30 (Additional file 1: Table S2). These two
pathways are closely associated with the perception and
transduction of smell and other sensory functions. We
also detected a significant enrichment in the pathways of
immunoglobulin production and phagocytosis recognition
with a p-value of ~10−6. Many essential genes were dupli-
cated in all of our samples, including major cytoskeleton
components, a number of ribosomal genes/proteins, mito-
chondrion maintenance and ubiquitination enzymes or
DNA repair mechanisms among many others.
We further looked at the private duplications, present in

one subspecies and not in the other. We restricted subse-
quent analysis to include only 11 dogs and 11 wolves from
distinct populations (Table 1, Additional file 1: Table S3),
consequently these differences do not result from different
sample sizes of dogs and gray wolves (see METHODS). The
number of duplications that were unique to dogs (3.67 Mbps
or ~3.29% of dog duplications) was substantially greater than
for gray wolves (2.19 Mbps or ~1.97% of gray wolf

duplications) and they mainly corresponded to events in sin-
gle individuals (Additional file 1: Figure S4) and none of the
private duplications was shared by more than 7 individuals.
These private duplications were also significantly enriched in
genes for both dogs (randomization p-value = 0.0075) and
wolves (randomization p-value = 0.003) with genes involved
in iron homeostasis and elastin catabolism overrepresented
in dogs, and genes involved in arginine transport overrepre-
sented in wolves (Additional file 1: Table S4).

Genomic proportion of CNV
Our CN calls allowed us to identify windows with segregat-
ing CN alleles within populations. We assessed whether the
proportion of the genome classified as CNV was reduced in
the dog lineage relative to the gray wolf, as has happened
for nucleotide diversity (Fig. 2a) reflecting domestication
and breed creation bottlenecks. As an overall measure of
the fraction of the genome with segregating CNV in either
subspecies, we used the number of 1-Kbps windows for
which at least two individuals presented non-overlapping
CN intervals (further referred to as variable windows specif-
ically or CN variability globally) divided by the total number
of 1-Kbp windows called inside duplications, taken as the
most likely substrate for CNVs [58, 59]. In striking contrast
to the 1.6-fold reduction in single nucleotide diversity in our
dataset of dogs (in accordance with estimates of 1.5 to 2-
fold reduction reported previously [4, 17, 18], see Additional

a

b

c

Fig. 1 Landscape of canine segmental duplications. a Genome-wide map of canine SDs. Autosomes are represented by horizontal bars, and each
mark represent a duplicated region identified in at least one sample of the group indicated. b Total length of genomic duplications identified per
subspecies. c Venn diagram showing intersection of duplicated regions identified in dogs, gray wolves and canines in the outgroup (chrUn excluded)
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file 1: Tables S4 and S5), we found similar proportion of the
duplicated genome space with CNVs in the two canine sub-
species (54.5% and 54.6% variable windows per total num-
ber of duplicated windows in dogs and wolves respectively)
(Fig. 2a, Additional file 1: Table S6). Among all variable win-
dows in dogs, 78.8% are also variable in wolves, while for
wolves this proportion is slightly higher (80.9%). Most of
these regions represent in principle, variability originated
before the lineage split, whereas those regions not shared
(21.2% and 19.1% respectively), represent subspecies-
specific variability, which could potentially contribute to
functional differences between the two subspecies
(Additional file 1: Figure S5). Alternatively, these regions

may represent independent inheritance of CNVs from a
common ancestor.
We sought then to eliminate the possibility that artifacts

of our CN calling algorithm might influence our estimates.
Given the known differences in accuracy of depth of cover-
age methods for different CN magnitudes, we first divided
all genomic duplications into three categories according to
their corresponding CN. Specifically, these categories in-
cluded duplications of low CN (mean CN across all win-
dows in all duplicated individuals between 2 and 4),
medium CN (mean CN between 4 and 15) and high CN
(mean CN larger than 15). We then calculated variability
levels for each of the categories separately (Additional file 1:

a

b

Fig. 2 Proportion of genomic CNV and SNP diversity in dogs and gray wolves. a Boxplots indicate the observed values of overall genomic
proportion of CNVs and SNP diversity in dogs and gray wolves. Violin plots correspond to 5000 bootstrap values. b Ratios of the level of CNVs in
dogs to the level of CNVs in wolves for low (2–4), medium (5–15) and high (16+) copy number categories. In green all the regions are taken into
account, in orange short regions (less than 5 consecutive windows) of variable CN are filtered and in purple singletons are filtered
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Table S6). Surprisingly, the proportion of CNV windows
within genomic duplications with low CN (2–4), is even
higher in dogs than in wolves (28% and 20% respectively).
In this category we assessed the quality of the calls of vari-
able windows for each pair of samples with a two-way
aCGH comparison. We required that the absolute value:

