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Abstract

Background: Bifidobacterium breve represents a common member of the infant gut microbiota and its presence in
the gut has been associated with host well being. For this reason it is relevant to investigate and understand the
molecular mechanisms underlying the establishment, persistence and activities of this gut commensal in the host
environment.

Results: The assessment of vegetative promoters in the bifidobacterial prototype Bifidobacterium breve UCC2003 was
performed employing a combination of RNA tiling array analysis and cDNA sequencing. Canonical −10 (TATAAT) and
−35 (TTGACA) sequences were identified upstream of transcribed genes or operons, where deviations from this
consensus correspond to transcription level variations. A Random Forest analysis assigned the −10 region of B. breve
promoters as the element most impacting on the level of transcription, followed by the spacer length and the 5’-UTR
length of transcripts. Furthermore, our transcriptome study also identified rho-independent termination as the most
common and effective termination signal of highly and moderately transcribed operons in B. breve.

Conclusion: The present study allowed us to identify genes and operons that are actively transcribed in this organism
during logarithmic growth, and link promoter elements with levels of transcription of essential genes in this organism. As
homologs of many of our identified genes are present across the whole genus Bifidobacterium, our dataset constitutes a
transcriptomic reference to be used for future investigations of gene expression in members of this genus.
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Background
The development of Next Generation Sequencing (NGS)
technologies has facilitated a genome-wide view of the
transcriptional activities of an organism. The
microarray-based technology for transcriptome analysis,
which until recently was the tool of choice when asses-
sing global transcription patterns of a given organism,
has in recent years gradually been replaced by the alter-
native, NGS-based RNA-Seq approach [1].
Transcription levels in bacteria may vary considerably

from gene to gene, and may also vary in response to
(changes in) environmental conditions. In this context a

key role is played by the RNA polymerase (RNAP) which
is responsible for gene transcription. However, to initiate
transcription RNAP requires (reversible) association
with a sigma subunit (this complex is called the RNAP
holoenzyme) in order to recognize the promoter se-
quence at two conserved DNA sequences that are lo-
cated approximately 10 and 35 bp upstream of the
transcriptional start site (TSS) [2, 3]. Once promoter
recognition and transcription initiation has occurred, the
sigma factor is released and RNAP (then referred to as
RNAP core enzyme) proceeds with transcription.
In well characterized bacteria (such as Escherichia coli

and Bacillus subtilis) several different sigma factors (be-
tween 7 and 10) have been identified, being responsible
for global modulation of transcriptional patterns in re-
sponse to changing growth conditions and environmental
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challenges [4, 5]. Extensive studies performed in E. coli
have employed RNA sequencing (RNA-Seq) to identify
and assess promoters recognized by the vegetative sigma-
70 or RpoD sigma factor, which is responsible for tran-
scription of housekeeping genes active during the expo-
nential growth phase [3]. Transcription of such
housekeeping genes is directed by constitutive promoters,
which do not normally depend on particular transcription
factors (TFs), and which consist of sequences that exhibit
a high level of conservation [6].
Transcription termination in bacteria is caused by one

of two principal mechanisms: i) rho-dependent transcrip-
tional termination, which requires the presence of a stem-
loop mediated pause site and the termination factor rho,
and ii) rho-independent transcriptional termination,
which involves a stem-loop structure followed by a poly-T
sequence [7, 8]. Rho-independent transcriptional termin-
ation signals can be predicted by particular on-line tools
such as ARNold, which employs RNAMotif and Erpin
tools (http://rna.igmors.u-psud.fr/toolbox/arnold/) [9].
Bifidobacteria enjoy an ever increasing scientific inter-

est due to the purported beneficial effects they elicit on
their (human) host [10]. However, these gut commensals
have remained relatively unexplored until recently due
to their strict anaerobic metabolism and recalcitrance to
genetic investigations [11, 12]. In order to investigate
genetic features responsible for successful adaptation of
bifidobacteria to the gut environment, we have used Bifi-
dobacterium breve UCC2003 as a bifidobacterial proto-
type which has now become one of the most intensely
characterized strains from a functional genomics per-
spective. Recently, genes have been identified which are
essential for normal vegetative growth of this particular
strain by employing a so-called TraDIS approach, which
utilizes a mutant library of random Tn5 insertions com-
bined with NGS to map the Tn5 insertion locations [13].
This study showed that the identified essential genes do
not only represent housekeeping genes that constitute
(part of ) the core-genome, but that they may also repre-
sent non-conserved, strain-specific functions.
In the current study, we determined the global tran-

scriptome of exponentially growing B. breve UCC2003
cells using two different approaches involving strand-
specific tiling arrays and RNA-Seq analyses. The data
generated from these analyses facilitated an in-depth in-
vestigation of the (vegetative) transcriptional landscape
of this strain and reveal the principal features respon-
sible for transcriptional initiation in this strain.

