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Abstract

Background: Expression screening of environmental DNA (eDNA) libraries is a popular approach for the identification
and characterization of novel microbial enzymes with promising biotechnological properties. In such “functional
metagenomics” experiments, inserts, selected on the basis of activity assays, are sequenced with high throughput
sequencing technologies. Assembly is followed by gene prediction, annotation and identification of candidate genes
that are subsequently evaluated for biotechnological applications.

Results: Here we present A-GAME (A GAlaxy suite for functional MEtagenomics), a web service incorporating state of
the art tools and workflows for the analysis of eDNA sequence data. We illustrate the potential of A-GAME workflows

using real functional metagenomics data, showing that they outperform alternative metagenomics assemblers.
Dedicated tools available in A-GAME allow efficient analysis of pooled libraries and rapid identification of candidate
genes, reducing sequencing costs and saving the need for laborious manual annotation.

Conclusion: In conclusion, we believe A-GAME will constitute a valuable resource for the functional metagenomics

community.
A-GAME is publicly available at http://beaconlab.it/agame
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Background

Natural ecosystems are home to an almost limitless
range of bacteria that have evolved to thrive in often
hostile environments. The metabolism and biochemistry
of these organisms, underpinned by their genomic
sequences, represent a potentially invaluable source of
novel biocatalysts and antibiotics with useful physical
characteristics.

To partially mitigate difficulties in isolating and
obtaining clonal cultures of novel bacteria from extreme
environments, many published studies have employed
heterologous expression of genes encoded in environ-
mental DNA (eDNA) expression library inserts to
identify (and subsequently sequence) genetic loci encoding
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activities of interest. Novel cellulases, lipases, esterases,
proteases, laccases, oxidoreductases, biosurfactants and
antibiotics have been sought through such “functional
metagenomics” approaches [1, 2]. Much effort has been
dedicated to improving heterologous expression screens
for eDNA libraries. Indeed, strategies for the selection and
modification of heterologous strains [3-5], the choice of
optimal cloning vectors for heterologous expression of
single gene activities [6], and the random insertion of lab
strain-compatible transcriptional and translational signals
in eDNA [7, 8] have all been proposed and extensively
reviewed elsewhere [9—-14].

Automation of expression and screening steps,
together with the advent of Next Generation Sequencing
(NGS) technologies has vastly increased the potential
throughput of functional metagenomics projects,
wherein assembled insert sequences are subjected to
gene prediction and annotation to identify candidate loci
underlying the activities selected through heterologous
expression screening.
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Assembly of functional metagenomics sequence data
should not, in principle, present a particular challenge.
Coverage depth is typically high and levels of sequence re-
dundancy within relatively short (typically <45kbp) inserts
are expected, in general, to be low. Indeed, costs associated
with sequencing can be further reduced by sequencing li-
braries of pooled inserts [15-17]. Lam et al. used pooled
and individually sequenced inserts to provide a detailed
evaluation of this approach [16], demonstrating that many
inserts could be completely or almost completely assem-
bled in one or two fragments and assigned to their clones
of origin through Sanger sequencing of the original insert
ends (end-tag sequencing). However, in some cases, more
fragmented assemblies emerged as a result of low sequence
coverage or other systematic biases.

While assembly strategies optimized for single ge-
nomes or whole genome shotgun (WGS) metagenomics
projects might be expected to perform comparably with
functional genomics sequence data, the requisites of
downstream analyses steps differ greatly between single
genome, shotgun metagenomics, and functional metage-
nomics studies.

Here we present A-GAME (A GAlaxy suite for functional
MeEtagenomics) a powerful and flexible web service imple-
mented within Galaxy [18, 19], a general bioinformatics
workflow management system that allows the incorpo-
ration of most widely used bioinformatics tools and can be
used - even by those lacking programming experience - to
build and customize bioinformatics workflows. A-GAME
incorporates pre-designed workflows that utilize standard
tools for data pre-processing, sequence assembly and anno-
tation; as well as custom utilities dedicated to the analysis
of functional metagenomics data. The latter include FosBin,
a tool to cluster contigs representing incomplete inserts
into groups deriving from single clones, as well as instru-
ments for the synthesis of annotation results - to assist in
candidate gene identification and prioritization.

We show, using a real pooled insert functional metage-
nomics dataset, that preconfigured workflows offered in A-
GAME outperform metagenomics assembly pipelines such
as MOCAT?2 [20] and parallel- META2 [21] in terms of
overall quality and completeness of assembly and annota-
tion. Furthermore, we illustrate the use of custom utilities
in A-GAME for the identification and prioritization of
genes of interest. We suggest that A-GAME will constitute
a valuable resource for the functional metagenomics
community.

