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Abstract

Background: Precise identification of three-dimensional genome organization, especially enhancer-promoter interactions
(EPIs), is important to deciphering gene regulation, cell differentiation and disease mechanisms. Currently, it is
a challenging task to distinguish true interactions from other nearby non-interacting ones since the power of
traditional experimental methods is limited due to low resolution or low throughput.

Results: We propose a novel computational framework EP2vec to assay three-dimensional genomic interactions. We
first extract sequence embedding features, defined as fixed-length vector representations learned from variable-length
sequences using an unsupervised deep learning method in natural language processing. Then, we train a classifier to
predict EPIs using the learned representations in supervised way. Experimental results demonstrate that EP2vec obtains
F1 scores ranging from 0.841~ 0.933 on different datasets, which outperforms existing methods. We prove the robustness
of sequence embedding features by carrying out sensitivity analysis. Besides, we identify motifs that represent cell line-
specific information through analysis of the learned sequence embedding features by adopting attention mechanism.
Last, we show that even superior performance with F1 scores 0.889~ 0.940 can be achieved by combining sequence
embedding features and experimental features.

Conclusions: EP2vec sheds light on feature extraction for DNA sequences of arbitrary lengths and provides a powerful
approach for EPIs identification.

Keywords: Enhancer-promoter interactions, Three-dimensinal interactions, Natural language processing, Unsupervised
learning

Background
One of the major discoveries in recent years is that non-
coding DNAs are not “junk”. On the contrary, they fulfill
a wide variety of crucial biological roles involving regula-
tory and signaling functions [1]. Enhancer is one of the
most important noncoding elements that has a central
role in controlling gene expression [2]. Recent studies
have shown that noncoding single nucleotide polymor-
phisms (SNPs) that are associated with risk for numerous

common diseases through genome-wide association
studies (GWAS), frequently lie in cell line-specific
enhancers [3, 4]. These GWAS SNPs are hard to interpret
because we are unaware of how non-coding SNPs affect
gene expression and disease transmission through the
complicated regulatory relationship [5]. We can improve
understanding of disease mechanisms if enhancers are
accurately linked to the promoters/genes they regulate.
For example, Guo et al. [6] identified mechanism of
GWAS risk SNP rs7463708 in promoting prostate
transformation. This SNP is located in the enhancer of
long noncoding RNA (lncRNA) PCAT1 and significantly
upregulates PCAT1 expression. PCAT1 interacts with the
enhancers of prostate cancer genes GNMT and DHCR24,
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and in turn promotes prostate tumorigenesis. Thus, the
identification of true three-dimensional (3D) genome
organization, especially EPIs across different cell lines con-
stitutes important steps towards understanding of gene
regulation, cell differentiation and disease mechanisms.
However, there are enormous technical challenges to

obtain these 3D interactions in the entire genome.
Chromosome conformation capture-based (3C) methods
[7], including 4C [8] and 5C [9] have been developed to
detect physical contacts in the 3D space but fail to capture
whole genome interactions. Chromatin Interaction
Analysis by Paired-End Tag Sequencing (ChIA-PET) [10]
allows genome-wide measurements but is restricted to
interactions mediated by a preselected protein of interest.
The method of Hi-C [11] allows the genome-wide
detections of interactions but its current resolution is not
high enough (~ 10 kb) to capture individual EPIs. All these
traditional experimental approaches for detecting 3D
genome interactions remain time-consuming and noisy,
motivating the development of computational approaches.
To bridge this growing gap between low-resolution

experiments and high-resolution EPIs, some computa-
tional methods have been established, which mainly fall
into two classes. One class is based on experimental
features. For instance, IM-PET [12], RIPPLE [13],
TargetFinder [14] and EpiTensor [15], aim to predict 3D
genomic interactions in different cell lines by integrating
numerous one-dimensional (1D) local chromatin states
including genomic and epigenomic data. Among them,
TargetFinder is the state-of-the-art computational
method to identify true EPIs by collecting experimental
data sets including histone modifications, TF binding,
chromatin accessibility and gene expressions. The other
class is based on sequence information only, which is
represented by SPEID [16]. SPEID takes advantage of a
convolutional Long Short-Term Memory (LSTM)
network to learn the feature representation from input
sequences automatically and can reliably predict EPIs.
Existing 3D genomic interaction prediction methods

