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Abstract

Background: Due to experimental batch effects, the application of a quantitative transcriptional signature for
disease diagnoses commonly requires inter-sample data normalization, which would be hardly applicable under
common clinical settings. Many cancers might have qualitative differences with the non-cancer states in the gene
expression pattern. Therefore, it is reasonable to explore the power of qualitative diagnostic signatures which are
robust against experimental batch effects and other random factors.

Results: Firstly, using data of technical replicate samples from the MicroArray Quality Control (MAQC) project, we
demonstrated that the low-throughput PCR-based technologies also exist large measurement variations for gene
expression even when the samples were measured in the same test site. Then, we demonstrated the critical
limitation of low stability for classifiers based on quantitative transcriptional signatures in applications to individual
samples through a case study using a support vector machine and a naïve Bayesian classifier to discriminate
colorectal cancer tissues from normal tissues. To address this problem, we identified a signature consisting of three
gene pairs for discriminating colorectal cancer tissues from non-cancer (normal and inflammatory bowel disease)
tissues based on within-sample relative expression orderings (REOs) of these gene pairs. The signature was well
verified using 22 independent datasets measured by different microarray and RNA_seq platforms, obviating the
need of inter-sample data normalization.

Conclusions: Subtle quantitative information of gene expression measurements tends to be unstable under current
technical conditions, which will introduce uncertainty to clinical applications of the quantitative transcriptional
diagnostic signatures. For diagnosis of disease states with qualitative transcriptional characteristics, the qualitative
REO-based signatures could be robustly applied to individual samples measured by different platforms.
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Background
In clinical, biopsy sampling with less-invasive techniques
such as colonoscopy and endoscopic ultrasound-guided
fine needle aspiration is often used for the initial clinical
evaluation of cancer [1–6]. However, an indeterminate
diagnosis often creates a dilemma [7]. Taking colorectal
cancer as an example, it has been reported that the miss
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rate of colorectal cancer after colonoscopy, which is the
predominant screening and diagnostic test for colorectal
cancer [2, 8, 9], is about 15% for patients with inflamma-
tory bowel diseases (IBD) [2]. Thus, it is necessary to
find a molecular biomarker as an auxiliary diagnostic
method for colonoscopy.
With the wide application of high throughput gene

expression profiling techniques, many classifiers based
on quantitative transcriptional signatures for cancer
subtyping [10–12] or early detection [13–17] have
been developed. However, clinical applications of these
transcriptional signatures are scarce due to technological,
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mathematical and translational barriers [18]. Besides fac-
tors such like tissue sampling [19] and sample preparation
quality [20], a well-known factor is that gene expression
data are often “noisy” and subject to lab and batch effects
introduced by the differences in laboratory conditions and
personnel [21–23]. As reported by the MicroArray Quality
Control (MAQC) project [24], for the high-throughput
microarray platforms, the median values of coefficient of
variation (CV) of gene expression levels in replicate sam-
ples measured by the same platforms ranged from 5 to
15% within the same test sites and became 10 to 20% for
replicate samples measured across different test sites.
Similarly, as demonstrated in this study, the quantitative
measurements of gene expression in replicate samples
measured by the low-throughput PCR-based technologies,
such as Standardized (Sta) RT-PCR™ Assays and TaqMan®
Gene Expression Assays, also exist large variations even in
the same test sites. The large variation of quantitative
measurements will introduce uncertainty of such signa-
tures in applications. Due to this problem, the application
of classical classifiers based on quantitative transcriptional
signatures requires data normalization. This means that
the analysis of a single sample requires this sample to be
normalized along with a set of samples measured together.
This constraint makes the classifiers hardly applicable
under common clinical settings. Especially for prognostic
signatures, the risk score of a patient is dependent on the
risk composition of the other samples adopted for
normalization together, introducing substantial uncer-
tainty for risk predication [25–27].
Notably, among the vast number of reported quantita-