log2
CNSample1

CNSample2
¼ aCGHSample1−aCGHSample2 exceeds the cut-

off of aCGHCUTOFF = ±3*σaCGH(CR) (see METHODS for
details) for all the windows with predicted CN differences
between the two samples, when one of the samples was not
predicted to be duplicated. We thus validated 89% of win-
dows per sample for relative losses and 88% per sample for
relative gains (median values, Additional file 1: Table S7).
To further investigate if our measure of CN vari-

ability is affected by singletons, we repeated the ana-
lysis requiring a minimum of two individuals to be
called with a different CN. Even so, dogs and wolves
presented similar genomic proportions of CNVs and
the value in the low CN category is still slightly
higher for dogs (Fig. 2b, Additional file 1: Table S6).
Finally, we tested whether the similar levels of gen-
omic variation are not driven by hyper variable dupli-
cation breakpoints [60] and are not a result of
inaccurate calls of short variable regions. To do so we
required for CN regions to be comprised of a mini-
mum of 5 consecutive windows which are identified
as variant within the population, and still found over-
all similar genomic proportion of CNVs comparing
dogs and wolves (Fig. 2b, Additional file 1: Table S6).
Variable duplicated genomic segments, defined as 1-

Kbps windows for which there were at least two individ-
uals with non-overlapping CN intervals, are enriched in
genes in the low and medium CN categories for both
lineages (dogs: pCN2–4 = 0.018 and pCN5–15 = 0.023;
wolves: and pCN2–4 = 0.014 and pCN5–15 = 0.053) and
many of these genes are involved in both innate immun-
ity (6 genes related to phagocytosis recognition) and
adaptive immunity (15 genes involved in immunoglobu-
lin production and MHC maturation). A striking enrich-
ment was found in the pathway of DNA recombination
and the most significant signal belonged again to olfac-
tory receptor activity (Additional file 1: Table S8).
We further looked for genes which show a high de-

gree of CN differentiation between the two subspe-
cies based on the VST statistic. We recover a number
of genic CNVs previously reported to be associated
with the dog specific phenotypes. Among these genes
is the paralogue to the canine alpha-2B-amylase gene
(AMY2B), which catalyzes the first step in the diges-
tion of dietary starch and glycogen (Fig. 3a and
Additional file 1: Table S9). Another case of CN ex-
pansion in dogs is a 150-Kbps duplication in
chromosome 24 [16, 42]. This duplication spans
three members of the signal-regulatory protein (SIRP)
gene family, which mediate immune-cell regulation

[61] (Fig. 3b and Additional file 1: Table S9). Simi-
larly, the CBR1 gene (Fig. 3c), coding for a carbonyl
reductase enzyme involved in the degradation of both
environmental and biologically synthesized quinones,
lies within a region duplicated in most samples with
some dog samples having a higher number of copies
(Additional file 1: Table S9).

Discussion
Inferring absolute CN values from sequencing read depth
and determining gains in the number of copies is not triv-
ial. Among computational methods, read depth based ap-
proaches are the most accurate [62]. Here, we develop an
accurate probabilistic expansion of the sequencing read
depth based method to call CN genome wide and use this
method to produce fine-scale maps of genomic duplica-
tions and CNV regions in dogs, gray wolves and the more
basal coyote and golden jackal lineages. The novelty of
our approach relies in the population-wide Bayesian prob-
abilistic method to CN estimation, hence allowing us to
reliably compare CN values across groups of genomes.
The CNV and duplication maps that we present in this

study greatly improve on the landscape of structural
variation in the canine genome. We analyzed a set of
dogs from different breeds, but we additionally included
a wide range of gray wolf samples from a broad geo-
graphic distribution and several individuals from other
wild canine species. All samples were previously se-
quenced [4, 56, 57] by next generation sequencing and
we utilized a computational read depth approach to esti-
mate fine-scale CN for each individual.
The main objective of our study was to investigate