fail to exploit sequence information except SPEID. At
the meantime, there are many inspiring methods for 1D
chromatin states prediction [17, 18], including gkmSVM
for enhancer prediction [19], DeepSEA for epigenomic
state prediction [20] and DeepBind for DNA/RNA-bind-
ing proteins prediction [21], which extract sequence fea-
tures and yield high performance. gkmSVM transforms
variable-length sequences to fixed-length k-mer features
to classify input DNA sequences. k-mer features are an
unbiased, complete set of sequence features defined on
arbitrary-length DNA sequences but lose the contextual
information between adjacent k-mers. DeepSEA and
DeepBind take advantage of powerful convolutional
neural networks (CNN) but they require fixed-length
sequences as input, which is also a limit for SPEID.

Since DNA sequences are in variable length and context-
ual information is important for understanding the
function of whole sequence, how to transform a
variable-length sequence into a fixed-length vector rep-
resentation conserving the context information remains
challenging and crucial for improving sequence-based
prediction methods.
It is well-known that learning a good representation of

input data is an important task in machine learning.
There is an analogous problem in natural language
processing, which is to learn an embedding vector for a
sentence, that is essentially, to train a model that is able
to automatically transform a sentence to a vector and
encodes its semantic meaning. Paragraph Vector [22]
successfully solves the problem by mapping texts into a
unified vector representation, and generates embedding
representation which can be further used for different
applications [23], such as machine translation [24], senti-
ment analysis [22], and information retrieval [25].
Inspired by the idea of sentence embedding, we present

a novel 3D interactions prediction method, named
EP2vec, in this paper. First, we utilize an unsupervised
deep learning method, namely Paragraph Vector, to learn
sequence embedding features. Concretely, we embed the
enhancer sequences and promoter sequences into a vector
space separately, and then every sequence can be repre-
sented as a vector, namely the sequence embedding
features. Then, EP2vec uses the resulted features for
subsequent classification of EPIs through supervised
learning. Our experiments prove that we are able to accur-
ately predict EPIs using only the sequence embedding
features, which outperforms other existing computational
methods. In addition, by combining both sequence
embedding features and experimental features, we can
further improve performance, which indicates sequence
embedding features and experimental features are
complementary to each other. Furthermore, by applying
attention mechanism, we successfully interpret the
meaning of sequence embedding features and find motifs
that represent cell line information. The source code to
implement EP2vec can be downloaded from https://
github.com/wanwenzeng/ep2vec.

Methods
Datasets
The majority of our datasets were adapted from Tar-
getFinder. Promoter and enhancer regions were iden-
tified using ENCODE Segway [26] and ChromHMM
[27] annotations for K562, GM12878, HeLa-S3, and
HUVEC cell lines, and using Roadmap [28] Epige-
nomics ChromHMM annotations for NHEK and
IMR90 cell lines. Since EPIs could only happen
between active enhancers and promoters, we used the
full set of all enhancers and promoters as external
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resources to perform unsupervised feature extraction
which would be elaborated in the next section. The
total number of enhancers and the number of pro-
moters for each cell line are reported in Table 1. The
length distributions of enhancers and promoters in
six cell lines are shown in Additional file 1: Figures
S1 and S2.
To focus on distal interactions, enhancers closer than

10 kb to the nearest promoter were discarded. Using
GENCODE [29] version 19 annotations and RNA-seq
data from ENCODE, promoters were reserved if actively
transcribed (mean FPKM > 0.3 [30] with irreproducible
discovery rate < 0.1 [31]) in each cell line. Positive EPIs
were annotated using high-resolution genome-wide Hi-
C data [32]. These EPIs were assigned to one of five bins
based on the distance between the enhancer and the
promoter, such that each bin had the same number of
interactions. Negative pairs were assigned to their corre-
sponding distance bin and then subsampled within each
bin, using one negative per positive. The number of
positive or negative samples for each cell line is reported
in Table 1.
In addition, we also collected a dataset from FAN-

TOM5 project [4]. The FANTOM5 consortium ex-
tracted RNA transcripts from a multitude of different
primary cells and tissues using the Cap Analysis of
Gene Expression (CAGE) experiment. Because active
enhancer regions were transcribed, they identified a
distinct bidirectional CAGE pattern which could pre-
dict enhancer regions based on CAGE data not asso-
ciated with promoters. The transcribed enhancer atlas
held around 40,000 transcribed enhancers across the
human body, which they called permissive enhancers.
We collected the permissive enhancers and RefSeq
promoters. Using statistical methods, FANTOM5
defined some enhancer-promoter interactions, which
we considered as positive samples. Negative samples
were generated as random pairs of enhancers and

promoters based on the distance distribution of the
positive samples.