tive disease signatures, several signatures have been ap-
proved by the Food and Drug Administration (FDA).
One of the FDA approved signatures is MammaPrint®
for predicting the recurrence risk of early stage (I and II)
breast cancer patients with lymph node negative and
tumor size < 5.0 cm treated with surgical resection
[28–30]. However, currently the tissue samples must
be sent to one of the two Agendia laboratories (one in
Amsterdam, The Netherlands, and the other in Irvine,
CA) for measurement with strict quality control and data
normalization, which greatly limits the wide application of
the signature. Another FDA approved signature is
AlloMap® [31] for identifying the probability of transplant
rejection for heart transplant recipients, which also re-
quires patients’ samples to be sent to a central laboratory
(XDx reference laboratory, based in Brisbane, California)
[31, 32]. The same problem exists in other transcriptional
signatures incorporated into clinical recommendations
and guidelines, such like the Oncotype DX genomic
assay (Genomic Health, Inc. Redwood City, CA, USA)
used for predicting recurrence risk of early stage
breast cancer and in decision making with respect to
systemic therapy [33]. Therefore, obviation of the impact
of the batch effects and the need of inter-sample
normalization is an urgent issue.
In contrast, it has been found that the within-sample

relative expression orderings (REOs) of gene pairs,
which is also called Relative Expression Analysis (RXA)
[34], are robust against experimental batch effects and
invariant to monotone data transformation [34, 35].
Besides, the within-sample REOs of gene pairs are ro-
bust against variations of the tumor epithelial cell pro-
portions in tissues sampled from different sites of a
tumor [19, 36], partial RNA degradation in the sample
preparation process and during the storage stage [20]
and amplification bias for minimum specimens even
with about 15–25 cancer cells [37], which are also im-
portant factors leading to the failure of validation and
clinical application of the quantitative transcriptional
signatures. The robustness property of the within-
sample REOs enables researchers to integrate multiple
datasets produced by the same or similar platforms for
selecting disease signatures and training classifiers
[20, 38, 39], which makes it more likely to find robust
signatures [25, 38, 40]. Based on this unique advantage,
some REO-type classifiers, such as TSP [41], K-TSP [42]
and other adjusted methods [26, 43] were proposed to
identify signatures for discriminating cancer subtypes
[18, 38, 39, 44–46]. Recently, we have reported several
REO-based prognostic signatures for specific medical is-
sues for various cancers such as non-small cell lung can-
cer [25, 47], colorectal cancer [48] and other cancers
[49–51], which have been well verified in multiple data
sources produced by different laboratories, obviating the
need of inter-sample data normalization. These results
provide strong evidences of the clinical applicability of
the type of signatures based on the robust qualitative
REO information extracted from the quantitative mea-
surements of gene expression, rather than the “exact”
quantitative measurements themselves [52]. As revealed
recently, although different platforms (e.g., Affymetrix
and Illumina platforms) have different measurement
principles, it would be highly likely that a REO-based sig-
nature consistently detected by two or more platforms
could be robustly applied to samples measured by other
platforms [53].
In this article, in addition to the previous results

for the high-throughput platforms reported by the
MicroArray Quality Control (MAQC) project [24], we
firstly demonstrated that the quantitative values of
gene expression in replicate samples measured by two
low-throughput PCR-based technologies (StaRT-PCR™
Assays and TaqMan® Gene Expression Assays) in the same
test site also exist large variations. Then, through a case
study of building a support vector machine (SVM) and a
naïve Bayesian classifier for discriminating colorectal can-
cer samples from normal samples, we demonstrated that
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the classical classifiers based on quantitative transcrip-
tional signatures cannot be robustly applied to independ-
ent samples measured by the same platform used for the
training data, let alone the samples measured by different
platforms, which makes this type of signatures being
hardly applicable under clinical settings. Then, we devel-
oped a within-sample REO-based signature that could dis-
criminate colorectal cancer from non-cancer samples
(IBD and normal samples) without the need of inter-
sample data normalization or experimental batch adjust-
ment. The signature was validated using data from mul-
tiple sources measured by different laboratories with
different platforms.

