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Abstract

Background: The increasing application of next generation sequencing technologies has led to the availability of
thousands of reference genomes, often providing multiple genomes for the same or closely related species. The
current approach to represent a species or a population with a single reference sequence and a set of variations
cannot represent their full diversity and introduces bias towards the chosen reference. There is a need for the
representation of multiple sequences in a composite way that is compatible with existing data sources for annotation
and suitable for established sequence analysis methods. At the same time, this representation needs to be easily
accessible and extendable to account for the constant change of available genomes.

Results: We introduce seq-seq-pan, a framework that provides methods for adding or removing new genomes from
a set of aligned genomes and uses these to construct a whole genome alignment. Throughout the sequential
workflow the alignment is optimized for generating a representative linear presentation of the aligned set of
genomes, that enables its usage for annotation and in downstream analyses.

Conclusions: By providing dynamic updates and optimized processing, our approach enables the usage of whole
genome alignment in the field of pan-genomics. In addition, the sequential workflow can be used as a fast alternative
to existing whole genome aligners for aligning closely related genomes.
seq-seq-pan is freely available at https://gitlab.com/rki_bioinformatics
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Background
Thanks to the continuous advances in next generation
sequencing (NGS) technologies the number of sequenced
whole genomes is also continuously increasing. This has
led to a 10,000 fold increase in available bacterial genomes
over the past 20 years [1]. As a result complete sequence
information for many species and phylogenetic clades
has become available. The current approach to handle
the diversity of sequences within a single population is
to define a single reference genome with an accompa-
nying comprehensive catalog of variants and other vari-
able genome elements present within that population [2].
Unfortunately, this representation is limited, as complex
genetic differences such as large deletions, insertions or
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rearrangements cannot easily be expressed in relation to
a single reference genome [3]. This presents a significant
drawback, since a combined representation of all genomic
content of a species or population that captures the full
information on similarity and variation between individ-
ual genomes is essential [4]. Therefore, the more versatile
concept of using multiple instead of a single reference
genome for common analyses of NGS data is attracting
more and more attention.
Initially defined to be the sum of core and dispensable

genes of all strains of one bacterial organism [5], the term
pan-genome is now more commonly used to describe any
set of associated sequences aiming for a collective analysis.
Gathered under a newly evolving field termed computa-
tional pan-genomics, several methods for the generation
of data structures that can represent a set of multiple
sequences have been developed. These data structures
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generally aim to fulfill the following requirements: (i) easy
construction and maintenance, (ii) adding and retrieving
of (biological) information, (iii) comparison to other sets
of genomes or short or long sequences from individuals,
(iv) easy visualization and (v) advanced data storage [4].
We assessed a collection of tools applied for the analysis

of multiple sequences (Table 1). Many of these tools
use graphs to represent the pan-genome and focus on
efficiently building and storing that graph [2, 6–9]. Some
[10–12] focus on subsequent analyses such as mapping
reads to the pan-genome, while others [13, 14] improve
variant detection by using a set of reference sequences
instead of a single one. The final category in our col-
lection is made up by tools that introduce a complete
data structure and provide methods for the construction,
storage, processing and visualization of the pan-genome
[3, 13, 15–17]. Most of these tools depend on informa-
tion on the (dis-)similarity of genomes from a multiple
genome alignment or a reference sequence with an
adjoining corresponding set of variants to create a pan-
genome. This prerequisite cannot represent structural
variants (e.g. large deletions or insertions or rearrange-
ments of sequences) in most cases and has to be obtained
via external tools.
While four of the analyzed tools - JST [15], MHC-PRG

[13], PanCake [16], and vg [17] - provide methods for
adding or removing genomes from the pan-genome data
structure, only GenomeRing [3], JST [15], panVC [14] and
vg [17] offer the ability to annotate biological features.
This is often caused by the representation of the pan-
genome as graphs, for which there is no standard method
providing a coordinate system, which severely complicates
the use of existing annotation databases and formats. Pro-
posed strategies for such coordinate systems [18] do not
meet all preferential criteria (spatiality, readability, and
backward compatibility) [4]. Additionally, new methods
for essential analyses such as comparing genetic infor-
mation of individual samples with a graph of reference
sequences have to be developed.
Another (well-established) representation of sets of

genomes is their alignment. Whole genome alignments
(WGA) implicitly provide a coordinate system that allows
the translation between pan-genome and strain genome
position, enabling annotation of the alignment with bio-
logical features of the individual genomes. Due to the
extensive research on whole genome alignment [19–28],
standard formats (eXtended Multi-FastA [29] and Multi-
ple Alignment Format [30]), and methods for processing
and visualizing WGA results are available [3, 31–35]. In
the field of pan-genomics, whole genome aligners are used
for the analysis of a set of closely related non-collinear
genomes (e.g. several strains of a bacterial species). These
genomes contain large insertions and deletions and also
rearrangements and inversions of sequences that have to