whether the proportion of the genome with CNV regions is
reduced in dog compared to gray wolf genomes, which
would indicate a reduction of CN polymorphisms similar to
the expectations based on SNP diversity and the inferred
bottlenecks. To do that, precise estimates of the absolute
CN of each CNV locus for each of the individual genomes
and a probability associated to them are required. We
applied an HMM prediction, local multi-sample re-
genotyping and created accurate interval estimates of abso-
lute CNs. We further validated our calling method with an
available experimental dataset and found that the accuracy
of the method is comparable and in some cases slightly su-
perior to the accuracy of previous methods for copy gain
predictions. Accuracy of the calls varies across samples but
is not dependent on coverage depth (Additional file 1:
Figure S6), as expected since the uncertainties associated
with coverage are taken into account by HMM predictions
and multi-sample re-genotyping.
Our fine-scale duplication maps indicate that dog ge-

nomes present similar genomic proportion of CNV com-
pared to those of gray wolves (Fig. 2a). Nucleotide
diversity in dogs compared to their canine ancestors has
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been reduced genome-wide, as reported previously [4,
17, 18] and supported by our data in an extended set of
samples (Fig. 2a, Additional file 1: Table S5 and Add-
itional file 1: Table S6). This reduction in nucleotide di-
versity has been attributed to the population bottlenecks
and inbreeding that dogs have suffered as a result of do-
mestication and the creation of dog breeds [13, 20, 63].
With regard to duplications, we observe that ~80% of
the CNV sites are mostly shared by both subspecies. It is
notable that still ~20% of these genomic CNV regions
are not shared, and they might then contribute to the
phenotypic plasticity observed in modern dog breeds or
represent different sampling of CNV regions from a
common ancestor.
We explicitly addressed potential biases that could affect

the calculation of the proportion of CNVs. First, the pro-
portions are maintained when considering a high confi-
dence subset of regions, for which at least two individuals
are called with a different CN. As for each individual we
require the cumulative probability of the CN interval to
reach at least 0.99, the probability that two distinct

individuals would be called incorrectly is lower than 10−4.
Second, accuracy of duplication calls increases with the
length of the duplicated region [33] and the same is true
with the accuracy for the calls of variability. After exclu-
sion of all short variable segments, the resemblance be-
tween CN variation levels in the two subspecies is still
maintained and the relative genomic CNV proportion in
the low CN category even increases in dogs (Fig. 2b).
Finally, perhaps the greatest challenge in our estimates

of the genomic proportion of variable duplications, is
the fact that the total length of duplications represented
in the dog assembly that are unique to dog samples
might be either collapsed or misrepresented. To deter-
mine the extent of this problem in our estimates, we
used the duplications identified in the genome with the
whole-genome assembly comparison (WGAC) [42] to
count each duplication detected in each subspecies.
After correcting for duplications annotated in CanFam2,
we found a slight increase in the proportion of CNVs
observed in the dog compared to the wolf, although the
final magnitudes were reduced 15–20% in both

a bb

c d

Fig. 3 Genes in high VST between dogs and wolves. (a) AMY2B (b) SIRP (c) CBR1 (d) PHYH
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subspecies (Additional file 1: Figure S7). It is worth men-
tioning that our approach is based on counting the pro-
portion of variable windows or equivalently the
proportion of total length of variable duplications in the
entire duplicated space and therefore it is just an estima-
tion of the actual duplication units. For a more accurate
assessment, better resolution of duplication events and
breakpoints is required, which could be achieved by
whole genome reconstruction based on long read se-
quencing technologies.
Altogether, similar levels of CNV load in dogs and

wolves are extremely unlikely to be explained by an
artifact or a bias alone. A key question is then why
CN variability is not as reduced in dogs compared to
single-nucleotide variation. Below, we considered each
of the forces driving mutation-selection-migration
equilibrium separately.
There are two scenarios in which selection might in-

crease CNV levels in dogs above those expected given
their demographic history. First, the maintenance of
relatively high CNV levels in dogs is consistent with di-
versifying selection among different canine populations
if regions of CNV are strongly functional. However, if
that is the case, selected functional variants should show
high frequency in breeds sharing a trait under selection
and be at low frequency or absent in other dogs, result-
ing in a high overall proportion of genomic CNV. Al-
though, this idea is difficult to test with the current
dataset due to the limited number of samples per dog
breed, data with aCGH suggest that most of the CNV
found in dogs are not shared within breeds but across
individuals of different breeds [30]. However, this data
does not eliminate across breed variability in high CNs,
which would not be detected given the lower dynamic
range for such values in aCGH. Alternatively, domestica-
tion has relaxed selective pressure on dogs [64] and the
consequences of this relaxation can be seen in differ-
ences in coding sequence variation [65]. Then, if CNV is
generally slightly deleterious, the reduced efficiency of
natural selection in small populations during the domes-
tication bottleneck might affect CNVs differently than
general SNP diversity especially if the distribution of se-
lective effects is biased toward a greater frequency of
neutral or nearly neutral variants in CNVs.
The CNV mutational landscape might also be altered