A-GAME is publicly available at http://beaconlab.it/
agame

Implementation

Typical genome assembly and annotation pipelines can
be divided into pre-processing, contig assembly, post-
processing and annotation phases. A-GAME, which is
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based on Galaxy release 16.07, follows this convention
and provides access to some of the most popular
publicly available tools for these tasks as well as featu-
ring a series of ad-hoc custom utilities and scripts for
data integration and visualization.

Various combinations of quality trimming and read-
merging tools can be employed and sequence data can
be screened against Univec, genomes of host strains
employed, phiX174, and other databases to eliminate
reads deriving from expression vectors, adapters,
sequencing reaction spike-ins and other possible sources
of contamination prior to assembly. MEGAHIT and
MetaVelvet (which were developed for metagenomic
data) as well as SPAdes are among the short-read assem-
blers available through A-GAME. A selection of scaf-
folding tools can be employed to improve initial
assemblies.

Single pass Sanger “end-tag” sequencing [16, 17] can
help validate the quality of assemblies and facilitate the as-
sociation of 2 contigs representing the termini of a single
insert to each other and to the insert of origin. A-GAME
provides a custom, BLAST-based, utility that automates
this operation and assigns end-tag-containing contigs to
appropriate clusters.

A further tool, FosBin (see below), employs the K-means
clustering algorithm to partition the assembled contigs
into the expected number of clusters (number of pooled
inserts) based on simple compositional (tetranucleotide
frequencies) and coverage (average coverage calculated on
windows of 500 bp) metrics - facilitating re-assignment of
contigs representing incomplete inserts to their clone of
origin. Fosbin can be used in conjunction with the Sanger
end-tag sequencing assignment method.

Gene models can be predicted with Glimmer, Meta-
GeneMark, Prodigal (as incorporated into Prokka) or
Augustus. Functional annotations can be generated by
PFAMScan. A custom tool integrates annotation informa-
tion into feature rich files containing inferred protein se-
quences, concise functional descriptions, and hyperlinks
to PFAM entries for detected domains. This output can
be queried and filtered by users to retrieve sequences of
interest. Selected proteins can be subjected to more
comprehensive/thorough functional annotation using the
InterPro suite, and compared with the nr database using
remote BLASTP or with a local database of over 2500
refseq bacterial proteomes.

A complete list of tools and databases incorporated in
A-GAME is shown in Table 1. Further details of custom
tools which are made publicly available through Galaxy
main tool shed, their deployment in Galaxy and com-
parisons with existing tools are provided in Additional
file 1. A detailed guide to the use of standard and
custom facilities in A-GAME is incorporated in a user
manual available from the A-GAME homepage.
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Table 1 List of bioinformatics tools and resources currently
incorporated within A-GAME

Quality Trimming

Tool Reference
FastQC [30]
Pear [31]
Flash (32]
Trimmomatic [33]
FastX [34]

Assembly
Megahit [35]
SPAdes (36]
Abyss (37
Velvet [38]
Meta-Velvet (39]
Meta-SPAdes [40]

Gene prediction
Glimmer [41]
Augustus [42]
Prokka (Prodigal) [43]
Metagenemark [28]

Functional annotation
Interpro (44]
PFAM [45]
Blast + suite [46]

Short read mapping
Bowtie2 [47]
bwa (48]

Scaffolding
SSpace [23]
Sopra [49]

Results

Evaluation of standard workflows using pooled eDNA
insert sequencing data

It is widely accepted that “optimal” data pre-processing
and assembly strategies differ between individual se-
quencing datasets. Accordingly, a series of 5 workflows
encompassing pre-processing (quality trimming and read
pair merging), assembly, gene model prediction and
functional annotation were created using the Galaxy
workflow editor in A-GAME (Fig. 1).