be detected and aligned properly [19, 23]. Several methods
(Mugsy [23], progressiveCactus [19], progressiveMauve
[25] and TBA [27]) have been developed to meet this
challenge.
In summary, WGA structures presently fulfill most of

the desirable properties of a pan-genome, but a severe
drawback of existing methods is their final, non-updatable
alignment result.
We here present seq-seq-pan, a framework that enables

the usage of WGA as a pan-genome data structure.
We provide methods for adding additional genomes or
removing them from a set of aligned sequences and
use them to sequentially align whole genome sequences.
Throughout the sequential process we take measures to
optimize the resulting whole genome alignment and pro-
vide a linear representation that can be used in place of a
reference genome with established methods for subsequent
analyses such as read mapping and variant detection.

Methods
seq-seq-pan workflow
Overview
The key notion of seq-seq-pan is to use and optimize
fast, well established whole genome alignment methods
to construct a pan-genome from an a priori indefinite set
of genomes. For this part, we use progressiveMauve [25],
a fast whole genome aligner that accurately detects large
genome rearrangements. The alignment result is com-
prised of a set of blocks of aligned sequences that are
internally free from genome rearrangements (referred to
as locally collinear blocks (LCBs)). For each LCBwe derive
a consensus sequence using the concept of majority vote
and combine all sequences with delimiter sequences of
long stretches of the character ’N’. These delimiters are
inserted to prevent alignment of sequences over block
borders in the following step, because blocks are not con-
secutive in all genomes. After alignment of the consensus
genome with the subsequent genome in the set, all LCBs
stretching over block borders are separated. Unaligned
sequences of each genome are analyzed again, to align
sequences that are considered to be contextually unrelated
[25]. The resulting LCBs with sequences from one or both
genomes are joined to the previously aligned blocks. The
complete alignment of all genomes is reconstructed from
the current and prevenient alignment. Optimizing mea-
sures are taken throughout the workflow to maintain the
synteny of the original genomes and avoid accumulation
of short, unrelated sequence blocks (Fig. 1). Repetitive
sequences within genomes are not aligned with each other
but integrated into the alignment and its linear represen-
tation as they appear in the original genomes.
Below we describe all steps of the whole workflow in

detail. The details of implementation and consecutive
order of individual steps are depicted in Additional file 1.
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Table 1 Comparison of pan-genome tools. We analyzed tools for pan-genome analysis that are available or currently under
development. This table lists the corresponding publications or websites. We compared the intended use cases of the tools and the
prerequisite data required in order to use them. We evaluated the availability of features needed to work with the pan-genome in
subsequent analyses, e.g. updating the set of included genomes. Furthermore, we assessed whether the proposed data structures take
into account structural variants and whether it is possible to visualize the resulting pan-genome

Name Objective Input Visualization Structural Functionality

of pan-genome Variants Update Possibility to

Add Remove include annotation

svaha [9] Graph construction Reference sequence +
variants

External Yes No No No

cdbg [2] Graph construction Multiple reference
sequences

External Yes No No No

cdbg_search [6] Graph construction Multiple reference
sequences

External Yes No No No

SplitMEM [44] Graph construction Multiple reference
sequences

External Yes No No No

TwoPaCo [7] Graph construction Multiple reference
sequences

External Yes No No No

GCSA2 [8] Graph indexing Variation graph No No No No No

GCSA [10] Graph indexing Reference sequence +
variants

No No No No No

Multiple sequence
mapping

BWBBLE [11] Multiple sequence
mapping

Reference sequence +
variants

No No No No No

GenomeMapper [12] Multiple sequence
mapping

Reference sequence +
variants

No No No No No

panVC [14] Multiple sequence
variant detection

Whole genome
alignment

External Yes No No Yes

MHC-PRG [13] Multiple sequence
variant detection

Multiple sequence
alignment

No No Yes No No

Pan-genome data
structure

AND variants

GenomeRing [3] Pan-genome data
structure

Whole genome
alignment

Yes Yes No No Yes

JST [15] Pan-genome data
structure

Reference sequence +
variants

No Yes Yes Yes Yes

vg [17] Pan-genome data
structure

Reference sequence +
variants

External Yes Yes* Yes* Yes

OR multiple reference
sequences

PanCake [16] Pan-genome data
structure

Multiple reference
sequences

External Yes Yes No No

AND pairwise
alignment

seq-seq-pan Pan-genome data
structure

Multiple reference
sequences

External Yes Yes Yes Yes

∗ Adding and removing of genomes in vg can be achieved using a combination of several steps