Methods
Array design and data analysis
Array probes that were 60 bp in length and overlapping
with a 22 nt sliding window were designed across the
forward and reverse strand of the B. breve UCC2003

genome sequence. In this manner an array containing a
total of 230,722 probes (115,361 for either DNA strand)
were obtained from Agilent Technologies and used for
this study. Probes designed on known housekeeping
genes, i.e. dnaA, dnaN, recF, gyrB and gyrA [14], were
used as hybridization controls for the arrays.
An overnight culture of B. breve UCC2003 was inocu-

lated into 2% glucose MRS (Difco) medium, grown until
mid-log phase (at which point an OD600nm value of ap-
proximately 0.5 had been achieved) and harvested by
centrifugation. Cell disruption followed by DNA/RNA
isolation was performed as described in a previous study
[15]. A total of 5 μg of bifidobacterial gDNA constituting
the baseline was labelled with Cy3 (green channel) as
previously described [15], with the following modifica-
tions. Prior to labelling, RNAse was removed using phe-
nol/chloroform extraction followed by ethanol
precipitation. Bacterial RNA was directly labelled follow-
ing isolation without cDNA synthesis with Cy5 (red
channel) using the Kreatech Agilent RNA labeling kit
EA-023. Labelled gDNA and mRNA were then hybrid-
ized employing the Agilent Gene Expression
hybridization kit (5188–5242) as described in the Agilent
manual, Two-Color Microarray-Based Gene Expression
Analysis (v4.0) (publication no. G4140–90050). Follow-
ing hybridization, the arrays were washed and scanned
using Agilent’s G2565A DNA microarray scanner. The
obtained results were processed with Agilent’s Feature
Extraction software (version 9.5) and further analysed
with the Limma package in Bioconductor (https://
www.r-project.org/) [16].
Background correction of raw data was performed

using the convolution model (normexp + offset method
in Limma) and a linear model with empirical Bayes sta-
tistics was employed to fit the log ratios and retrieve the
highly expressed probes (mRNA) compared to the base-
line (gDNA), as from the relative manual (https://
www.bioconductor.org).

RNA-Seq experiment
Total RNA was isolated from B. breve UCC2003 cultures
grown in MRS (Difco) following the same protocol as
mentioned above for the tiling array experiment. The
obtained cell pellet was resuspended in 1 ml of QIAZOL
(Qiagen, United Kingdom) and placed in a tube contain-
ing 0.8 g of glass beads (diameter, 106 μm; Sigma). The
cells were lysed by shaking the mix on a BioSpec
homogenizer at 4 °C for 2 min (maximum setting). The
mixture was then centrifuged at 12,000 rpm for 15 min,
and the RNA-containing upper phase was recovered.
RNA was further purified by phenol extraction and etha-
nol precipitation [17]. Quality and integrity of the RNA
was checked by the Tape station 2200 (Agilent Tech-
nologies, USA) analysis. RNA concentration and purity
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were evaluated by Picodrop microlitre Spectrophotom-
eter (Picodrop, UK).
For RNA sequencing, 2.5 μg of total RNA was treated

by the Ribo-Zero Magnetic kit (Illumina) to remove
ribosomal RNA, followed by purification of the rRNA-
depleted sample by ethanol precipitation. RNA was fur-
ther processed according to the manufacturer’s instruc-
tions. The yield of rRNA depletion was checked by Tape
station 2200 (Agilent Technologies). Then, 400 ng of the
rRNA-depleted RNA sample was fragmented using a
Bioruptor NGS ultrasonicator (Diagenode, USA)
followed by size evaluation using Tape station 2200 (Agi-
lent Technologies). A whole transcriptome library was
constructed using the TruSeq Stranded RNA LT Kit
(Illumina). Samples were loaded into a Flow Cell V3
150 cycles (Illumina) as reported by the technical sup-
port guide. The reads were depleted of adapters, quality
filtered (with overall quality, quality window and length
filters) and aligned to the Bifidobacterium reference gen-
ome through BWA [18]. Counting of reads whose se-
quences correspond to ORFs was performed using
HTSeq (http://htseq.readthedocs.io/en/release_0.9.1/)
and analysis of the RPKM values was performed using
the formula RPKM= numReads/(geneLength/1000 ∗
totalNum-Reads/1,000,000) [19].

Identification of promoters and transcriptional
terminators
In order to define a transcriptional unit (TU) in B. breve,
transcriptional start sites (TSSs) and termination sites
(TTSs) were deduced from the combination of tiling ar-
rays and RNA-Seq data. Array probes were first aligned to
the full nucleotide sequence of B. breve UCC2003 (Gen-
bank: NC_020517) using BLAT aligner [20] with masking
of highly repeated regions (IS elements and transposases)
so as to obtain start and end coordinates of each probe
mapped to the B. breve UCC2003 genome. For each
expressed gene or operon the start and end coordinates of
the transcript were obtained from the first to the last base
position from probes that elicit significant hybridization
signals (Limma computed FDR p-value of 0.0001) at
which mRNA signal discriminates from the gDNA base-
line and compared to the RNA-Seq mapped reads. In the
case of RNA-Seq transcriptional starts and ends were de-
fined at the first and last base of reads where an increase
or drop in sequence coverage was observed. The best fit
to a canonical −10 and −35 promoter sequence in B. breve
was first searched using Meme Suite (http://meme-sui-
te.org/) over a region of 62 bp upstream of the TSS of a
training set of 75 high/medium level transcribed house-
keeping genes. The obtained predicted canonical pro-
moter was then used to compile a promoter list for the
remaining transcribed genes using a combination of
Meme (http://meme-suite.org/) and manual annotation in