in the canine lineage. Notably, the recombination hot-
spot gene PRDM9 gene was pseudogenized in the dog
genome. This gene is involved in recombination and
novel CNV formation in primate and rodent lineages
[66, 67]. Its absence in the dog genome might imply dif-
ferent conditions for CNV formation in the canine
lineage. The genomes of closely related domestic cat,
panda and ferret all carry a functional copy of PRDM9.
Interestingly, a region with RPA3, one of the genes

which binds and stabilizes single-stranded DNA during
DNA replication and plays a role in double-strand break
repair via homologous recombination, is duplicated in
all canid genomes in our study and is variable in dogs.
Given 80% of CNVs are shared between the two
subspecies, many of them likely originated before the
two lineages split, but it could also indicate recurrent
duplication events happening at hotspots. However,
great uncertainty exists about the overall mutation rate
of SNPs [22, 68] and CNV in canines and even less is
known about the variation of this rate between dogs and
wild canids.
Finally, a reduction in our estimates of CNV relative

to SNP diversity also could have been accomplished by
reducing the number of genotypes [69, 70] that are seg-
regating in dogs. CNV loci carry on average more alleles
than SNP loci, which normally carry just two [71–73].
Although the dynamics of the loss of the number of al-
leles might be similar between two types of variation,
the levels of variability in case of CN will be affected less
[35, 73]. The number of alleles per loci is higher for high
CN regions [72] and thus, even with a significant reduc-
tion of the number of alleles per locus, the level of vari-
ability of those high CN loci will not be reduced to the
same degree. This effect might underlie the dynamics of
our median and high CN categories. Remarkably, dupli-
cations with relatively low mean CN are consistently
more variable in dogs than in wolves. These low CN du-
plications are significantly enriched in genes and some
have subspecies specific variants, suggesting to a certain
extent they might be novel and contribute to functional
changes that have occurred after the lineages split.
Regardless of the proposed scenarios, some of the

CNV loci with a high degree of variability in dogs or
wolves, and specifically gene expansions in CN in the
dog lineage, might affect phenotypic differences between
subspecies given that 20% are unique to one of these
subspecies. A good example is the unique amplification
of the amylase gene CN in all dogs, as opposed to the
single-copy number in almost all gray wolves, which has
been linked to a starch-rich diet in dogs [23] (Fig. 3a).
Another example is a highly variable tandem duplication
of the PHYH gene [42], which in humans is linked to
Refsum disease, with multiple epiphyseal dysplasia
among variable features [74] (Fig. 3d). In addition,
homozygous PHYH knockout mice exhibit slightly re-
duced tibia length [75]. We also detected a remarkable
enrichment in the levels of SDs and CNVs in the path-
ways of immunoglobulin production and phagocytosis
recognition, as a CNV region comprising the cluster of
SIRP genes (Fig. 3b), which are involved in the adaptive
immune system [61]. The levels of immunoglobulin A
have been shown to vary greatly across dog breeds [76]
but, to our knowledge, copy number has never been
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studied as a possible cause for this variation. An example
of natural and artificial selection acting in opposite di-
rections might be the widespread duplication upstream
of the KITLG gene, which is linked to the increased risk
for squamous cell carcinoma in black standard poodles
[77]. KITLG locus has been shown to be under strong
selective pressure in dogs [19] and a number of other
species [78–80]. Interestingly, in humans and stickleback
fish this locus is associated with variation in skin pig-
mentation [81, 82] and therefore possibly also plays a
role in coat color and patterning in dogs. Thus, high fre-
quency of this duplication might be explained by artifi-
cial selection favoring coat color traits preferred by
humans, despite its negative impact on overall fitness.