Results
Technical variations of quantitative measurement
Firstly, we evaluated the CV of gene expression mea-
surements in replicates for sample A and sample B mea-
sured in the same test site by two PCR-based
technologies, StaRT-PCR™ Assays and TaqMan® Assays,
respectively.
For a total of 199 genes with non-zero measurements

assayed by StaRT-PCR™ for 3 replicates of sample A,
about 32.7% genes showed at least 10% CV and 15.1%
genes showed at least 15% CV. Similarly, for a total of
195 genes with non-zero measurements assayed by
StaRT-PCR™ for 3 replicates of sample B, about 34.4%
genes showed at least 10% CV and 17.4% genes showed
at least 15% CV, the results were also shown in Fig. 1.
For a total of 964 genes with non-zero measurements

assayed by TaqMan® for sample A, about 13.1% genes
showed at least 10% CV and 7.8% genes showed at least
Fig. 1 Quantitative measurement variation for replicates measured
by PCR-based technologies. For each of the sample types (sample A
and sample B) measured by StaRT-PCR™ Assays and TaqMan® Assays,
the red bar denotes the percentage of genes that shows at least
10% CV and the green bar denotes the percentage of genes that
shows at least 15% CV. The total number of such genes within each
assay and sample type is noted by blue dots connected by lines and
is read on the secondary axis
15% CV. Similarly, for a total of 905 genes with non-
zero measurements assayed by TaqMan® for sample B,
about 10.7% genes showed at least 10% CV and 6.2%
genes showed at least 15% CV, as shown in Fig. 1. Al-
though TaqMan® Assays showed smaller variations than
StaRT-PCR™ Assays, the variations were still not negli-
gible even in samples measured in the same test site,
and it could expect that the variations would increase
for measurements from different test sites.

Limitation of classifiers based on quantitative
transcriptional signatures
Due to large experimental batch effects, quantitative
transcriptional measurement data from different experi-
ments or profiled with different platforms could not be
directly put together to train traditional SVM and naïve
Bayesian classifiers. Because we could not find a single
dataset with sufficient samples for colorectal cancer, nor-
mal and IBD tissues simultaneously, we were unable to
train SVM and naïve Bayesian classifiers based on quan-
titative measurements for discriminating colorectal can-
cer and non-cancer (normal or IBD) tissue samples.
Thus, we constructed the SVM and naïve Bayesian clas-
sifiers for a simpler problem, discriminating colorectal
cancer and normal tissue samples, to demonstrate the
limitations of quantitative transcriptional signatures.
Between the 32 cancer samples and 32 normal samples

from dataset GSE8671, 7028 differentially expressed
genes were detected using Student’s t-test with 1% FDR
control. Using these 7028 genes as feature genes, a SVM
classifier with radial basis function (RBF) kernel was
trained with tenfold cross-validation [54, 55] using the
training dataset GSE20916 with 91 cancer and 44 nor-
mal tissue samples. The sensitivity and specificity of the
SVM classifier were 98.9% and 100.0% in the training
dataset, respectively. However, when tested by validation
datasets without applying inter-sample normalization,
the classifier failed badly in many cases as described in
Fig. 2a and Additional file 1: Table S1. For example, only
35.0% of the 177 cancer samples from the dataset
GSE17536 were correctly classified and none of the 12
cancer samples from the dataset GSE4107 were correctly
classified. Both the datasets were measured by the same
Affymetrix platform with the training dataset. When the
SVM classifier was applied to the datasets measured by
other platforms, none of the 365 cancer samples from
three datasets (GSE31279 measured by the Illumina plat-
form; GSE50760 and TCGA measured by the RNA_seq
platform) were correctly classified. Similar results were
also observed for the naïve Bayesian classifier, as shown
in Fig. 2b and Additional file 1: Table S1.
More comprehensive evaluation results were shown in

Supplementary Result and Additional file 1: Table S2-S6.
These results clearly show that the classical classifiers



Fig. 2 Sensitivity and specificity of SVM classifiers (a) and naïve
Bayesian classifier (b) for validation datasets. Notably, some datasets
included only colorectal cancer tissue samples or normal tissue
samples, so only the results of sensitivity or specificity were shown
for those datasets
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based on the quantitative transcriptional signatures can-
not be robustly applied to independent samples even
measured by the same platform as the training datasets,
let alone the samples measured by different platforms.
This problem limits the applicability of these classifiers
to clinical applications.