Artemis (http://www.sanger.ac.uk/science/tools/artemis).
All manually annotated promoters were first re-aligned
with Meme to ensure that −10 and −35 were detected at
their optimal position.
Rho-independent transcriptional terminators were first

predicted using ARNold [21] and manually refined compar-
ing tiling arrays signals and RNA-Seq alignment in Artemis
(http://www.sanger.ac.uk/science/tools/artemis). Where ap-
propriate, additional terminators to the ones predicted
above were included following a manual search for the
presence of polyT stretches downstream of putative stem-
loop structures at the end of transcripts.
Parameters associated with the predicted promoter se-

quences were first retrieved and stored in variables to be
used as classifiers in Random Forest (RF) analysis. Infor-
mation contained in these classifiers was extracted from
the promoter region (from 24 bp upstream of the −35
sequence, to 9 bp downstream of the −10 sequence)
resulting in a 62 basepair region (on average), which was
manually aligned with the predicted transcription start
and the −10 and −35 regions. Random forest (RF) ana-
lysis was then performed using the RandomForest v4.6–
10 package in R (https://cran.r-project.org). Random for-
est classification was performed to identify signature
classifiers for discrimination of not-expressed, low,
medium and highly expressed genes. This classification
model, consisting of 5000 decision trees was trained on
random subsets of properties and sequences of promoter
regions of expressed genes and 270,000 promoter-sized
kmers in the intergenic region of B. breve UCC2003 (ex-
cluding the promoters) as negative control. The classi-
fiers chosen for RF were: spacer length (bp), leader
length (distance between promoter and start of the
gene), AT % of the −35 upstream region, AT % of the
−35 signal, AT% of the spacer, AT % of the −10 region
and AT % of the −10 downstream region and all aligned
bases in the 62 bp promoter region. Three classes were
chosen based on the differential hybridization level be-
tween mRNA signal vs gDNA baseline: high (>10 fold),
medium (3 < 10 fold) and low (<3 fold) level of
transcription.

Matching predicted core and/or essential genes with
transcriptomic data
In order to assess if the identified transcribed genes are
part of the B. breve core-genome and/or conserved
across the Bifidobacterium genus, information from
comparative genome analysis was integrated into our
transcriptome dataset. Deduced amino acid sequences
from the identified ORFs of B. breve UCC2003 were
compared using BLASTP (e-value for significance:
0.0001) with orthologues previously retrieved from seven
fully sequenced and publicly available B. breve genomes
as well as 46 Bifidobacterium type strains [22–24].
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In order to combine our expression data with informa-
tion related to essential B. breve UCC2003 genes, the list
of transcribed genes in our datasets was compared with
genes that were deemed essential based on analysis of an
insertional mutant library of this strain combined with
TraDIS sequencing [22]. A circos plot was then gener-
ated for data visualization and circular representation of
results (http://circos.ca/).

Prediction of small RNAs
Prediction of sRNAs and RNA-based regulatory ele-
ments was performed using the RNAspace web server
(http://www.rnaspace.org/) and the Rfam database
(http://rfam.xfam.org/) and the entire nucleotide se-
quence of B. breve UCC2003 as input.
Artemis v16 (http://www.sanger.ac.uk/science/tools/ar-

temis) was used to inspect the results and for data
representation.

Results and discussion
Tiling arrays and RNA-Seq alignment
The transcriptome of exponentially growing B. breve
UCC2003 cells, when cultivated under standard laboratory
conditions (growth in liquid MRS medium supplemented
with 2% glucose), was determined in this study using two
different technologies involving a hybridization-based ap-
proach availing of whole-genome tiling arrays integrated
with data obtained by (Illumina) high throughput RNA se-
quencing (Additional file 1: Table S1) (Additional file 2:
Figure S1 panel a).
The analysed data obtained from the tiling arrays re-

vealed that a total of 852 coding sequences (CDSs), as
well as 47 tRNA and 6 rRNA genes were transcribed
under the applied conditions in B. breve UCC2003.
Comparison of the micro array-mediated transcriptome
output with the transcriptome as determined by sequen-
cing data (RNA-Seq) showed that 84.3% of the genes
identified as being transcribed in the tiling array ap-
proach were also identified by the RNA-Seq approach,
confirming good reproducibility between these two tech-
nologies (Fig. 1 panels a & b). However, it is worth men-
tioning that the RNA-Seq dataset permitted the
identification of 265 additional genes, which had not
been detected as significantly transcribed in the tiling ar-
rays (Additional file 1: Table S1). As the majority of
these genes shows RPKM values around the cut-off of
150 RPKM, this suggests that either tiling array data are
more affected by background hybridization signals
across the genome or that RNA-Seq data lead a higher
rate of false positives (Additional file 2: Figure S1 panels
a & b).
Despite the above mentioned corresponding data gen-

erated by the two distinct transcriptome methods, some
differences were observed. For example, we observed a

non-even distribution of RNA-Seq reads across the same
transcript, which is not (or much less so) noted for the
tiling array approach, where the hybridization signals
seem to be relatively evenly spread across a single tran-
script (Fig. 2 panel a). This difference can be explained
by several factors known to affect RNA-Seq technology,
such as the i) presence of mRNA secondary structures
influencing the cDNA synthesis, ii) ambiguity in read
mapping, iii) random hexamer priming in cDNA gener-
ation which biases the nucleotide composition at the
start of sequencing reads, and/or iv) fragmentation dur-
ing library preparation [25–27]. An advantage of the til-
ing array approach, as applied here, is that due to the
direct labelling of mRNA (which therefore does not re-
quire cDNA synthesis) the obtained data is less affected
by positional biases. What we observed in the tiling
array approach is a more pronounced and consistent sig-
nal along individual transcripts (Fig. 2 panel a), also
allowing a more accurate classification of genes based
on fold-change or FC (level of RNA signal strength vs
gDNA baseline) compared to RPKM [28].
The 22 bp sliding window used to design the array