Conclusions
We present the first genome-wide assessment of CNV
landscape in canids based on CN maps generated from
high-coverage whole genome sequencing data. The nov-
elty of this study resides in its focus on structural gen-
ome variation, which has not been as extensively
explored as single-nucleotide variation in canids [4, 17,
19–22]. Additionally, we present a novel method for the
application to the whole-genome sequencing read depth
data to predict absolute genomic CN under a probabilis-
tic framework. We find that the proportion of genome-
wide CNVs in dogs and wolves has been maintained at
similar levels in contrast to the decline of nucleotide
variation seen in dogs. This result could reflect diversify-
ing selection among dog breeds and populations if CNV
are generally functional as with AMY2B [43]. The en-
richment of genes in CNV regions further supports this
assertion. Furthermore, we identify genes with divergent
CN variation in dogs and gray wolves, which might have
contributed to phenotypic and behavioral differences be-
tween the two subspecies. Determining the functional
importance of CNV and amount of dog breed specific
CNVs should be a focus of future studies.

Methods
Samples and sequencing data
We use sequence data from a panel of 22 canids includ-
ing 6 dogs, 13 wolves and 3 coyotes sequenced previ-
ously [57]. Further, we included the genomes for another
12 canids recently published [4, 56], provided that they
had a raw coverage greater than 5X (see below).
Altogether, our final dataset comprised 12 dogs, 16 gray
wolves, 2 red wolves, 3 coyotes and 1 golden jackal
(Table 1) at a mean initial coverage of 16.8X [4, 56, 57].
Each dog sample was from a different so-called modern
dog breed with the exception of the Dingo, Basenji and
Chinese indigenous dog, which are typically regarded as
old lineages. The wolves were sampled from a broad
geographic distribution and included a family trio (male,

female and offspring) from Yellowstone. For the subse-
quent analyses we considered the red wolves, coyotes
and the jackal samples as a single group (referred to as
“outgroup”).

Pipeline for calling copy number from sequencing data
We extended a read depth based approach for detection of
SDs with a HMM for CN prediction from raw sequencing
read depth and incorporated it to the pipeline for calling
CN and CNV regions genome-wide (see Fig. 4 for the pipe-
line overview). To create raw, continuous, genome-wide
CN predictions we applied a previously described [33] ap-
proach, which consists of the following steps:
(i) Masking of over-represented kmers in the assembly.

In addition to the repeats already masked in the UCSC
Genome Browser [83] version of CanFam3.1 with
RepeatMasker [84] and Tandem Repeat Finder [85], we
sought to identify and mask potential hidden repeats in
CanFam3.1. In order to do so, chromosomes were parti-
tioned into 36-bps kmers (with adjacent kmers overlap-
ping 5 bps) and the resulting kmers were mapped
against СanFam3.1 using mrsFast [86]. Then we masked
positions in the assembly mapped by kmers with more
than 20 placements in the genome, resulting in
6,910,707 bps additionally masked compared to the ori-
ginal CanFam3.1.
(ii) Mapping 36-bps reads against the assembly. Illu-

mina reads from each individual were split into 36-bps
portions (positions 10–45 and 46–81 of the original
reads in order to exclude the lower-quality ends of the
reads) and mapped to the prepared version of Can-
Fam3.1 using mrFast [86].
(iii) Read depth calculation in 1-Kbps non-overlapping

windows of non-repetitive sequence. To avoid edge
problems with masked regions, which would underesti-
mate the CN, the 36 bps flanking the masked regions
were masked as well (referred to as 36-bps padding on-
wards). We then calculated the read depth in 1-Kbps
non-overlapping windows of non-masked sequence.
(iv) GC-corrected absolute CN estimation from read

depth. Read depth values in 1-Kbps windows were then
corrected for GC bias using a set of diploid control regions.
Control regions were defined as a set of diploid windows
totally included in autosomal regions that had not been re-
ported as a CNV in previous studies [4, 41, 42, 87]. These
studies were based on CanFam2 and we lifted over the final
set of control regions to CanFam3.1. Finally, we removed
gaps (plus a 36-bps padding at the start and end of the gap)
from the control regions in CanFam3.1. Altogether, this re-
sulted in 21,260 control regions (mean = 94.9 Kbps) with a
total size of 2,017,239,131 bps (83.7% of CanFam3.1) and
the majority being smaller than 500 Kbps. Of the total
1,151,822 1-Kbps windows 998,077 (86.7%) and 153,745
(13.3%) were control and non-control, respectively.
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(v) Raw CN estimation. Finally, we determined CN in
the 1-Kbps windows of non-repetitive sequence as the
read depth of each window divided the mean read depth
in the control regions set.
We noted that this setup is equivalent to a Hidden Mar-