Identification and application of REO-based signature
The analysis procedure is described in Fig. 3. Firstly,
using 91 normal samples and 123 IBD samples measured
by the Affymetrix platform collected from 11 datasets
(see Table 2), we identified 144,090,213 gene pairs with
identical REOs in at least 90% of both the normal sam-
ples and the IBD samples. Similarly, using 344 colorectal
cancer tissue samples from 9 datasets measured by the
Affymetrix platform (see Table 2), we identified
149,446,895 gene pairs with identical REOs in at least
90% of the cancer tissues. We found 843 gene pairs that
have reversal REOs from the above two lists of gene
pairs. Among these 843 gene pairs, we further selected
141 gene pairs that had the identical REOs in at least
90% of 171 non-cancer samples and reversed REOs in at
least 90% of 84 cancer samples in the combined
GSE48634 and GSE37178 datasets measured by the Illu-
mina platform, the list of the 141 gene pairs were shown
in Additional file 1: Table S7. These 141 gene pairs were
sorted in a descending order according to their reversal
coverage rates (see Methods) between all the cancer
samples and all the non-cancer samples in the training
data collected from 13 datasets measured by Affymetrix
platform (see Table 2). We then used the top-ranked k
pairs, where k is an odd integer, to classify samples ac-
cording to the majority vote rule. The results showed
that for all possible k values ranging from 1 to 141, the
largest geometric mean of sensitivity and specificity was
94.8% when k = 3 (Fig. 4). Thus, these three gene pairs,
as described in Table 1, were selected as the signature
for discriminating colorectal cancer samples from non-
cancer samples.
The performance of the signature was evaluated using

independent test datasets measured by multiple different
platforms. As shown in Fig. 5 and Additional file 1:
Table S8, the performance of the signature in each of
the 12 datasets measured by the Affymetrix GPL570
platform is excellent. In total, 98.3% of the 643
colorectal cancer samples and 96.6% of the 295 non-
cancer samples were identified correctly. Similar re-
sults were observed for the independent test datasets
measured by the Illumina platforms, as shown in Fig. 5
and Additional file 1: Table S8. Especially, the signa-
ture was also verified in the datasets measured by the
RNA sequencing platforms which have no data used
in obtaining the signature. For the TCGA dataset,
97.9% of the 285 colorectal cancer samples and 97.6%
of the 41 normal colorectal samples were identified
correctly. For the GSE72819 dataset which did not in-
clude colorectal cancer samples, 94.5% of the 73 non-
cancer tissue samples were correctly identified. The
above results indicate that the classifier based on the
within-sample REOs of gene pairs can be applied to
the analysis of individual samples measured by differ-
ent platforms, obviating the need of inter-sample data
normalization.
Moreover, to explore the generalization of the signa-

ture, we used all the possible top-ranked k (where k is
an odd integer) pairs from the 141 gene pairs to classify
samples according to the majority vote rule. With differ-
ent top-rank k, similar performances were achieved in
the validation datasets, as shown in Additional file 2:
Figure S1. However, for the dataset GSE68570, the clas-
sification performance decreased slightly when k in-
creased to 77 or larger. The possible reason of the
decreased performance for GSE68570 should be that the
gene pairs with relatively low reversal rates in the train-
ing data might be unstable in data measured by other
platforms [53]. In general, the generalization of the sig-
nature with three gene pairs is good enough.



Fig. 3 Analysis procedure for identifying a cross-platform REO-based signature
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Discussion
We demonstrated that, besides high-throughput gene
expression profiling platforms, the low-throughput PCR-
based quantitative measurements also exist large vari-
ation in replicate samples measured in the same or
different test sites. Thus, the classifiers based on
quantitative transcriptional signatures could not be ro-
bustly applied to individual samples measured by the
Fig. 4 Performance of k-gene pairs REO-based signature applied to
the training set. The majority vote rule was used for classification
same platform as the training samples, let alone those
individual samples measured by different platforms. This
could explain the problem mentioned in Introduction
that some quantitative transcriptional signatures ap-
proved by FDA or incorporated into clinical guidelines
must be sent to a central laboratory for measurement
with strict quality control and data normalization. Be-
sides the batch effects, the quantitative measurements of
gene expression are commonly affected by partial RNA
degradation [20] and different sampling sites of tumor
for the same patient [19], which will increase the uncer-
tainty for clinical applications of quantitative transcrip-
tional diagnostic signatures.
Table 1 The REO-based signature