Consensus genome construction
LCBs are combined into a consensus genome by concate-
nating the consensus sequence of each block. At each
position within the LCB, all aligned sequences are com-
pared and the most abundant base is chosen for the

consensus sequence. In case of ties, the base is drawn
randomly from the available choices. To prevent align-
ments across block borders when the consensus genome
is used for alignment, we integrate a sequence of 1000 ’N’
(undefined nucleic acid) between the consensus sequence
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Fig. 1 Visualization of the alignment workflow for an example with three genomes. Input genomes (g1-3) are depicted as green, yellow and blue
blocks. All sub-sequences are part of locally collinear blocks (LCBs) in the final result and are therefore marked within the whole genomes and
numbered according to their appearance in the respective genome. The first two genomes are aligned and provided as separated blocks of aligned
sub-sequences. Block I and II indicate a rearrangement of sub-sequence 3 of g1 when compared to g2 and parts of g1 are not present in g2.
Consensus sequences are built individually for each LCB in the alignment and concatenated with stretches of ’N’ as delimiters to form a consensus
genome (depicted in red with delimiters in gray). It is used in the alignment with g3, which is presented in detail in steps a-e. a The consensus
genome is aligned with the third genome (g3, blue), yielding six blocks. Block I and III represent a rearrangement of sub-sequence 6 of g1. Block II
shows a large deletion in g3 compared to the consensus genome. Block IV-VI show single-sequence blocks. b Blocks resulting from alignment with
the consensus genome are broken up into smaller blocks at delimiter positions (Block II in a is now Block II-VI in b). The small single-sequence block
with sub-sequence 5 of the consensus genome (Block IV in a) is merged to its neighboring sub-sequence 4 of the consensus genome, introducing
gaps into sub-sequence 3 of g3 (see Block IV in b). c Remaining single-sequence blocks of both genomes (depicted in lighter red and blue) are
concatenated with stretches of ’N’ as delimiters (c.a). Sequences are aligned (c.b) and resulting blocks are resolved at delimiter positions (c.c). Small
single-sequences would also be merged to neighboring blocks (not shown). d Aligned and single-sequence blocks from step c are joined with
initially aligned blocks and all blocks are sorted by their position in the consensus genome. e The full alignment is traced back using the newly
formed blocks and the alignment of the first two genomes. f A consensus genome is built from the full alignment and alignment of additional
genomes is achieved by consecutive repetition of steps a-f

blocks into the final sequence. In addition to the consen-
sus genome, two accompanying index files are created.
One contains the start positions of all delimiter sequences
within the consensus genome and therefore enables the
reconstruction of the alignment of all genomes from the

alignment of the consensus genome with an additional
sequence (referred to as “consensus index file”). The sec-
ond index file contains the coordinates of all gaps of all
sequences per block in the consensus genome, improv-
ing the performance of the reconstruction step and the
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mapping of coordinates between genomes. Furthermore,
we make note of the sequence identifier and the descrip-
tion of all genomes and chromosomes, as this information
is not contained in the final output of progressiveMauve.

Alignment step
When aligning two sequences with progressiveMauve
[25], the alignment is partitioned in locally collinear
blocks to allow for the representation of structural dif-
ferences such as inversions or translocations. Each result-
ing block contains parts of either both or one of the
genomes locally collinear. They form the basis for the
subsequent workflow steps. We chose progressiveMauve
for this step as we introduce artificial insertions and
rearrangements by representing the genomes as a linear
consensus genome, which are accurately resolved by this
whole genome aligner.

Merging step
Sequences specific for one of the genomes are also
reported as LCBs, but these only contain parts of this
one genome. LCBs containing only a single unaligned
sequence are typically moved to the end of the align-
ment file. They are created to ensure collinearity within
blocks and can sometimes be of small length. When used
in a sequential workflow, it can be advisable to avoid
assembling short one-sequence-LCBs and attaching all
of them to the end of the consensus genome. We pre-
vent the accumulation of small blocks by merging short
one-sequence-LCBs with their neighboring blocks within
the genome and realigning consecutive gap stretches (see
“Realignment step” section). These short blocks can not
only emerge in the alignment step but also result from
the resolving step, when a LCB is split at block border
positions (see “Resolving step” section).