kov Process, where hidden states correspond to the true in-
tegral CN of the genomic region, emission symbols
correspond to CN estimates based on read depth, emission
probabilities are drawn from the corresponding read depth
distributions and transitions between states correspond to
genomic changes of the CN in the adjunct genomic regions.
We thus applied this HMM approach to estimate the prob-
abilities of each CN for 1 Kbp windows. We declared
HMM states as a set of all possible CN for low CN (from
CN= 0 to CN= 20) and their corresponding emission dis-
tributions as normal distributions with the mean corre-
sponding to the CN, μN =N, and standard deviation
derived from standard deviation in control regions (CR,
CN= 2) as σN ¼ ffiffiffiffiffiffiffiffiffiffiffi

0:5N
p � σCR: For high CNs we declared

states as an interval of CNs (CN21–100, CN101–1000) and

modeled their emission distribution as a mixture of normal
distributions with weights proportional to the estimated
frequencies of each CN. We trained the transition matrix of
this HMM with the Baum–Welch algorithm coded in the
Pomegranate Python package [88] until convergence. We
trained the HMM separately for dogs and wolves, using
continuous CN predictions from read depth for one of the
samples as observations (see Table 1). We excluded samples
used for training from further analysis.
As samples differ greatly in coverage, which in turn

leads to differences in standard deviations in the control
regions, we redefined the HMM for each individual separ-
ately, so the emission distributions would resemble sample
specific standard deviation of the read depth in regions of
CN= 2. The transition matrix is, on the contrary, subspe-
cies specific and does not depend on the sequencing qual-
ity. We predict probabilities of each of the declared states
at each point by using the forward-reverse algorithm
coded in the Pomegranate Python Package. For each indi-
vidual we thus predict probabilities of each CN at each 1-

Fig. 4 Pipeline for absolute copy number calling
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Kbp window. Individual read depth based predictions of
CN are very noisy and in order to improve them we add-
itionally performed local population-based re-genotyping.
For a particular observation of read depth derived raw CN
cn = x, we use Bayes’ theorem to estimate the probability
to draw this value from each of the distributions corre-
sponding to CN states:

p CN ¼ N jcn ∈ xþ dx½ �ð Þ ¼ p cn ∈ xþ dx½ �jCN ¼ Nð Þ � p CN ¼ Nð Þ
p cn ∈ xþ dx½ �ð Þ

¼ PDF cn;N ;
ffiffiffiffiffiffiffiffiffiffiffi
0:5N

p
σCR

� �� dx � p Nð Þ
P

CN

PDF cn;N ;
ffiffiffiffiffiffiffiffiffiffiffi
0:5N

p
σCR

� �� dx
¼ PDF cn;N ;

ffiffiffiffiffiffiffiffiffiffiffi
0:5N

p
σCR

� �

P

CN

PDF cn;N ;
ffiffiffiffiffiffiffiffiffiffiffi
0:5N

p
σCR

� ��p Nð Þ;

where p(N) is the expected probability to observe CN=N
in the data, the only variable which could be tuned locally.
For every 1-Kbp window and each possible state of CN=
N, we calculated its average probability across all the indi-
viduals in 5 consecutive windows, centered at the window
of interest, and used this mean probability as a prior for
the expected probability p(N) of CN=N in the data.
For a fraction of 1-Kbp windows (~2.5% inside dupli-

cations, ~51% genome wide) we can call the underlying
CN with high confidence (p > 0.99) as a unique integer
value. But for complex regions of high CN which are
variable across individuals, the probability of each CN is
low (p < 0.99). For such windows we consider confidence
intervals of the underlying CN. To do so, for each win-
dow, we order CN states according to their probability
after population based local re-genotyping, and add
them to the interval one by one, until their cumulative
probability reaches p = 0.99 threshold. We further call
underlying CN of the window to belong to this interval.
We thus could assess if for a particular window any two
individuals have the same CN (if we confidently call
them with the exact value), different (if we confidently
call them to belong to non-overlapping CN intervals), or
unresolved (if we call the individuals to belong to over-
lapping intervals).
We defined duplicated regions as regions of the gen-

ome, which harbor at least 5 consecutive windows,
which we confidently call as CN > = 3 in at least one of
the individual canine genomes. The collection of all such
regions we call duplication track, and perform all further
analyses only for windows which belong to this track.