To evaluate the performance of these pipelines, we
utilized published data from pooled and individual
high throughput sequencing of 92 functional metage-
nomics expression library inserts [16]. Data for
individually sequenced inserts (SRA accessions
SRX375037 — SRX375128) where subjected to con-
taminant removal (against E. coli DH1, cosmid vector
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pJC8 and pRK7813 and hg38 reference assembly of
the human genome sequence) and assembly with
pipeline F1, employing the SPAdes assembler which is
optimized for the assembly of small single genomes.
In accord with the earlier work of Lam et al. [16],
low sequencing coverage prevented useful assembly of
15 clones, while no end-tags were available for 4
other inserts. Lam et al. previously generated 2 end-
tags for 61 of the remaining clones and a single end-
tag for the remaining 12. We note that 3 successfully
sequenced inserts represent overlapping loci derived
from a single genome. As such these are expected to
assemble as a single insert from pooled data and are
accordingly treated herein as a single, merged, contig.
Individual assembly of these 71 non-redundant clones
for which end-tag Sanger sequences are available,
yielded a single contig with the correct end-tags
situated at both termini for 40 out of a possible 59)
inserts, while 10 out 12 for which a single end-tag
was available, allowed assembly of a contig with one
expected terminal sequence. An additional 6 clones
were identified in the form of 2 incompletely assem-
bled insert fragments containing distinct terminal
sequences matching the appropriate tags, while 11
assemblies allowed the identification of just a single,
terminal end tag. Notwithstanding removal of possible
contaminant sequences total size of individual assem-
blies of Lam et al. barcoded data, largely exceeded
the nominal size of e-DNA insert (average nominal
size=33 Kb, average assembly size=97 Kb, see
Additional file 2: Figure S1 for a comparison of insert
size distributions). In all cases assembled contigs did not
show significant levels of similarity (average identity =
37%) with any of the possible known contaminant se-
quences, including vectors used for library construction,
the host genome (E. coli DH1) and the human genome,
thus suggesting widespread contamination of the libraries.
For such reasons only the 67 complete and partial
assemblies confidently assigned to end-tags (77 contigs,
N50 = 36,113, total length = 229,845 nt) were subsequently
used as a reference set to evaluate assemblies from pooled
sequencing data (for a schematic description of these
assemblies see Fig. 2).

Sequence data (SRA accession SRX367531), obtained by
Lam et al. by pooling the 92 inserts prior to library
construction and sequencing, were then assembled and
annotated using the five pre-configured workflows
provided with A-GAME as well as by two published meta-
genomics assembly and annotation pipelines MOCAT?2
[20] and Parallel-META?2 [21] (see Additional file 1).

The quality and completeness of each pooled assembly
(as well as those generated by Lam et al. from the same
data) was evaluated by comparison to the single insert
reference assemblies using a series of metrics including:
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Fig. 1 Schematic of workflows for the analysis of metagenomic eDNA data available in A-GAME. Bioinformatics analysis of functional metagenomics data
requires pre-processing of raw data, sequence assembly and post-processing of contigs, gene model prediction and functional annotation. A-GAME offers
4 pre-configured workflows, Fosmid1 to Fosmid4, that automate all the steps of the analysis and differ only through the combination of tools used.
Schematic of the 4 workflows are represented in the form of flow diagrams, tools used to perform individual steps are reported in red
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Fig. 2 Re-assembly of barcoded sequence data from Lam et al.. dataset. Assemblies of bar-coded sequence data from Lam et al. were used to
evaluate results achieved by different tool and pipelines in the analysis of pooled sequencing data. Of the 92 clones subjected to individual
sequencing by Lam et al. [16] showed lack of coverage or absence of end tags sequences and were therefore discarded from these analyses. Of
the 61 inserts for which sequencing information for both “end-tags” was available (‘complete”, Indicated in black), 46 were matched correctly to
both ends (Fully assigned), 11 were matched with only 1 out of 2 ends (Partially assigned) and 2 did not show any similarity to available insert
termini sequences. Of the twelve clones for which only “partial” (single end-tag, indicated in red) sequencing information is available ten were
recognized and assigned with the proper end tag while 2 are missing. Only assigned and partially assigned contigs were included in the

benchmark dataset used for the evaluation
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1) The number of complete inserts with both Sanger
end reads incorporated,

2) The number of inserts where both end-tags were
detected at the termini of separate contigs,

3) The number of inserts for which only one end-tag
was available and was found at the end of a contig,

4) The number of inserts for which only one of two
end-tags was identified at the terminus of a contig,

5) Total size of end-tag containing contigs,

6) N50 of end-tag containing contigs,

7) Percentage of reference assembly represented in
end-tag containing contigs,

8) Percentage of proteins annotated on the reference
assemblies that provided reciprocal best BLAST
matches to proteins annotated in each pooled
assembly,

9) Computational resources employed (run time and
peak RAM usage).