Realignment step
Alignment is improved by realigning genomes at sites
where a gap ends in one sequence and starts in the other
(referred to as “consecutive gaps”). We scan through the
whole alignment and identify all positions with consec-
utive gaps. Then we extend the interval to the sequence
on both sides of the gap sequences by the length of the
longer sequence or up to block borders and align these
sequences again.

Resolving step
Aligning a genome with a consensus genome can result
in alignments that span the borders of the LCBs mak-
ing up the consensus genome. We identify these blocks
using the consensus index file. Then, we split them at
the start and end of the delimiter sequence. If the align-
ment spans a complete delimiter sequence the separation
results in three new blocks: the first and third one contain

the aligned sequences of the two genomes. The second
one includes only the sequence of the new genome that
was aligned to the delimiter sequence. All gaps contained
in this block are removed. In cases where the delimiter
sequence is matched with a gap sequence only, we discard
the complete block.

Alignment of initially unaligned sequences
We take the forward representation of all one-sequence-
blocks per genome and sort them. We concatenate the
sequences, again integrating stretches of 1000 ’N’, end-
ing up with one sequence for each of the genomes. These
sequences are then aligned using the same process as
with the full genomes. Alignment with progressiveMauve,
the optional Merging Step and the Realignment Step, are
followed by a two-step Resolving and Reconstruction pro-
cess using each of the initially concatenated sequences as
“consensus sequence” (see Fig. 1 and Additional file 1).
All blocks with newly aligned and unaligned sequences
are joined with the initially aligned blocks for the final
Reconstruction step.

Reconstruction step
All previous steps result in a set of LCBs that contain parts
of the consensus genome, the aligned genome or both.
For all LCBs that include consensus genome sequences,
we reconstruct the alignment that formed this consen-
sus sequence in the previous workflow iteration. For this
we use the coordinate system of the consensus genome
and the index file containing delimiter sequence positions.
We translate the start and end positions of the consensus
sequence in each LCB to their positions within the orig-
inal genomes. With this information we can extract the
bases, gaps and positional information of all sequences
and report the complete alignment of all genomes for the
current workflow iteration.

Removing a genome
After removing a genome from a pan-genome, gaps that
were introduced only for the alignment of the removed
genome are cut from the remaining genomes. Adjacent
LCBs that are now composed of consecutive regions of the
same set of genomes are joined to form one LCB.

Setup for comparison experiments
Data
We use several sets of reference genomes available in the
NCBI RefSeq database as of November 30th, 2016 for our
experiments. The set of 43 Mycobacterium tuberculosis
genomes is used throughout all experiments. To demon-
strate the ability of seq-seq-pan to align a large number of
genomes, we use the set of all Staphylococcus aureus and
Escherichia coli reference genomes. These sets contain
144 and 207 genomes, respectively. Accuracy of alignment
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was tested on a simulated dataset of twelve genomes with
the genome of E. coli K12 as basis for the simulation of
evolution. For evaluating the run-time when adding an
additional genome to a pan-genome, we used another
M. tuberculosis genome that became available onDecember
26th, 2016 (for details on genomes see Additional file 2).

Simulated data
Accuracy of alignment was tested on a simulated dataset
of 13 genomes. For the simulation of genomes with a
known true alignment we used the EVOLVER software
[36] and the evolverSimControl suite [37] as described in
the Alignathon project [38]. The tool evolverSimControl
enables the user to simulate several genomes along a phy-
logeny with EVOLVER. We used an E. coli K12 genome
(NC_000913.3) as the origin of the evolution simulation.
For the evolution parameters we adapted the example pro-
vided by the EVOLVER team. We fit the parameters to
the smaller size of the E. coli genome by changing the
probabilities of large insertion and deletion events and set-
ting the maximum size of these events to 7000 – roughly
the size of the longest E. coli gene. We simulated twelve
genomes without using mutation acceptance constraints
with the phylogeny depicted in Fig. 2.

Comparison of alignments
We use an alignment comparison method to compare our
results with the results of other whole-genome aligners:

Fig. 2 Visualization of the phylogenetic tree used to simulate
genomes with EVOLVER. The corresponding NEWICK tree is
(((D:0.015625,E:0.0333)B:0.01,C:0.015625)A:0.03125,
(((K:0.03125,L:0.015625)J:0.005,I:0.015625)G:0.02083,
H:0.02083)F:0.005);. (drawn with online version of Phylodendron [43])

the tool mafComparator from the mafTools collection
[38]. To compare the alignments of the simulated dataset
with the true alignment, we calculate recall, precision and
F-score as described in the Alignathon project [38]. To
use the same method for comparing alignments of the
M. tuberculosis we choose the alignment of the other
aligners to act as the true alignment and our results
as the prediction in each comparison. Here, we use the
F-score to assess the similarity of the alignments. As in
this case there is no ground truth to compare our results
to we derive the accuracy of our alignment method from
comparison to four other alignment tools.