Gene pair REO (Gi > Gj)
a

1 GPAT3 > TRIP13

2 PYY > CKAP2

3 SDCBP2 > DAP3

Note:
aRelative expression ordering (REO) of a gene pair, Gi > Gj denotes that the
expression value of gene i is larger than the expression value of gene j in 90%
of non-cancer samples but is less than the expression value of gene j in 90%
of colorectal cancer samples



Fig. 5 Performance of the REO-based signature applied to multiple
independent datasets from different platforms. The majority vote
rule was used for classification
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Fortunately, as demonstrated in our previous studies
[19, 20, 36] and in this study, the REO-based transcrip-
tional signatures could circumvent the above-mentioned
problems. As a case study, we identified a signature con-
sisting of three gene pairs for discriminating colorectal
cancer from non-cancer (normal and IBD) tissue sam-
ples based on the within-sample REOs of the gene pairs.
The result showed that the REO-based signature ob-
tained from samples measured by two different plat-
forms could be robustly applied to classify individual
samples measured by multiple different platforms, in-
cluding the RNA_seq platform that did not participate
in the training process. However, in the GSE31279 data-
set measured by the Illumina GPL6104 platform which
did not participate in the training process, the signature
performed relatively poor: only 81.8% of the 44 cancer
samples and 73.8% of the 42 normal samples from were
correctly identified. Although the within-sample REOs
tend to be rather robust to data measured by different
platforms, a certain degree of uncertainty still exists due
to different measurement principles of the platforms
[53]. Ideally, a REO-based signature should be applied to
data measured by the platforms participating the train
and validation of the signature.
Even with sufficient high-quality data, it is difficult to

interpret the signature used in complex classifiers to
gain biological insights about the biomarkers [18]. In
contrast, we can readily gain biological insights for a sig-
nature consisting of only a few genes. The three gene
pairs of the signature for colorectal cancer diagnosis
consist of GPAT3 and TRIP13, PYY and CKAP2,
SDCBP2 and DAP3. These genes were found in the dif-
ferentially expressed genes (Student’s t-test, FDR < 0.01)
detected between the 32 cancer samples and 32 normal
samples in the GSE8671 dataset. For GPAT3-TRIP13
gene pair, both up-regulation of TRIP13 and down-
regulation of GPAT3 contribute to the reversal REO in
colorectal cancer samples. Similarly, for PYY-CKAP2 and
SDCBP2-DAP3 gene pairs, up-regulation of CKAP2,
DAP3 and down-regulation of PYY, SDCBP2 contribute
to the reversal REO in colorectal cancer samples. Some
of these genes, such as TRIP13 [56], PYY [57], are
known to be cancer-associated. TRIP13 is a novel mi-
totic checkpoint-silencing protein, whose overexpression
is associated with poor prognosis in breast cancer pa-
tients [56, 58, 59]. The decreased expression of PYY may
be relevant to the development and progression of colon
adenocarcinoma [57]. We additionally showed the distri-
bution of the expression level of the 6 genes in dataset
GSE8671. As shown in Fig. 6, the fold changes of each
signature gene pair across samples for the two pheno-
types were quite different. For the GPAT3 - TRIP13 gene
pair, as shown in Fig. 6a, the fold change of the expres-
sion levels between GPAT3 and TRIP13 took values ran-
ging from 1.26 to 1.72 with the median of 1.38 in the
normal samples, while in the tumor samples the fold
change took values ranging from 0.63 to 1.06 with the
median of 0.87. Similar results for the other two gene
pairs, PYY - CKAP2 and SDCBP2 - DAP3, were shown
in Fig. 6b and c, respectively. The above results showed
that the fold changes of each signature gene pair are
quite different across different samples for each of the
two phenotypes but the relative expression levels of the
gene pair are stably.
The REO-based method is based on a single binary