Summary statistics (Table 2) indicate that A-GAME
workflows Fosmidl (F1), Fosmid5 (F5) and Fosmid3
(F3) -which incorporate SPAdes, metaSPAdes and
MEGAHIT respectively as assemblers- out-performed
all other evaluated approaches with the current data.
Unsurprisingly the F1 (based on SPAdes) and F5
(based on metaSPAdes) workflows, which are based
on the same preprocessing strategy and similar short
reads assembler programs (metaSPAdes is a version of
the SPAdes program optimized for metagenomics as-
sembly) attained nearly identical results, suggesting,
that due to the generally low number of discrete and
relatively small sequences that are usually pooled in
one experiment, assembly and annotation eDNA
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inserts pools does not seem to benefit from sophisti-
cated algorithmic approaches that are usually applied
for de-novo assembly of high complexity metage-
nomics samples. Therefore, from here onward, we will
refer to F1 and F5 as a single assembly pipeline: F1/5.
F1/5 recovered a larger number of complete insert se-
quences with two terminal end-tags than F3, despite
the observation that F3 assembled a larger proportion
of the reference assembly as contigs with at least one
terminal end-tag. This discrepancy is likely related to
the fact that MEGAHIT, optimized for metagenomics
assembly, excludes low frequency k-mers from the
assembly graph (in order to constrain graph comple-
xity), but uses additional heuristics to resolve assem-
bly graph bubbles. MEGAHIT thus maximizes
contiguity of assemblies in the presence of repetitive
regions, but is highly sensitive to regions of low se-
quence coverage. MOCAT?2 [18] vyielded assemblies
that were comparable to those initially generated by
Lam et al. (both employ SOAPdenovo [22]), while
workflow F2 outperformed Parallel-META2 despite
both employing Velvet as assembler. Parallel-META2
provides a version of Velvet where only short k-mers
may be used in De-Bruijn graph construction, produ-
cing sub-optimal assembly in the presence of short
repeats when high sequence coverage is available, as
in typical functional metagenomics data.

While we did not observe marked differences in com-
putational requirements between all the pipelines tested
in the course of the current study, we notice that the
Fosmid3 workflow, which is based on the MEGAHIT
metagenomics assembler, resulted to be the most
efficient in terms of computational demands, achieving

Table 2 Comparison of workflows for the assembly and annotation of eDNA insert data using Lam et al. [16] pooled inserts

Insert assignment based on end-tags Completeness Computational
requirements
Complete® 20f2 1of1  Partial® % assembled® % of reference  Assembly ~ CPU time (h)  RAM peak (Gb)
ends®  ends* proteins’ N50

original assembly 40 6 10 11 100.00 100.00 36,113 NA NA
SPAdes (F1) 34 13 9 " 88.16 86.35 34,329 2.03 53
Velvet (F2) 18 27 10 12 66.58 64.79 32,942 1.67 6.61
MEGAHIT (F3) 30 19 8 10 95.14 9213 34,446 1.21 322
MetaVelvet (F4) 19 26 9 13 74.64 73.38 33,150 1.75 7.01
meta-SPAdes (F5) 34 13 9 1 88.16 86.35 34,329 203 53
MOCAT2 19 27 8 13 67.62 65.92 25,246 191 451
Parallel META2 12 34 6 15 4048 37.87 26,408 2.36 3.1
Original from LAM et al 19 28 7 13 7247 69.97 33,347 NA NA

“Insert assembled into a single contig matching both end tags

PInserts assembled into multiple contigs, both end tags are assigned

“Inserts for which only a single end tag is available and gets assigned

9Inserts for which both ends are available but only one is assigned

€Percentage of reference assembly represented in the pooled assembly

fPercentage of proteins from the reference assembly recovered in the pooled assembly
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both the most rapid execution times and least usage of
RAM memory. This is probably due to heuristics applied
by MEGAHIT to discard low coverage data resulting in
a more compact and easy to navigate assembly graph.
F1/5 required the longest execution time among the
workflows implemented in A-GAME, the differences
however are in large part due the error correction of
reads performed by SPAdes requiring approximately
35 min. Mocat-2 requirements were very similar to F1/5,
while parallel- META2 was slightly more demanding
both in terms of execution times and memory usage.

Scaffolding contigs using Paired-End sequence data,
SSPACE [23] was unable to improve any assemblies
from the current data, principally due to the small insert
sizes of the current libraries (mean insert size =285 bp).

The highly significant correlation between percentage
of reference assembly recovered in end-tagged contigs
and the percentage of “reference proteins” annotated
(R* =0.98, p-value = 1.096e-07) strongly suggests that
contiguity of assembly - rather than fundamental diffe-
rences in annotation quality by different methods — de-
termines reference protein discovery in this experiment.