probes introduced a degree of uncertainty in the deter-
mination of the exact transcriptional start site (TSS), al-
though a precise location of the TSS could in most cases
be verified by RNA-Seq information (see below). Despite
the high level of concordance obtained between the til-
ing array and RNA-Seq data sets, we found higher re-
producibility for those genes exhibiting high or medium
transcription levels. In fact, genes eliciting a low tran-
scriptional level in tiling arrays were sometimes hard to
identify as their hybridization signals were very close to
baseline signal levels.
With the objective of defining TSSs of vegetatively

transcribed genes and operons in B. breve, array and
RNA-Seq data were first independently processed and
subsequently compared. In the specific case of tiling ar-
rays, TSSs were assigned at the first base position of the
first significantly expressed probe in the 5’-UTR region
of a transcript. As the tiling array employed in the
current study was designed based on a 22 bp sliding
window, this was inevitably going to impact on the TSS-
assignment accuracy. For this reason TSSs were also de-
termined from RNA-Seq data and compared, which re-
vealed that the vast majority of discrepancies between
the obtained predictions ranged between 25 and 50 bp,
where a given TSS predicted from RNA-Seq was always
located downstream of the corresponding array-based
TSS. As the arrays were designed based on 60 bp probes
with 22 bp overlap, we expected an overestimation of
TSS in tiling arrays of at least 22 bp. Our comparison of
TSS prediction performed with these two approaches re-
vealed that the associated error of predicting TSSs from
our array design does not exceed the size of one probe
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(Fig. 3 panel a). A further comparison of our result with
the TSS experimentally determined for three housekeep-
ing genes in B. breve UCC2003 (hrcA:Bbr_1004,
clpC:Bbr_1356 and groES:Bbr_1668) [29–31] returned a
prediction error of 13, 23 and 32 bp respectively, which
is also comparable with our predicted error. Interest-
ingly, when we exclude weakly transcribed genes, we no-
ticed a decrease of discrepant predictions located at the
extremities of the distribution, confirming the suspected
higher impact of weakly transcribed genes in TSS misas-
signments (Fig. 3 panel b). Weakly transcribed genes
may be affected by factors such as higher background
interference, lower mRNA stability or low number of
guanines in probes (labelled at N7 position), making the
associated predictions in some cases inconsistent.

Transcriptional initiation and termination in B. breve
Integration of data generated using tiling arrays and
RNA-Seq platforms allowed us to determine the

(approximate) TSS of 413 genes and/or operons (includ-
ing 2 rRNA loci and 33 tRNAs) transcribed in B. breve
during exponential growth.
In order to establish whether such determined TSSs

would allow us to predict a promoter consensus se-
quence for B. breve, the alignment of a 62 bp region up-
stream each determined TSS was performed followed by
conserved motif finding in Meme (http://meme-sui-
te.org/). This search was carried out with the idea of
covering the binding region required for the RNA poly-
merase to initiate transcription [3, 32].
Our analysis identified typical bacterial vegetative pro-

moter consensus motifs of TATAAT (−10 region) and
TTGACA (−35 region), located within an optimum of
17 bp spacer distance, being especially conserved up-
stream of highly/medium expressed (housekeeping)
genes (Fig. 2 panel b).
Analysis of the promoter sequences in all identified

TSSs returned putative −10 and −35 regions with a
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certain degree of degeneration with a predicted spacer
region rarely exceeding the 20 bp or being shorter
than 14 bp. We also observed a higher tendency of
conservation of the −10 element compared to the
−35. The −10 TATA box in fact appeared to be the
most conserved motif with thymine in 1st, adenine in
2nd and thymine in 6th position (Fig. 2 panel b). Re-
garding the −35 signal, despite a weaker degree of
conservation across the assessed promoters, thymine
in 1st and 2nd position seemed to be the most recur-
rent bases, followed by guanine in 3rd and cytosine in
5th position (Fig. 2 panel b).
Despite the finding that the intergenic regions are

usually more AT rich as compared to the coding re-
gions, our analysis did not identify a clear consensus
sequence within 60 bp upstream the −10 TATA box,
which seems to be the dominant low G + C signal up-
stream each TSSs.
As a further verification, we wanted to establish the

average distance between the predicted conserved pro-
moter motifs and the TSSs identified by RNA-Seq, set-
ting the optimum expected distance to 10 bp. Our
analysis revealed an average distance between predicted
promoter and TSSs of 20 bp, suggesting that TSS pre-
diction based on RNA-Seq data is still missing bases at

the 5’-UTR, in line with what has previously been de-
scribed for this technology in bacteria [33]. Nevertheless,
the precision achieved by our sequencing (also con-
firmed by the comparison with the tiling array coordi-
nates) allowed us to successfully detect (bifido)bacterial
vegetative promoters (Additional file 3: Table S2).
In order to obtain a better characterization of bifido-

bacterial transcriptional units (TUs), the identification of
transcriptional start sites (TSS) was followed by the ana-
lysis of putative transcriptional termination sites (TTSs).
In the case of transcriptional termination, we found

that the array data represented the 3′ termination signal
of operons better than the RNA-Seq information (and
for this reason we did not include the latter data when
predicting TTSs), probably because the tiling array data
were based on direct mRNA labelling, without the ne-
cessity of cDNA synthesis, and for this reason these re-
sults are not affected by interfering factors such as 5′
enrichment of reads and/or uneven distribution of
coverage along a single transcript (Fig. 2 panel a).
Based on our analysis, we were able to identify a total of