Sorting andmerging
Due to the sequential nature of our workflow, the order in
which genomes are added to the pan-genomemight influ-
ence the resulting alignment. When additional genomes
are added to existing alignments, they can not be set in
relation to the genomes that are part of the alignment,
but have to be added “on top” of them. Therefore, the
alignment process should yield similar alignments irre-
spective of the order of genomes. To investigate the effect
of sorting we arrange the genomes by similarity and by
consecutive dissimilarity and compare the results. To sort
the input genome sequences by similarity we apply the
D2z score [39] on all pairs of sequences. The score reflects
the sequence similarity, i.e. higher scores stand for more
similar sequences. We calculate the upper quartile of all
similarity scores and select the genome with the small-
est distance from all others. The remaining sequences are
ordered by their similarity to this genome.
As an alternative, to obtain a series of strongly differing

genomes, we sort them as follows: we again start with the
genome with the smallest distance from all others. Then
we choose the one with the lowest similarity score as sec-
ond and the genome most similar to the first for the third
position and continue to alternate genomes in this man-
ner throughout the complete set (so the sequence 1, 2, 3,
4, 5, 6 becomes 1, 6, 2, 5, 3, 4).
Additionally we constructed the alignment of the sim-

ulated dataset and the M.tuberculosis dataset a hundred
times and the larger datasets (S. aureus and E. coli) 10
times with randomly sorted genomes and compare them
to the alignment using genomes sorted by similarity. We
also compare alignments that were created with and with-
out using the merging steps (See order of genome sets in
Additional file 2).

Whole genome alignment tools
We compared our sequential genome alignment approach
with whole genome alignment tools to review the accu-
racy of the final alignment. For this, we chose progres-
siveMauve [25], Mugsy [23], progressiveCactus [19] and
TBA [27] as these are commonly used methods for WGA



Jandrasits et al. BMC Genomics  (2018) 19:47 Page 7 of 12

that allow aligning non-collinear genomes with large dele-
tions and insertions, inversions and rearrangements. Each
of these tools separates the final alignment into LCBs.
We parametrized all tools to not report duplications and
disabled filters on LCB sizes to fit the results to the
methology of seq-seq-pan. In addition to comparing the
final alignments, we analyze the time andmemory needed
to create these results. In cases where no ground truth for
the alignment is available, we regard the concordance of
the results of all tools.

Pan-genome tools
For comparison, we choose PanCake, which also accepts
whole genomes as input and bases the construction of
the pan-genome data structure on sequence alignment
methods. PanCake represents all genomic sequences in
the form of feature instances. Each feature contains part
of a genome sequence and start and stop coordinates
within the genome. By using the information of pair-
wise genome alignments, shared features can be extracted.
These features contain a single version of the sequence
and a list of edit operations and positional information
describing all aligned sequences. Following the recom-
mendations by the authors, nucmer [24] was used for
pairwise alignments. We measure the time it takes to con-
struct a pan-genome. Tasks that are part of many analyses
of pan-genomes include adding an additional genome or
removing a genome and extracting a genomic sequence
from the pan-genome. Thus, we examine whether these
steps are possible and which run-time they require.
To account for differences in time needed to extract
genomes based on their position within the pan-genome,
we extracted each genome once and calculated the
average time.

Results
As we sequentially construct a whole genome alignment,
we compare our results with the alignments of progres-
siveMauve [25], Mugsy [23], progressiveCactus [19] and
TBA [27] for all datasets. We compare the run-time and
memory requirements of pan-genome construction and
the provided functional features between seq-seq-pan and
PanCake [16] using the M. tuberculosis dataset. We show
that the order of genomes has minimal effects on the final
alignment and that the merging step produces a less frag-
mented alignment. For all comparison analyses, we show
the results for the whole genome alignment constructed
with seq-seq-pan from genomes sorted by similarity using
the merging step.

Sorting andmerging
We use 102 different orders for the simulated and the
M. tuberculosis dataset and 12 different orders for the larger
S. aureus and E. coli datasets and compare the results

for all sort orders with the alignment using the genomes
sorted by similarity. For these comparisons we use the
mafComparator tool from the mafTools suite [38] and use
the F-score for the assessment of the alignments similar-
ity. As shown in Fig. 3 the order of genomes has minimal
effect on the resulting alignment.
For investigation of the effects of the merging steps we

use the simulated and the M. tuberculosis dataset with
genomes sorted by similarity. Using the sequential work-
flow without the merging step, results in the alignment
of fewer genomes within each LCB and a high number
of single-sequence blocks in both datasets (Table 2). This
indicates that the alignment is more fragmented when
small LCBs are not merged to their neighboring blocks.
Nevertheless, the F-score comparing the results with and
without merging with the truth in the simulated dataset
indicates only small differences in the overall alignment
(Table 2).