aCGH data and validation of the method
For 14 of the samples (1 dog, 1 jackal and 11 gray wolves
and 1 red wolf ) in which we predicted fine scale confi-
dence CN values, aCGH data assays were available [43]
(Table 1). This aCGH chip contains 598,733 probes
which target, with a higher density, previously reported
regions in the canine genome harboring structural vari-
ation [87]. In this study a Boxer sample was used as a
reference in the array and we sequenced the same

individual in the present study (bxr). Because the aCGH
data was based on CanFam2 we generated the 1-Kbps
CN predictions based on this version of the dog genome
reference assembly and called confidence CN intervals
for these 14 samples in the described fashion.
We performed quality control of aCGH experi-

ments by assessing density function of aCGH probes
for each individual (Additional file 1: Figure S8). The
standard deviation for sample ysc was 2.5 times
higher than for the rest of the samples, and we thus
excluded ysc from subsequent aCGH validation ana-
lysis. We than calculated a threshold to separate true
aCGH signals corresponding to gains and losses from
diploid noise. To do so, we defined true CN = 2
windows as the intersection between regions which
were previously experimentally identified as diploid
[4, 41, 42, 87] and the regions which we confidently
called as CN = 2 (probability greater than 0.99). As
the aCGH chip was designed to target duplications
and CNV regions previously reported in the canine
genome, genome-wide 1-Kbp windows may be not
covered uniformly with aCGH probes or covered at
all, so we restricted our analysis only to the windows
which harbor at least 2 different aCGH probes. We
plotted the distribution of median aCGH signals for
Boxer sample in these subset of windows (n = 1452),
and used a cutoff for aCGH signal CUTOFF = aCGH-
MEAN(CN = 2) ± 3*aCGHSD(CN = 2) = ±0.20 to discrim-
inate between true gains and losses from false ones.
To validate our calls, we assessed if the difference

in the CN which we predict computationally is con-
firmed by aCGH values. For each individual separ-
ately, we detected windows inside SDs, which we
computationally predicted to be of a different CN
than the reference Boxer sample. This difference
could be a duplication compared to Boxer, if the sam-
ple CN is predicted to be higher than in Boxer, or a
deletion compared to Boxer, if sample CN is lower
than Boxer’s. We assessed the accuracy in detecting
duplications and deletions separately, and calculated it
as percentage of windows, which we predict to be CN
different from Boxer, which have median aCGH above
or below the CUTOFF = ±0.2 respectively.

Diversity analysis
Our probabilistic method has enabled us to analyze for
the first time the fraction of CNV genome-wide and
compare it to SNP diversity. To avoid sample sizes
biases between dogs (n = 11) and gray wolves (n = 17),
we matched the number of individuals from either sub-
species by selecting a subset of 11 gray wolves based on
various criteria (Additional file 1: Table S3); the selection
of samples also ensured that only one gray wolf from
each population was used.
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SNP calling and overall SNP diversity
After mapping sequencing reads to the canine genome with
BWA [89], we used the CallableLoci tool of GATK [90],
with default parameters, to determine areas of the genome
that could be considered callable in each of the samples
used in the analysis of CNV. We then defined the “callable
genome” as the intersection of the callable regions across
all the individuals. In addition, we subtracted from the call-
able genome the X chromosome and mitochondrial DNA,
those regions that were masked in the version of the dog
genome assembly used here (see above) and 1-Kbps win-
dows with CN exceeding the sample-specific cutoff in at
least one sample (Additional file 1: Table S5). After indel re-
alignment we used the UnifiedGenotyper and VariantFiltra-
tion tools of GATK [90], with filtering parameters
suggested when Variant Quality Score Recalibration
(VQSR) is not available [91], to call SNP variants in the
total of 11 dogs and 11 gray wolves used in the analysis of
the genomic CNV proportion. For this analysis, however,
we only retained those variants within the final callable gen-
ome (Additional file 1: Table S5). We then split SNPs into
those seen in either dog or gray wolf samples and calcu-
lated, as a measure of overall SNP diversity, the number of
segregating sites in either subspecies divided by the number
of bps in the final callable, allowing for zero or two missing
alleles (Additional file 1: Table S5). We also calculated the
number of segregating sites per bps of callable using the
subset of 8 dogs and 8 gray wolves with raw coverage >7X.
We observed that the callable genome was greatly reduced
by including those samples with a lower raw coverage
(Additional file 1: Table S5). We therefore also performed
the SNP calling and calculated SNP diversity in the subset
of 8 dogs and 8 gray wolves with sequencing raw coverage
>7X (see Table 1). We generated bootstrap values for the
observed overall SNP diversity as follows: (i) partition the
callable genome into intervals of 1 Mbps (I); (ii) random
sampling with replacement of I intervals and re-calculated
the number of segregating sites divided by the length of the
callable genome.