“switch” that compares the ordering of expression be-
tween two genes. The simplicity does not necessarily
limit its prediction performance and the method is not
prone to the overfitting issue. Arguably, REO-based sig-
natures may lose some subtle quantitative information
on gene expression. However, considering that subtle
quantitative information of gene expression measure-
ments tends to be unreliable and even the ratios of ex-
pression values of gene pairs are affected by the batch
effects [25, 60], the apparent disadvantage of REOs ana-
lysis is in fact a unique advantage in terms of robustness
[20]. The REO-based signature identified for colorectal
cancer obviates the need of data normalization, which
makes it feasible to clinical settings for colorectal cancer
diagnosis and surveillance of patients with long-term
IBD using biopsies obtained by colonoscopy or other im-
proved techniques [61–65]. Notably, we have applied
both the tissue samples and biopsy samples for training
and validation. Thus, the signature based on the REOs is
suitable for tissue samples and biopsy samples [10].
The main purpose of this study is to systematically

demonstrate the critical limitations of the traditional
classifiers based on the quantitative transcriptional mea-
surements, which are sensitive to batch effects and de-
tection platforms and could not be applied directly to
the data measured by different laboratories. As for the



Fig. 6 The distribution of the expression levels of the 3 gene-pairs in GSE8671. The gene expression levels of GPAT3 and TRIP13 (a), PYY and CKAP2
(b) and SDCBP2 and DAP3 (c)
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REO-based method, other approaches, such as TSP and
k-TSP, could be applied to the data measured by differ-
ent laboratories or platforms. Here, we additionally eval-
uated other rank based approaches using the same
training and validation datasets. Using the tspair R pack-
age (version 3.3.3), we trained the TSP classifier in the
training samples directly combined from data measured
by the Affymetrix and Illumina platforms. In the training
set, 97.0% of the 428 cancer samples and 94.3% of the
385 non-cancer sample were correctly identified. How-
ever, the classifier failed badly in many validation data-
sets as described in Additional file 1: Table S9. Using the
ktspair R package (version 3.3.3), we also trained the k-
TSP classifier. In the training set, with the default five-
fold cross-validation, 5 gene pairs were selected as the
classification signature which correctly identified 96.7%
of the 428 cancer samples and 98.0% of the 385 non-
cancer sample. In the validation data, the k-TSP classi-
fier performed better than the TSP classifier but poorer
than our signature, as shown in Additional file 1:
Table S10. For example, for the dataset GSE23878,
our REO signature could identify 91.7% of the 24
non-caner sample correctly, but the k-TSP signature
identified only 41.7% non-cancer samples correctly.
One possible reason should be that the difference in
the proportion of samples from Affymetrix and Illu-
mina platform will make the signature to be unable
to characterize the common features of the two plat-
forms but biased to the platform with larger samples.
Other approaches such as CART [66] should have the
same problem. In the training process for our REO
signature, the gene pairs (141 gene pairs) that were
consistently detected in the data produced by the two
platforms were used for the final signature selection
(3 gene pairs in this study). Therefore, our method is
intuitive and simple with the ability to identify very
robust disease signatures.
In conclusion, REO-based signatures circumvent the

critical limitation of quantitative transcriptional signa-
tures and the REO-based classifying method should
be also applicable for classifying other tissue samples.
Moreover, because the data normalization problem
also exists in miRNA [67] and DNA methylation pro-
file analyses, the REO-based analysis of these multi-
omic data should be taken into account in the further
study.

Conclusions
Because the subtle quantitative information of gene ex-
pression measurements currently tends to be greatly af-
fected by many random factors, the disease diagnostic
signatures based on the quantitative measurements lack
robustness for clinical applications. Thus, we should
make more efforts to capture the qualitative differences
of gene expression patterns between cancer and non-
cancer and between cancer subtypes to exploit robust
qualitative signatures for disease diagnosis.