Fig. 3 F-scores for comparing alignments using different sort orders
for genomes. Genomes of each dataset were sorted by similarity and
dissimilarity and randomly (100 times for the simulated andM.
tuberculosis datasets and 10 times for the S. aureus and E. coli datasets)
and aligned using the sequential workflow. The F-score is used as
measure of consistency for alignment when comparing alignments
with the dissimilar and random sort orders to the alignment with
genomes sorted by similarity. All F-scores were similar within datasets
and greater than 0.93 for all comparisons
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Table 2 Effect of merging short one-sequence LCBs

Total alignment Mean number of Number of Number of short Precision Recall F-Score
length sequences in LCB short LCBs one-sequence LCBs

Simulated dataset (13 genomes)

With merging step 4809015 9.2 0 0 0.993 0.475 0.643

Without merging step 4789770 5.5 318 156 0.993 0.475 0.643

M. tuberculosis dataset (43 genomes)

With merging step 4826979 16.1 0 0 - - -

Without merging step 4859842 7.5 154 109 - - -

We compare the results from sequentially aligning two genome datasets including and excluding the merging step in the workflow. For estimation of the fragmentation of
the alignment we compare the total alignment length, the number of sequences per block and the number of small (< 10 bp) LCBs and focus on the ones containing only
sequences from one genome. By comparing the precision, recall and F-score of both alignments compared to the true alignment of the simulated dataset we show that the
accuracy of the alignment is not affected by the merging step

Comparison with whole genome alignment tools
The results of all whole genome aligners and our approach
are competitive. In the simulated setting seq-seq-pan
achieves similar precision and recall as progressiveMauve
and Mugsy and better results than progressiveCactus
(Table 3). We assessed whether the results of progres-
siveCactus and Mugsy improved when parametrized to
detect duplications. This had almost no effect for Mugsy
and improved the comparatively low precision for pro-
gressiveCactus, but reduced the recall. Our workflow
achieves a precision as high as TBA, but all aligners
show a significantly lower recall than TBA. However,
comparably low recall values were also observed for sim-
ulated datasets used in the publication introducing the
comparison method applied here [38]. For the M. tuber-
culosis dataset, the result of seq-seq-pan is most similar
to the alignment by Mugsy and closer to the one from
TBA, the most accurate aligner for the simulated dataset,
than all other tested aligners. ProgressiveCactus shows
the least concordance with all aligners, but all F-scores
for comparison between all aligners are greater than 0.9
(Table 4).

Table 3 Precision, Recall and F-Score for alignments of the
simulated dataset

Precision Recall F-score

TBA 0.993 0.999 0.997

progressiveMauve 0.992 0.477 0.644

seq-seq-pan 0.993 0.475 0.643

Mugsy 0.999 0.474 0.643

Mugsy with duplications 0.999 0.474 0.643

progressiveCactus 0.892 0.473 0.618

progressiveCactus with duplications 0.999 0.339 0.506

We compare the results of all alignment tools with the true alignment of the
simulated genomes. Aligners are sorted first by F-score and then by Recall

Table 5 shows the high speed up seq-seq-pan achieves
compared to the whole genome alignment tools. Seq-seq-
pan aligns 13 simulated genomes within 30 min and 43
M. tuberculosis genomes within two hours - being at least
five times faster than all other tools with the real data
set. ProgressiveCactus required almost two days for the
alignment of 43 genomes and we were unable to align
the whole set with Mugsy. It took Mugsy almost 15 h
to align 39 (randomly chosen) genomes. TBA requires
pairwise alignments for all genomes in the dataset and
builds the alignment on top of these. Table 6 shows the
cumulative run time for all steps in the alignment work-
flow. For alignment of the simulated dataset

(13
2
) = 78

pairwise alignments with a mean run time of 4 min
29 s were calculated, and for the M. tuberculosis dataset,(43
2
) = 903 pairwise alignments with a mean run time of

10 h 15 min were required. Of course, depending on the
resources available, sets of pairwise analyses can be done
in parallel.
The memory requirements during the alignment con-

struction are correlated with the elapsed time in most
cases and are therefore lowest for seq-seq-pan, except
for TBA. However, memory consumption of TBA will
increase with the level of parallelization.