Genomic fraction of CNVs
Within dogs and gray wolves separately, we identify
CNV windows as windows for which there are at least
two individuals with non-overlapping predicted CN in-
tervals. We measure variability within subspecies as per-
centage of variable windows among all the windows
inside duplicated regions. In either subspecies we ob-
tained an overall measure of CN variability as follows: (i)
subset 1-Kbps windows which lie inside duplicated re-
gions of a given subspecies (N); (ii) from those subset 1-
Kbp windows which are variable in a given subspecies;
(iii) generated bootstrap values by randomly sampling
with replacement N windows and re-calculating CN
variability, for a total of 5000 times.

To assess the patterns of variable CN across differ-
ent CN values, we divided all the duplications into
the CN bins. To each 1-Kbp window we assign a
value, which is average of median points of CN inter-
vals across individuals within subspecies. We further
created bins of absolute CNs in such a way, that each
bin contains at least 5% of the total number of dupli-
cated windows: low CN (mean CN = 2–4), medium
CN (mean CN = 5–15) and high CN (mean CN > 15).
We classified all the windows to the bins and
assessed the proportion of variable windows in each
of them separately for dogs and wolves. To control
for the high levels of noise in individual CN predic-
tions we assessed variability for regions comprising at
least 5 consecutive variable windows. As a separate
control, we excluded singletons from the variability
calls and required at least 2 individuals to belong to
each of the non-overlapping CN intervals (Fig. 2,
Additional file 1: Table S6).

Genes overlapping with genomic duplications and
enrichment analysis
We downloaded the 29,884 Ensembl gene models avail-
able for CanFam3.1 from the UCSC Genome Browser
[83]. Additionally, we considered as of higher confidence
those transcripts, 26,748 genes (89.51%), comprising at
least one exon present in the xenoRef set of positions syn-
tenic to exons in other species (n = 2,381,071), which was
downloaded from the UCSC Genome Browser [83]. These
transcripts were converted back to the gene coordinates
and only the total of N = 20,328 genes in autosomes were
considered for further analysis. For the gene enrichment
tests we only selected genes which were entirely covered
by duplications. We estimated the gene enrichment asso-
ciated p-values by the bootstrap. We performed 10,000
repetitions of shuffling duplications coordinates, while
keeping their true size and avoiding placing smaller dupli-
cations (<100 Kb) on gaps in order to generate an empir-
ical distribution of the expected overlap between genes
and SDs. The empirical p-value of the true observed value
was calculated by dividing the rank of the true observation
by the total number of permutations. The enrichment
analysis was performed using the elimination algorithm of
the TopGO R package [92], which scores GO terms hier-
archically and subtracts specific, significant terms from
the more global ones to avoid an overrepresentation of
the latter. This conditions the results of the recursive tests
on the topology of the gene ontology tree and reduces the
effect of multiple testing to a level where no further con-
ventional correction is required [93]. Instead, we refined
our result set with the browser tool REVIGO [94], which
implements semantic search algorithms in order to merge
closely related GO terms and extract the most significant
relations between them.
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Analysis of CNV differentiation between dogs and gray
wolves
In every 1-Kbps window we used CN predictions in dog
and gray wolf samples to calculate the VST statistic [51]
between the two subspecies. The VST statistic is a vari-
ation of the FST [95] to measure between-populations
differentiation in CNV regions:(VT - VS)/VT where VT is
the variance in the CN midpoints of all subspecies to-
gether, and VS is the weighted average of the variance in
CN midpoints for each subspecies separately. For
consistency with the analysis of CNV and SNP diversity
we calculated VST values between the same subsets of 11
dogs and 11 gray wolves (Additional file 1: Table S3).
We looked for genes with median VST > 0.15 between
dogs and wolves, which corresponds to the windows
with the top 10% of VST values. We focused on the genes
with more than 3 copies in dogs while less than 3 copies
in wolves (Additional file 1: Table S9).
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