Equivalent comparative analyses of the workflows per-
formed on simulated datasets (see Additional file 1 and
Additional file 3: Table S3) are highly consistent with
our main finding suggesting that, notwithstanding the
satisfactory results achieved by all the pipelines, the F1/
F5 workflow (or equivalent workflows based incorpora-
ting SPAdes or metaSPAdes) should represent suitable
starting points for the assembly of eDNA insert data
within A-GAME.

The FosBin tool

Several tools have been developed to group, or bin,
WGS metagenomics contigs into candidate “single
genome” clusters [24—27]. Such methods typically rely
on the relative frequencies of short k-mers in assembled
contigs, the depth of sequencing coverage and the as-
sumption that a “complete” genome sequence should
contain a set of “core” genes. While in WGS metage-
nomics the “core genes” approach can be used both to
establish the optimal number of clusters into which the
meta assembly should be partitioned and to assist in the
allocation of contigs to bins, it is fundamentally inappro-
priate for eDNA insert sequences where a complete set
of core genes is unlikely to be present in each sub-
genomic insert. We have implemented an alternative
method (named FosBin, see methods), which uses K-
means clustering (as implemented in the R library
Cluster) of tetranucleotide frequencies and k-mer
coverage values (extracted from the output of each of
the included assemblers) for each contig. FosBin is
available in A-GAME and is included in the A-Game
package available in the main Galaxy toolshed.
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We simulated datasets representing incomplete assem-
blies of 8, 12 or 18 pooled inserts by randomly selecting
inserts with 2 associated end-tags from barcoded assem-
blies of the Lam et al. data described above. The inserts
in each pool were randomly fragmented into 2, 3 or 5
contigs, whose k-mer coverage values were calculated by
re-mapping reads derived from Lam et al. pooled
sequencing experiment to the fragmented contigs. Each
combination of pool size and fragmentation was inde-
pendently simulated 100 times and resulting pools were
subjected to clustering using FosBin. We evaluated
sensitivity (the proportion of contigs assigned to a
cluster containing at least one other contig from the
same insert), and specificity (the proportion of clusters
containing only sequences from the same insert). Results
(Table 3) suggest that while the majority (c. 90%) of clus-
ters recovered by FosBin consist of contigs from single
inserts, a proportion of fragments are consistently reco-
vered in clusters lacking other contigs from the same in-
sert. Evaluation of the characteristics of” correctly” and
“incorrectly” clustered contigs indicated that the latter
were significantly shorter than the former (typically less
than 2Kb in length) and exhibited lower coverage than
correctly clustered contigs (Additional file 4: Figure S2).

A further simulation, wherein coverage values for each
insert were randomly multiplied by 2, 4, 8 or 16 — in order
to simulate greater variety of sequencing depth between
inserts — resulted in improved sensitivity and specificity
(Table 3, and see discussion).

Tools for functional annotation

Annotation and characterization of predicted proteins
for the identification of candidate genes with enzymatic
activities of interest from metagenomis eDNA screen re-
quires careful annotation of predicted ORFs and identifi-
cation of their functional domains. This process is often
performed manually and requires a substantial amount
of work, possibly including similarity searches against
curated collections of prokaryotic proteins. A-GAME of-
fers dedicated tools and resources that can assist in the
functional annotation of predicted ORFs saving the need
for laborious manual work.

A comprehensive yest simple report of PFAM domain
annotations for the predicted proteins can be generated
using the dedicated custom tool in A-GAME. The report
consists of a fasta-like html page, where protein se-
quences are reported with corresponding PFAM do-
mains and a concise, textual, description retrieved
directly from the PFAM database by parsing the “pfa-
mA.txt” file (ftp:.//ftp.ebi.ac.uk/pub/databases/Pfam/re-
leases/Pfam31.0/Pfam-A.full.gz). Hyperlinks to PFAM
are included in the report to facilitate the retrieval of
additional information regarding domain activity and
structure. For datasets where contig clustering (FosBin)
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Table 3 Sensitivity and specificity of the FosBin tool with real coverage and simulated coverage levels