Comparison with pan-genome tools
In addition to the set of reference genomes, PanCake
requires pairwise alignments of all genomes to construct
a pan-genome. In the case of our experiments with 43
M. tuberculosis genomes, the construction of

(43
2
) = 903

pairwise alignments is required. For our comparison, we
calculated these sequentially, but depending on the avail-
able hardware, this task can easily be parallelized. For
this reason, we list the run-time and memory require-
ments of pairwise alignments with nucmer [24] separately
(Table 6). Constructing the pan-genome with PanCake
takes considerably longer than with seq-seq-pan. Also, the
extraction of genomes or intervals of genomic sequences
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Table 4 F-score for pairwise comparison of alignment results for theM. tuberculosis dataset

seq-seq-pan Mugsy* progressiveMauve TBA progressiveCactus

seq-seq-pan - 0.996 0.991 0.975 0.934

Mugsy* 0.996 - 0.990 0.974 0.934

progressiveMauve 0.991 0.990 - 0.972 0.928

TBA 0.975 0.974 0.972 - 0.914

progressiveCactus 0.934 0.934 0.928 0.914 -

We estimate the similarity of alignments of progressiveMauve, Mugsy, progressiveCactus, seq-seq-pan and TBA, by calculating the pairwise F-score. The aligner with the most
similar alignment is shown in bold for each aligner. * Aligning 43M. tuberculosis genomes caused a segmentation fault in Mugsy. We were able to align 39 genomes and
therefore compare the results only for this set of sequences

takes more time. The resulting pan-genome file from Pan-
Cake is smaller in size than the one created with seq-seq-
pan. The reason for this difference in size and sequence
extraction times is the strategy of PanCake of storing only
the differences to a reference genome instead of the whole
sequence for all genomes within a shared feature. Remov-
ing genomes and the generation of a consensus genome
are features that are only provided by seq-seq-pan as
listed in Table 1. PanCake detects and aligns sequence
duplications within genomes and provides methods to

Table 5 Run-time and memory usage. We compare seq-seq-pan
to other whole genome aligners in terms of run-time and
memory usage. Time and memory are indicated for
single-threaded processes. Individual steps for TBA can be run in
parallel

Elapsedwall clock
time (hh:mm)

Maximum resident
set size (GB)

Simulated dataset (13 genomes)

seq-seq-pan 00:30 0.77

progressiveMauve 02:33 4.93

Mugsy 01:08 1.01

progressiveCactus 03:41 1.00

TBA 04:59 0.34

M. tuberculosis dataset (43 genomes)

seq-seq-pan 02:06 1.20

progressiveMauve 09:03 2.79

Mugsy* 14:52 3.26

progressiveCactus 47:09 5.54

TBA 386 days 1.32

S. aureus dataset (144 genomes)

seq-seq-pan 08:55 4.27

E. coli dataset (207 genomes)

seq-seq-pan 68:19 8.5

For the larger datasets (S.aureus and E.coli) only seq-seq-pan was used for the
alignment due to run-time limitation of other tools. * Aligning 43M. tuberculosis
genomes caused a segmentation fault in Mugsy. This table lists data for aligning 39
genomes with Mugsy, but the whole set of 43 genomes for all other tools

compute core regions that are present in all aligned
genomes. Arbitrary subsets of sequences can be extracted
and singleton sequences that are only present in individ-
ual genomes can be identified [16]. Due to our choice
to provide the results of seq-seq-pan in standard formats
(XMFA, MAF) existing methods can be used for analy-
sis and examination of alignment properties. For example,
the maf_parse method of the Phast package [35] can be
used to extract sub-alignments in specific regions or based
on feature annotation files.

Discussion
In this contribution, we introduced seq-seq-pan which
enhances whole genome alignments by adding critical fea-
tures for pan-genome data structures e.g. updating the set
of genomes within the pan-genome. It provides a fast and
simple construction process for whole genome alignments

Table 6 Comparison of seq-seq-pan and PanCake

seq-seq-pan PanCake Nucmer

Time for construction
(hh:mm:ss)