Workflow of EP2vec
The workflow of EP2vec contained two stages including
the unsupervised feature extraction and supervised learn-
ing (Fig. 1). Sequences of active regulatory elements in a
specific cell line have cell line-specific regulatory informa-
tion. Hence, EP2vec could use unsupervised methods to
extract useful information from the sequences set, which
would benefit subsequent tasks such as EPIs prediction.
EP2vec regarded DNA sequences as sentences with k-
mers as words, and learned effective representations of
these sequences based on the co-occurrence statistics of
k-mers.
Stage 1 of EP2vec was unsupervised feature extraction

which transforms enhancer sequences and promoter
sequences in a cell line into sequence embedding
features separately. Given a set of all known enhancers
or promoters in a cell line, we first split all the
sequences into k-mer words with stride s = 1 and assign
a unique ID to each of them. Regarding the prepro-
cessed sequences as sentences, we embedded each
sentence to a vector by Paragraph Vector. Concretely,
we used vectors of words in a context with the sentence
vector to predict the next word in the context using
softmax classifier. After training converges, we got
embedding vectors for words and all sentences, where
the vectors for sentences were exactly the sequence
embedding features that we needed. Stage 2 is super-
vised learning for predicting EPIs. Given a pair of
sequences, namely an enhancer sequence and a pro-
moter sequence, we represented the two sequences using
the pre-trained vectors and then concatenated them to
obtain the feature representation. Lastly, we trained a
Gradient Boosted Regression Trees classifier (GBRT) to
predict whether this pair was a true EPI.

Feature extraction
In this section, we will illustrate how to apply Paragraph
Vector to learn fixed-length feature representations from
variable-length DNA sequences in Stage 1.
First, given a set of all known enhancers or promoters

in a cell line, we assigned a unique ID for each se-
quence, and split it into k-mers. k-mers were split along
a sequence using sliding window with stride s, meaning
that two adjacent k-mers had a distance of s bps. Thus,
in general, a sequence with L bps will be split into floor
L−k
s

� �þ 1 k-mers. For example, we could split “ATG-
CAACAC” into four 6-mers with stride s = 1 as “ATG-
CAA”, “TGCAAC”, “GCAACA” and “CAACAC” with ID
“SEQEUNCE_i” (Fig. 1). From now on, we regarded the

Table 1 Details of each cell line dataset. The enhancers (or
promoters) column indicates the number of all known active
enhancers (or promoters) for each cell line, which are used for
unsupervised feature learning for enhancer (or promoter)
sequences

Dataset enhancers promoters true EPIs false EPIs

K562 82806 8196 1977 1975

IMR90 108996 5253 1254 1250

GM12878 100036 8453 2113 2110

HUVEC 65358 8180 1524 1520

HeLa-S3 103460 7794 1740 1740

NHEK 144302 5254 1291 1280

FANTOM 43011 49620 61542 61542
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split enhancers or promoters as sentences and the k-mers
as words. Note that the vocabulary size of k-mers was 4k.
Second, each sentence was mapped to a unique

vector in a d-dimensional vector space, where d was
the embedding dimension. Each word was also
mapped to a unique vector in the same space. The
basic training algorithms were greedy in nature, we
followed general pratics to initialize all these vectors
at random before training. For example, the sentence
“SEQEUNCE_i” was mapped to a d-dimensional vec-
tor xi ∈ ℝd, with each component initialized by a ran-
dom value. Similarly, k-mers “ATGCAA”, “TGCAAC”,
“GCAACA” and “CAACAC”, which were indexed as
ci, 1, ci, 2, ci, 3, ci, 4 ∈ [1, 4k] in the k-mer vocabulary,
were also mapped to four vectors wci;1 ;wci;2 ;wci;3 ;wci;4∈
ℝd with random initialization.
Third, we trained all these sentence vectors and

word vectors by constructing the training loss
function. In detail, we predicted the next word of a
context in a sentence, by concatenating these vectors
of words in this context and the sentence vector as
predictive features. Since the vocabulary size was 4k,
the next word had 4k possibilities. Generally speaking,
the context has a fixed window length m and is
sampled from the sentence in a sliding window
fashion. For example, as shown in Fig. 1, we set the
window length m = 3, and used the concatenated
vectors of “ATGCAA”, “TGCAAC”, “GCAACA” and
“SEQUENCE_i” to predicted the next word “CAA-
CAC” by a 4096-way classification. Note that the
sentence vector was shared across all contexts gener-
ated from this single sentence, while the word vector
for one single k-mer was shared across all sentences.