224 rho-independent terminators (accounting for 54% of
the total of termination signals), each constituted by a
GC-rich stem loop structure followed by the characteristic
polyT region. In the case of bi-directional terminators we
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observed that the stem loop region is preceeded by polyA
[9].
Of the 413 identified TUs, 83 were classified as highly

transcribed (see Methods section) of which 70 contained
a rho-independent terminator, while of the 153 classified
as moderately transcribed TUs, 81 were predicted to be
subject to rho-independent termination. As regards to
weakly transcribed TUs, only 73 terminators out of the
177 identified were classified as rho-independent, sug-
gesting that rho-independent terminators represent
strong termination signals especially for bifidobacterial
genes and operons exhibiting high (and perhaps
medium) level transcription (Fig. 4 panel a). Rho-
independent termination is also typically found at the
end of highly transcribed TUs (e.g. rRNA and tRNA spe-
cifying genes) of other bacteria such as E. coli and Bacil-
lus subtilis [9, 34].
As previously reported, rho-independent terminators

preceeded by polyA and followed by polyT sequences may
be responsible for controlling transcriptional termination
of convergently transcribed operons/genes within a given
DNA region (Additional file 4: Figure S2 panel a). How-
ever, we also noticed that the lack of a polyA sequence in
these elements may restrict the termination to one strand
only (Additional file 4: Figure S2 panel b) [8].
As rho-independent terminators seem to represent the

most frequently adopted strategy by Bifidobacterium
breve UCC2003 to achieve transcriptional termination
(especially of highly transcribed operons), we also ob-
served that TTSs often locate at GC-rich stem-loops
structures, not otherwise classified as rho-independent
terminators. It can be argued that they constitute rho-
dependent terminations or RNA polymerase pausing
sites prior to the release of the transcription machin-
ery, even though we did not identify a clear consen-
sus among these regions. Nevertheless this
observation suggests a possible involvement of GC-
rich stem-loops as pausing sites for the RNA poly-
merase followed by its release.
In the case of convergently expressed operons (simul-

taneously transcribed in a tail-to-tail orientation), we
often observed that no termination signal was detect-
able. However, in these cases we often noticed overlap
between the 3’-UTR region of these opposing transcripts
(Additional file 4: Figure S2 panel c). It has been shown
that transcriptional interference or gene silencing can
occur in convergently expressed operons when their 3’-
UTR regions partially overlap. This phenomenon is
caused by the direct collision and release of the tran-
scriptional machinery progressing along either strand,
resulting in random transcriptional termination that may
extend into the adjacent operon [35]. Our findings
therefore indicate that also in bifidobacteria convergent
transcription is a strategy to modulate gene expression.

The transcriptome analysis performed in this study
also allowed an investigation into the main features asso-
ciated with TUs in B. breve (which may also apply to
bifidobacteria in general). Deduced (vegetative growth-
associated) TU length in B. breve was shown to vary
from over 9 Kbp to ~200 bp (when constituted by a sin-
gle gene), with a calculated average size of 1636 bp.
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From a closer look at B. breve TUs, the 5’-UTR region
is nearly always longer than the untranslated 3′ end
(average of 51 bp vs 38 bp, respectively) (Fig. 4 panel b).
Interestingly, if we associate this observation to a further
classification based on transcription level (see Methods
section), the average 5’-UTR length of highly transcribed
genes (~100 bp) is significantly longer than the respect-
ive 5’-UTR in medium and low transcribed ones

(~60 bp), suggesting possible regulatory/activating roles
for these UP (upstream) regions (Fig. 4 panel b).

Promoter strength and level of expression
With the aim of investigating factors that have the most
obvious impact on the level of gene transcription in B.
breve, the information obtained from the identification
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of promoters was stored in variables and used to gener-
ate classifiers for Random Forest (RF) analysis.
The classifiers chosen for RF were based on spacer

length (bp), 5’-UTR length (distance between promoter
and start of the gene), AT % of the −35 and correspond-
ing upstream region, AT % of the −35 signal, AT% of the
spacer, AT % of the −10 region and AT % of the −10
downstream region.
All promoters were grouped based on the level of