02:06:00 88:10:00 03:04:00

Maximummemory
usage

1.20 GB 2.34 GB 0.10 GB

Pan-genome file size 198 MB 36 MB -

Time to add genome 00:04:01 05:33:52 00:08:48

Mean time for
extraction of
sequence*

00:00:09 00:01:08 -

Mean time for
removing genome**

00:00:19 Not available -

Time for consensus
genome creation

00:00:47 Not available -

First we compare the run-time and memory usage of pan-genome creation for the
set of 43M. tuberculosis genomes. PanCake requires pairwise genome comparisons
by nucmer. Run-time and memory requirements for nucmer are listed separately as
these can be run in parallel. We also evaluate the file size of the resulting pan-
genome. We clock all available features (adding a genome, extracting part of a
genome or the whole genome, remove a genome and constructing a consensus
genome). * Extraction times for whole genomes and parts of sequences are equal.
We extracted the interval 500-1000 for all genomes. ** Each of the 43 genomes was
removed from the whole set
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while optimizing the results for usage in subsequent anal-
yses. The continuous merging of small unaligned blocks
prevents the accumulation of sequences without context
or position within the alignment and preserves the syn-
teny of the original genomes, while the realignment of
pairwise alignments avoids the introduction of additional
repeats into the linear pan-genome representation. Both
steps influence the composition of the linear consen-
sus sequence and support its usage with mapping based
methods such as read alignment.
The whole genome alignment format that we use as rep-

resentation of a pan-genome in seq-seq-pan retains the
full sequences and gaps for all aligned genomes in addition
to meta-information about block borders. Therefore, it is
not suitable to store the pan-genome efficiently. However,
this format ensures loss-less and faster handling of the
data. Further, it is thereby accessible by currently available
downstream analysis tools without requiring subsequent
novel tool implementations.
We demonstrate that the sort order of genomes does not

substantially influence the result despite the sequential
nature of our approach.
We compared seq-seq-pan with four whole genome

aligners that offer alignment of non-collinear sequences.
These tools use sophisticated methods for the identifica-
tion of ortho- and even paralogs and conserved sequences.
With these features, they identify similar but unrelated
sequences within genomes, an aspect that is not consid-
ered in the field of pan-genomics. As we do not take
such measures, we did not expect very high concordance
between our results and the whole genome alignments.
However, our comparison shows that our alignment dif-
fers as much from the results of progressiveMauve, pro-
gressiveCactus, Mugsy and TBA as their results differ
among each other. Our approach is able to align a set of
genomes much faster and with less memory usage than
these whole genome alignment tools. Due to the focus on
highly conserved sequences, some of these tools also pro-
vide a very fragmented alignment with many small blocks,
which is prevented by the merge step in seq-seq-pan.
We compare our approach with currently available

methods in terms of applicability and needed prerequi-
sites (input data). For a detailed comparison, we chose
PanCake as an approach by which a pan-genome can be
constructed from a large set of genomes. We show that
the construction of the pan-genome and using the struc-
ture for basic tasks requires substantially less time with
seq-seq-pan than with PanCake. Some features, such as
removing a genome from the pan-genome and the con-
struction of a linear presentation of the pan-genome in the
form of a consensus sequence, are not directly available
in any other pan-genomics tool. For instance, the authors
of PanCake focused on the analysis of core and accessory
gene sets and therefore provide different functionalities.

In the time between November 30th, 2016 and January
20th, 2017 eight new M. tuberculosis genomes became
available in the NCBI Ref-Seq database. This already high-
lights the importance of having the ability to extend a
pan-genome structure. Methods such as the investigated
whole genome alignment tools that constrain the user
to start the alignment afresh with the increased number
of genomes are at risk of reaching computational lim-
its (some indications could be observed for Mugsy in
the experiments already) which is mitigated by our itera-
tive approach which quickly adds new sequences without
having to rebuild previously calculated results. Further-
more, publicly available sets of genomes, such as the
collection of “Complete Genomes” in the NCBI RefSeq
database, are subject to change due to altered quality stan-
dards or the redefinition of reference genomes, such as
the commonly used M. tuberculosis H37Rv strain. There-
fore, it is essential that pan-genome representations also
provide the feature to easily remove genomes from the
initial set without impacting the remaining genomes.
Most of the evaluated tools do not provide methods for
updating a constructed pan-genome. Particularly research
like molecular surveillance, where new data is continu-
ously analyzed and incorporated, depends on data struc-
tures that allow the integration of an up-to-date set of
genomes.

Conclusions
In summary, we present a data structure for the rep-
resentation of pan-genomes that provides a unique set
of features needed for efficiently working with collec-
tions of related sequences and that can be integrated
with existing methods for visualization and subsequent
analyses.

Additional files

Additional file 1: Supplementary Information for “seq-seq-pan”: Building
a computational pan-genome data structure on whole genome
alignment”. Additional file 1 provides details on implementation of the
sequential workflow for whole genome alignment. (PDF 183 kb)

Additional file 2: Supplementary Tables for “seq-seq-pan: Building a
computational pan-genome data structure on whole genome alignment”.
Additional file 2 provides detailed description of the used datasets,
including accession numbers and sort order. (XLSX 83 kb)
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