Methods
Data and preprocessing
The gene expression profiles analyzed in this study are
described in Table 2. The array-based data measured by
the Affymetrix and Illumina platforms were downloaded
from Gene Expression Omnibus [68] (GEO, http://
www.ncbi.nlm.nih.gov/geo/) and the mRNA-seq data
measured by the Illumina platform were downloaded from

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo


Table 2 Data used in this study

GEO Acc Platform Sample sizea

Normal IBD Tumor

Training

GSE32323 Affymetrix GPL570 17 17

GSE22598 Affymetrix GPL570 17 17

GSE41328 Affymetrix GPL570 10 10

GSE4107 Affymetrix GPL570 10 12

GSE4183 Affymetrix GPL570 8 15 15

GSE18105 Affymetrix GPL570 17 94

GSE12251 Affymetrix GPL570 23

GSE13367 Affymetrix GPL570 16

GSE9452 Affymetrix GPL570 8

GSE16879 Affymetrix GPL570 6 61

GSE35144 Affymetrix GPL570 27

GSE35896 Affymetrix GPL570 62

GSE33113 Affymetrix GPL570 6 90

GSE37178 Illumina GPL6947 84

GSE48634 Illumina GPL10558 69 102

Validation

GSE9348 Affymetrix GPL570 12 70

GSE23878 Affymetrix GPL570 24 35

GSE47908 Affymetrix GPL570 15 39

GSE36807 Affymetrix GPL570 7 28

GSE27854 Affymetrix GPL570 115

GSE22619 Affymetrix GPL570 10 10

GSE21510 Affymetrix GPL570 25 123

GSE17536 Affymetrix GPL570 177

GSE14580 Affymetrix GPL570 6 24

GSE8671 Affymetrix GPL570 32 32

GSE9254 Affymetrix GPL570 19

GSE20916 Affymetrix GPL570 44 91

GSE53306 Illumina GPL10558 12 28

GSE31279 Illumina GPL6104 42 44

GSE33126 Illumina GPL6947 9 9

GSE68570 Illumina GPL10558 5 6

GSE26305 Illumina GPL6884 2 2

GSE56789 Illumina GPL10558 40

GSE43841 Illumina GPL14951 6

GSE50760b Illumina GPL11154 18 36

GSE72819b Illumina GPL11154 73

TCGA_coadb,c IlluminaHiSeq_RNASeqV2 41 285

Notes:
aEmpty cells indicate that there is no sample in the corresponding category
bThese samples are measured by the RNA-sequencing platform
cDenotes the colorectal adenocarcinoma sample from TCGA
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ArrayExpress [69] (http://www.ebi.ac.uk/arrayexpress/)
and The Cancer Genome Atlas [70] (TCGA, http://
cancergenome.nih.gov/).
For the data measured by the Affymetrix platform, we

downloaded the raw mRNA expression data (.CEL files)
and used the Robust Multi-array Average (RMA) algo-
rithm for background adjustment without quantile
normalization [71]. For the data measured by the
Illumina platform, we directly downloaded the processed
data. For the sequence-based data from TCGA, we dir-
ectly downloaded the level 3 data measured by the UNC
IlluminaHiSeq_RNASeqV2 platform.
For the array-based data, each probe ID was mapped to

Entrez gene ID with the corresponding platform file. If a
probe was mapped to multiple or zero genes, then the data
of this probe were deleted. If multiple probes were mapped
to the same gene, the expression value of the gene was de-
fined as the arithmetic mean of the values of multiple
probes. For the sequence-based data from ArrayExpress,
the gene symbols were mapped to Entrez gene ID with the
biological database network [72] (bioDBnet, https://
biodbnet-abcc.ncifcrf.gov/db/db2db.php).

Variation analysis of quantitative measurement
In the MicroArray Quality Control (MAQC) project,
two commercially available Reference RNA samples
(sample A and sample B) with multiple replicates were
measured by multiple microarray platforms and PCR-
based technologies [24]. The MAQC project has re-
ported the large measurement variations of the high-
throughput microarray platforms [24]. Here, we add-
itionally analyzed the variations of quantitative gene
expression levels measured by two PCR-based technolo-
gies, Standardized (Sta) StaRT-PCR™ and TaqMan® Gene
Expression Assays.
The MAQC PCR-based data, as described in Table 3,

were directly downloaded from GSE5350. Notably, for
the 3 replicates of sample A and sample B measured by
StaRT-PCR™ Assays. If the measurement of a gene was 0
or “nan” in at least one replicate of a sample, then this
gene was not included for further analysis. Thus, the
total number of genes was not identical for sample A
and sample B. For 4 replicates of sample A or sample B
measured by TaqMan® Assay, a gene was considered ab-
sent in a sample when the average cycle threshold (CT)
exceeds 35 [24]. For sample A or sample B, if the meas-
urement of a gene was absent in at least one replicate,
this gene was not included for the further analysis. Thus,
Table 3 MAQC PCR-based data used in this study