RNA signal strength vs gDNA baseline (expressed as
fold-change or FC). Such analyses revealed transcription
levels being classified as high (FC > 10), medium (3 < FC
< 10) or low (FC < 3), which were then subjected to RF
(Random Forest) analysis performed on 5000 trees (rep-
resentative of the whole sequence space).
Consistent with what we observed for the promoter

consensus analysis, RF approach confirmed that the AT
% of the −10 region shows the highest impact on gene
transcription, immediately followed by the length of the
spacer region (of which the optimum was established to
be 17 bp). Our analysis also revealed that the 5’-UTR
length may impact gene transcription, in fact a longer
leader length seems to be associated with highly
expressed genes (Fig. 5 panel a). Regarding the promoter
elements, RF analysis returned highest importance in 1st,
2nd and 6th position for the −10 region, while the −35 re-
gion showed higher importance in the first three base
positions despite having less impact on gene transcrip-
tion (Fig. 5 panel a).
Unfortunately, our attempts to employ RF analysis to

predict the level of transcription of a promoter based on
these classifiers returned a high error rate (~66%), sug-
gesting that the de novo prediction of transcription level
cannot be deduced from the promoter with sufficient ac-
curacy. However, our analysis highlighted certain trends
in the degree of conservation of the promoter. Highly
transcribed genes seem to possess a promoter that best
resembles the canonical bifidobacterial consensus, while
medium expressed genes possess a more degenerate
−35, but a still highly conserved −10 region. Interest-
ingly, weakly transcribed genes seem to possess both
degenerated −10 and −35, with an AT-rich region lo-
cated in the TATA box (Fig. 5 panel b). This is also con-
sistent with our result in RF analysis showing that the
GC content of the −10 region is the classifier that most
substantially impacts on transcription in B. breve.

Transcription of essential genes in B. breve
To further analyse the obtained transcriptome informa-
tion, we wanted to combine the results of our tran-
scriptomics findings with TraDIS sequencing findings
conducted to determine the essential genes in B. breve
[22]. The alignment with this dataset was conducted
based on the presumption that genes essential in B.

breve should also be expressed in our transcriptomic
data. Of the 854 CDSs identified in our transcriptome
analysis, 35% also appear to be essential for the survival
of B.breve UCC2003. These genes also appear homoge-
neously distributed between high, medium and low level
of expression. However, 76% of the total of highly
expressed genes is also essential in B. breve, confirming
the hypothesis that the vast majority of essential house-
keeping genes also appear to be highly expressed in B.
breve (Fig. 6 panels a & b) (Additional file 5: Table S3).
An alignment across the whole genus also showed that
orthologs of such expressed genes can be found across
the genus Bifidobacterium, in support of the notion that
our findings can be used as a starting point for the in-
vestigation of (regulation of ) gene expression as applied
to the whole genus (Fig. 6 panel a).
From a closer inspection of the COG categories, it also

appears that between 40% and 50% of those essential and
highly transcribed genes in B. breve are assigned to func-
tions involved in “Translation, ribosomal structures and
biogenesis”, “RNA processing and modification” as well as
“Intracellular trafficking and secretion” (Fig. 6 panel b).
It is furthermore worth mentioning that some essential

and highly expressed housekeeping genes in B. breve ap-
pear to be co-transcribed and organized in operons of
considerable dimension. This is the case for example of
the 9.5 Kbp ribosomal operon (Bbr_1622–42) and the
7.2 Kbp ATP synthase operon (Bbr_0323–30), both char-
acterized by an untranslated leader region of remarkable
length (210 and 157 bp, respectively). Another notable
example of essential TUs is represented by the ribosomal
rRNA genes, organized in two 5.6 Kb regions in B. breve
UCC2003 and exhibiting a transcription level that is
higher than any other gene (>50 fold) in the genome
(Additional file 6: Figure S3 panel a). Also, in this case
the 5′ untranslated leader region identified by our tran-
scriptome analysis is, at 281 bp, the longest identified in
this organism. Together with the expression of two
rRNA loci in B. breve UCC2003, our analysis also con-
firmed the constitutively high transcription of 47 of a
total of 53 predicted transfer RNA genes specified by B.
breve UCC2003 (Table 1). These predicted tRNAs are
organized in 38 loci evenly distributed along the bacter-
ial chromosome and their essentiality for this organism
has previously been reported [22]. The alignment of our
transcriptome data with the TraDIS-mediated essential
gene outcome confirmed a constitutive expression for
the tRNA-encoding genes specific for 20 amino acids in
B. breve, especially in case where multiple copies of
these genes (>3 copies) are present (tRNAs encoding for
leucine, glycine, arginine, valine, serine and alanine)
(Additional file 5: Table S3).
Another intriguing feature revealed by our dataset is

the (constitutive) transcription of the CRISPR/Cas
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spacers in B. breve UCC2003. This system represents
a defense mechanism of B. breve and is aimed at pre-
venting the acquisition of foreign DNA, such as
phages and mobile elements. Although this region has
not been identified as essential for survival, our tran-
scriptome data shows that a continuous surveillance
of this defense mechanism remains activated in B.
breve also under standard laboratory conditions, sug-
gesting that this system is active (Additional file 6:
Figure S3 panel b). Along with CRISPR/Cas genes,

Restriction/Modification (R/M) systems play a signifi-
cant role in evading the acquisition of foreign DNA
in B. breve UCC2003, which is equipped with two
complete (BbrII, BbrIII) and one partially functioning
(BbrI) systems [36]. Of these three, it has been shown
that only the methylase component is essential for
bacterial survival [22]. We observed that all these
genes are transcribed at low level (~2 fold above
background level) in our dataset (Bbr_0216, Bbr_1119
and Bbr_1121), apparently ensuring a permanent
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default protection of the bacterial chromosome from their
partner endonucleases (Additional file 5: Table S3).