Real coverage

Simulated coverage

N° of fosmids® N° of fragments® Sensitivity Specificity Sensitivity Specificity
8 2 0.748 0.874 0.808 0.904
8 3 0.766 0922 0.822 0.941
8 5 0713 0.943 0.779 0.956
12 2 0.717 0.858 0.782 0.891
12 3 0.726 0.909 0.790 0.930
12 5 0.701 0.940 0.769 0.954
18 2 0.656 0.828 0.730 0.865
18 3 0.635 0.878 0.711 0.904
18 5 0.589 0918 0670 0934

#Number of inserts included in the simulated pool
PNumber of distinct fragments generated from each insert

or Sanger end-tag data are available, annotation of each
inferred cluster is reported in a dedicated html page. Users
can navigate through individual reports using hyperlinks
provided at the top of the main page. Moreover, proteins
containing functional domains of interest can be retrieved
by performing keyword searches of PFAM domain de-
scriptions. Multiple keywords can be specified and com-
bined using the logical connectors, AND, OR and NOT.

Selected proteins can be subjected to more thorough
functional annotation of protein domains using the Inter-
Pro suite [28]. Sequences similarity searches of predicted
OREFs against the non-redundant protein database [29] or
a local database of over 2500 refseq bacterial proteomes
can be performed, by the means of BLASTP, in order to
refine the annotation and assess the similarity with
“known” proteins. An example of a workflow for the func-
tional annotation and characterization of proteins of inter-
est is provided in Fig. 3, where we demonstrate the
retrieval of clones selected for kanamycin resistance from
the Lam et al. dataset.

Discussion

The advent of high next generation DNA sequencing
(NGS) technologies and the associated reduction in
sequencing costs has contributed to the development of
functional metagenomics approaches for the identifica-
tion of genes and biosynthetic pathways with potential
for biotechnological exploitation. However, analyses of
NGS sequencing data can be complex and time-
consuming and typically requires specialist intervention
by bioinformaticians. At the present time, we are
unaware of tools or pipelines specifically developed for
the analysis of functional Metagenomics sequence data,
while available shotgun metagenomics software tools
typically lack a graphic user interface and exhibit limited
potential for customization.

Here we have introduced A-GAME, a Galaxy web ser-
ver that provides selected tools and pre-configured
workflows for the assembly and annotation of eDNA
sequence data. We demonstrate the application of A-
GAME to a real case study, illustrating its improvement
over classical metagenomics pipelines for the assembly
and annotation of functional metagenomics data. We
show that FosBin, a simple tool to group contigs from
incompletely assembled inserts, performs well for the
assignment of longer contigs (>c. 2 kb) indicating that,
in conjunction with Sanger end-tags, it can be used to
assist in predicting the clonal origin of incompletely
assembled inserts.

Depending on the scale and objectives of functional
metagenomics projects, several aspects of the experi-
mental execution as well as design of the sequencing
strategy might be exploited to further improve assembly
results. Even where measures to screen contaminant se-
quences are employed, the assembly process benefits
from high purity of DNA sequencing templates. Indeed,
even in the single insert assemblies generated here from
the barcoded sequencing of Lam et al. we observed the
assembly of contigs originating from contaminants of
both bacterial and non-bacterial origin. As well as com-
plicating assembly, such contaminants detract from the
accuracy of estimates of insert concentration for library
production and mixing. Analogously, accurate informa-
tion regarding the number of pooled inserts is important
for FosBin which requires a-priori specification of the
number of clusters to generate. While this last assertion
might seem obvious, we note that several of the bar-
coded libraries generated by Lam et al. likely contain
multiple eDNA inserts (Additional file 2: Figure S1).
Taken together, these considerations underline the fact
that the most sophisticated assembly and annotation
methods are constrained by the quality of the data
provided. We further note that artificially increasing the
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discrepancy between sequencing depths of distinct in-
serts has a positive effect on the capacity of FosBin to
accurately cluster incompletely assembled inserts. In this
light we suggest that, given high purity template DNA,
Sanger sequences from insert ends might be used to esti-
mate GC content of individual inserts and manipulate
concentrations of inserts during library construction,
such that inserts with similar composition are less likely
to share similar coverage.

Conclusions

In summary, we have shown both that choice of
preprocessing and assembly steps can greatly influ-
ence the quality of assembly and annotation of pooled
insert sequence data and that preformatted workflows
in A-GAME outperform pipelines designed for
shotgun metagenomics in this context. A-GAME also
provides dedicated tools for clustering of non-
contiguously assembled inserts and exploration of
functional annotations; facilitating identification,
prioritization and isolation of candidate genes for
biotechnological exploitation. Accordingly, we believe
A-GAME will constitute a valuable resource for the
functional metagenomics community.
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