GEO Acc Protocol Platform Sample A Sample B

GSE5350 StaRT-PCR™ Assays GPL4198 3 3

GSE5350 TaqMan® Assays GPL4097 4 4

http://www.ebi.ac.uk/arrayexpress
http://cancergenome.nih.gov
http://cancergenome.nih.gov
https://biodbnet-abcc.ncifcrf.gov/db/db2db.php
https://biodbnet-abcc.ncifcrf.gov/db/db2db.php
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the total number of genes for sample A and sample B
obtained from TaqMan® Assays was also not identical.
For the gene expression levels of a certain gene in the

replicates for sample A or sample B measured by each
platform, the coefficient of variation (CV), calculated as
the ratio of the standard deviation and arithmetic mean
for the expression levels of this gene in the replicates, is
used to measure the degree of variation of quantitative
measurements. For the sample A and sample B mea-
sured by each platform, we calculated the percentage of
genes that shows at least 10% and 15% CV, respectively,
to reveal the degree of variation or uncertainty of quan-
titative measurements.

SVM and naïve Bayesian classifiers
The SVM classifier using radial basis function (RBF) ker-
nel [55] and the naïve Bayesian classifier, implanted in
the WEKA software (version 3–6-13) with the default
settings [54], were used for the case study. Each of the
classifiers was trained with tenfold cross-validation in
the training data. The performance of a trained classifier
was evaluated in multiple independent data with or
without normalization.
We called cancer samples as positive samples, non-

cancer samples, either normal or IBD, as negative sam-
ples, and evaluated the performance of the classification
signature using sensitivity and specificity which are cal-
culated as follows:

Sensitivity ¼ TP
TPþ FN

Specificity ¼ TN
TNþ FP

where TP, TN, FP and FN denote the number of true
positives, true negatives, false positives and false nega-
tives, respectively.

Identification of the REO-based diagnosis signature
First, in the training dataset, each gene measurement is
converted to its rank within each sample (the smallest
measurement corresponding to the minimum rank, and
the largest measurement corresponding to the maximum
rank). Then, pairwise comparisons are performed for all
genes to identify gene pairs with stable ordering in sam-
ples for a particular tissue type. For a pair of genes (i, j),
the relationship of their relative ranks, Gi and Gj, within
one sample, has only two possibilities, Gi > Gj or Gi < Gj.
The relationship is called the relative expression order-
ing (REO). If the same REO pattern is maintained in a
majority of samples, e.g. 90%, it is called a highly stable
REO and the pair is a highly stable gene pair. Further-
more, if a gene pair (i, j) is highly stable in both a group
of non-cancer samples and a group of cancer samples,
respectively, but with reversal REO patterns (Gi < Gj in
one group but Gi > Gj in the other group), the pair is
called a reversal gene pair. Here, we selected the reversal
gene pairs which are highly stable in non-cancer samples
and cancer samples, respectively, but the REO patterns
are reversed in the latter group. They form the candidate
REO signature of the cancer.
Then, the candidate REO signatures selected above

were sorted in a descending order according to their re-
versal coverage rates, where the reversal coverage rate of
a reversal gene pair is defined as the geometric mean of
the percentage of the highly stable REO pattern in the
non-cancer samples and the percentage of the reversed
REO pattern in the cancer samples. Obviously, the
higher the reversal coverage rate is for a gene pair, the
higher the classification ability is for this gene pair.
Thirdly we used the top k gene pairs, where k is an odd

integer ranging from 1 to the total number of the reversal
gene pairs, to classify the samples based on the majority
vote rule. The value of k was chosen as the smallest num-
ber of gene pairs that reached the highest geometric mean
of the sensitivity and specificity in the training data.
Finally, the signature was tested in independent

samples.
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