Housekeeping sRNA transcription and riboswitches in B.
breve
The genome-wide transcriptional analysis conducted in this
study allowed the annotation of a set of intergenic regions
that may encompass sRNAs with housekeeping and/or
regulatory functions in B. breve such as RNAseP, transfer-
messenger RNA (tmRNA) and 4.5S RNA (Table 2).
Based on our analysis we assigned RNAseP to a

346 bp highly transcribed intergenic region (>50 fold)
with associated promoter and rho-independent termin-
ator (Additional file 3: Table S2)(Additional file 7: Figure
S4 panel a). With regards to the transfer-messenger

RNA (tmRNA) (Table 2) we assigned this element to a
396 bp highly transcribed intergenic region (>50 fold),
also in this case characterized by a promoter and a rho-
independent termination signal (Additional file 3: Table
S2, Additional file 7: Figure S4 panel b).
In the case of signal recognition particle RNA (SRP)

or 4.5S RNA we assigned this sRNA to a 104 bp
highly transcribed region (>50 fold) and we were able
to identify the corresponding promoter while the as-
sociated transcriptional terminator is characterized by
a stem loop structure (Additional file 3: Table S2,
Additional file 7: Figure S4 panel c). It is worth men-
tioning that the alignment of this dataset with the
TraDIS outcome [22] showed that no insertions are
present in these particular regions, indicating that
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these regions are essential to B. breve (Additional file
7: Figure S4 panels a-c).
As regards small regulatory RNA elements, our ana-

lysis identified three previously not characterized in bifi-
dobacteria: a flavin mononucleotide (FMN), a thiamine
pyrophosphate (TPP) or T-box and a YKOK riboswitch.
In the case of the identified FMN riboswitch, we located
the expression of this element in the 5’-UTR region of
two genes (locus tags Bbr_1328–29) resembling the
modular organization of an energy coupling factor (ECF)
transporter [37] (Additional file 8: Figure S5 panel a). Of
these Bbr_1328 belongs to the COG3601 family of

“riboflavin transport”, while Bbr_1329 constitutes an
ABC transporter and ATPase of a putative ECF, suggest-
ing the involvement of these genes and FMN riboswith
in the transport of this particular B vitamin.
In the case of TPP-sensing riboswitch or T-box we

assigned it to an expressed 5’-UTR region of an operon
involved in thiamine biosynthesis (Bbr_0674–77), sug-
gesting also in this case its involvement in the regulation
of these genes (Additional file 8: Figure S5 panel b).
Finally, in the case of the YKOK leader or M-box (Mg2

+ metal-sensingRNA) we identified this element in an
expressed region located at the 5’-UTR of an ABC trans-
porter (Bbr_0406–07), where the permease-encoding
gene (Bbr_0407) belongs to the category COG4986 of
“inorganic ion transport”, suggesting also in this case the
involvement of these genes in bacterial metal ion
homeostasis (Additional file 8: Figure S5 panel c).
Altogether these observations show the expression of

a number of housekeeping RNAs and regulatory RNA
elements in B. breve, suggesting the possibility of a new
level of RNA-mediated regulation of gene expression
also in members of this genus.

Conclusions
Comparison of transcriptomic data obtained by tiling ar-
rays and RNA-Seq showed reproducibility between these
two technologies, but also revealed the benefit of using a
combination of these two approaches in investigating
gene expression. An advantage of using the
hybridization-based technology of tiling arrays is the fact
that it is less affected by positional biases, producing a
consistent expression signal along transcripts. On the
other hand the RNA-Seq dataset detected a higher num-
ber of transcribed genes and appeared less affected by
background hybridization signals across the genome.
Based on the obtained transcriptome data we were

able to map transcriptional start and termination sites
(TTS) of the identified B. breve transcriptional units

Table 1 Transfer RNA transcription in B. breve

Locus_tag Annotation

Bbr_tRNA1–2 tRNAs Ala /Ile

Bbr_ tRNA3 tRNA Leu

Bbr_ tRNA4 tRNA Gly

Bbr_ tRNA5–6 tRNAs Glu /Gln

Bbr_ tRNA7 tRNA Ser

Bbr_ tRNA8 tRNA Lys

Bbr_ tRNA9 tRNA Lys

Bbr_tRNA11 tRNA Met

Bbr_ tRNA12 tRNA Arg

Bbr_ tRNA13 tRNA Gly

Bbr_ tRNA14–15 tRNAs Leu /Thr

Bbr_ tRNA16 tRNA Arg

Bbr_ tRNA17 tRNA His

Bbr_ tRNA19 tRNA Leu

Bbr_ tRNA20 tRNA Leu

Bbr_ tRNA22 tRNA Gln

Bbr_ tRNA23–24 tRNAs Ala

Bbr_ tRNA25–26 tRNAs Arg

Bbr_ tRNA27 tRNA Leu

Bbr_ tRNA28–32 tRNAs Gly/Cys/Val

Bbr_ tRNA33 tRNA Pro

Bbr_ tRNA34–35 tRNAs Asn

Bbr_ tRNA38 tRNA Asp

Bbr_ tRNA39–40 tRNAs Phe/Asp

Bbr_ tRNA41 tRNA Glu

Bbr_ tRNA42 tRNA Pro

Bbr_ tRNA43 tRNA Ser

Bbr_ tRNA44 tRNA Ser

Bbr_ tRNA45 tRNA Ser

Bbr_ tRNA47–48 tRNAs Thr/Tyr

Bbr_ tRNA49–51 tRNAs Val/Gly

Bbr_ tRNA52 tRNAs Trp

Bbr_ tRNA53 tRNA Ala

Table 2 Novel sRNA identified in B. breve

sRNA Genome
coordinates (UCC2003)

Strand Annotation

RNAseP 1,474,615–1,474,960 forward Ribonuclease P

tmRNA 1,563,425–1,563,820 forward Transfer messenger RNA

4.5S RNA 251,225–251,328 forward Signal recognition particle
RNA (SRP)

FMN
riboswitch

1,655,817–1,655,970 forward Flavin mononucleotide
riboswitch

TPP
riboswitch

886,294–886,401 forward Thiamine pyrophosphate
riboswitch (T-box)

YKOK
leader

541,771–541,928 reverse Metal-sensing RNA (M-
box)
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relevant to logarithmic growth. The obtained dataset
allowed us to identify a typical bacterial consensus of
TATAAT (−10 rgion) and TTGACA (−35 region) with
an optimum spacer length of 17 bp upstream the TSS of
transcribed genes or operon. Random Forest analysis re-
vealed the parameters with the highest impact on tran-
scription levels in B. breve, being the AT % of the −10
region the classifier with highest importance followed by
the spacer length and the 5’-UTR length of transcripts.
Our analysis highlights how the consensus of the pro-
moter region appears to degenerate from the canonical
consensus with the decrease in transcriptional level,
however, prediction of transcription levels is still difficult
and may require the inclusion of other (structural) fea-
tures of the promoter region.
Our study also described how rho-independent ter-

mination represents the most common and effective ter-
mination signal adopted by B. breve (and perhaps
Bifidobacterium), especially for highly and moderately
transcribed operons. It also showed that there may be
other strategies of transcriptional termination respon-
sible for modulating gene expression in B. breve.
Furthermore, the alignment of our dataset with a re-

cently published study on the essential genes of B. breve
demonstered how the vast majority of those also appear
to be expressed in our dataset, in particular those house-
keeping genes of which orthologues can be found across
the Bifidobacterium genus.
Finally, our analysis also allowed the identification of a

number housekeeping sRNAs and regulatory RNA ele-
ments not previously identified in B. breve UCC2003 (or
other bifidobacterial species), indicating that RNA-
mediated regulation of gene expression also occurs in
this organism (and genus). Altogether this study has
generated a detailed and robust dataset to be used as a
reference for transcription in the genus Bifidobacterium.
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Additional file 1: Table S1. Transcribed genes as determined by RNA-Seq
and tiling array analyses. A .docx document containing the list of genes
detected as expressed in RNA-Seq and Tiling arrays experiments. For each
gene the fold-change (FC expressed as level of RNA signal strength vs gDNA
baseline) and RKPM values are also indicated. (DOCX 135 kb)

Additional file 2: Figure S1. RNA-Seq and tiling array comparisons. a) Bar
chart showing B. breve UCC2003 genes detected as transcribed in RNA-Seq,
but not in tiling arrays with associate gene count and level of expression
(RPKM). b) Distribution of genes exhibiting discrepant transcription between
RNA-Seq and tiling array approaches as grouped by level of transcription
(RPKM). A red horizontal line indicates the baseline of transcription
background, while in purple the average RPKM of transcribed genes is indi-
cated. (PDF 94 kb)

Additional file 3: Table S2. Predicted transcriptional units (TUs) in B.
breve and associated promoters. A .docx document containing the list of
predicted transcriptional units (TUs) in B. breve and corresponding
(predicted) promoters. For each TU also the transcription level and
transcriptional termination is indicated. (DOCX 143 kb)

Additional file 4: Figure S2. B. breve termination of transcription.
Artemis plot showing the different strategies of transcriptional
termination of convergently expressed genes (dashed purple line) in B.
breve: a) Double-stranded rho-independent termination observed
between two convergently expressed genes employing a bidirectional
terminator. In this case a clear-cut transcriptional termination is observed
in either forward and reverse strands. b) Single stranded rho-
independent termination observed between two convergently tran-
scribed genes employing a strand specific terminator. In this case tran-
scriptional
termination is only observed in the forward strand. c) Tail-to-tail
termination observed between two convergently transcribed genes
without a termination signal. In this case no specific point of
transcriptional termination can be observed. (PDF 474 kb)

Additional file 5: Table S3. Transcription of essential genes in B. breve.
A .docx document containing the list of essential genes of B. breve
UCC2003 with associated level of transcription as detected from our
transcriptomic study. (DOCX 41 kb)

Additional file 6: Figure S3. B. breve ribosomal operon and CRISPR-Cas
system transcription. Artemis plot showing the level of transcription of a)
the rRNA operon and b) the CRISPR/Cas system in B. breve UCC2003 as
detected in tiling arrays. The relative TU is indicated by a dashed purple
line. (PDF 282 kb)

Additional file 7: Figure S4. B. breve sRNA expression. Artemis plot
showing the sRNA transcription in B. breve of a) Ribonuclease P, b)
tmRNA, and c) 4.5S SRP RNA. In all cases tiling array signals of forward
(red) and reverse (blue) strand are indicated. (PDF 701 kb)

Additional file 8: Figure S5. B. breve regulatory RNA expression.
Artemis plot showing the regulatory RNA transcription in B. breve of a)
FMN, b) TPP, and c) YKOK elements. In all cases tiling array signals of
forward (red) and reverse (blue) strand are indicated. (PDF 732 kb)
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