More formally, given N sequences represented in N
vectors x1, x2, …, xN. The i-th sequence contained Ti

words represented in vectors wci;1 ;wci;2 ;…;wci;Ti , the
objective of the model was to maximize the average
log probability

max
XN

i¼1

1
Ti−m

X

t¼1Ti−m
logp ci;tþmjwci;t ;⋯; ;wci;tþm−1 ; ; xi

� �
:

The prediction task was typically accomplished via a
multiclass classifier, such as softmax classifier, which
could be formulated as

p ci;tþmjwci;t ;⋯; ;wci;tþm−1 ; ; xi
� � ¼ eyci;tþm

X

j

eyj
:

Here, j ∈ [1, 4k] was an index to an output words, and yj
was the corresponding component of the un-normalized

log-probability y∈ℝ4k computed by

y ¼ bþ Uh;

where U∈ℝ4k� mþ1ð Þd and b∈ℝ4k are the softmax parame-
ters, while h ¼ wci;t ;⋯; ;wci;tþm−1 ; xið Þ∈ℝ mþ1ð Þd was the
concatenation of the m word vectors and the sen-
tence vector.
The N sentence vectors and 4kword vectors were trained

using stochastic gradient descent (SGD) together with the
softmax parameters U and b, where the gradient was
obtained via back propagation [33]. At every step of SGD,
one could sample a fixed-length context from a random
sentence, compute the error gradient and use the gradient
to update the parameters in our model. In practice,

Sequences set

ATGCAACAC

AAGGTCCAT

ATGCAA TGCAAC GCAACA

SEQUENCE_1

split into
k-mer words

sentence IDsentences

SEQUENCE_i

AAGGTC AGGTCC GGTCCA

ATGCAA TGCAAC GCAACA CAACACSEQUENCE_i

concatenating

predicting the next word using softmax classifier

embedded to vectors

GTCATTTCA SEQUENCE_NGTCATT TCATTT CATTTC

preprocessing

sequence
embedding

For each sentence

Stage 1: unsupervised feature extraction

Sequence 1
(enhancer)

output

embedding

Gradient Boosted 
Regression Trees 

ENHANCER_i PROMOTER_j input

feature

1 or 0

+

concatenating

Sequence 2
(promoter)

Stage 2: supervised learning

Fig. 1 The two-stage workflow of EP2vec. Stage 1 of EP2vec is unsupervised feature extraction which transforms enhancer sequences and
promoter sequences in a cell line into sequence embedding features separately. Given a set of all known enhancers or promoters in a cell line,
we first split all the sequences into k-mer words with stride s = 1 and assign a unique ID to each of them. Regarding the preprocessed sequences
as sentences, we embed each sentence to a vector by Paragraph Vector. Concretely, we use vectors of words in a context with the sentence
vector to predict the next word in the context using softmax classifier. After training converges, we get embedding vectors for words and all
sentences, where the vectors for sentences are exactly the sequence embedding features that we need. Note that in sentence ID, SEQUENCE is a
placeholder for ENHANCER or PROMOTER, and is the total number of enhancers or promoters in a cell line. Stage 2 is supervised learning for
predicting EPIs. Given a pair of sequences, namely an enhancer sequence and a promoter sequence, we represent the two sequences using the
pre-trained vectors and then concatenate them to obtain the feature representation. Lastly, we train a Gradient Boosted Gradient Trees classifier
to predict whether this pair is a true EPI
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hierarchical softmax [34–36] was preferred to softmax for
fast training. In our study, the structure of the hierarchical
softmax was a binary Huffman tree, where short codes
were assigned to frequent words. This was a good speedup
trick because common words were accessed quickly. This
use of binary Huffman code for the hierarchical softmax
was the same as Mikolov et al. [36].
After the training converges, words with similar mean-

ings were expected to be mapped to adjacent positions in
the vector space and the sentence vectors could be used
as features for the sentence. In fact, the sentence vectors
learned by the model were exactly the sequence embed-
ding features which captured the sequence contextual
information. Note that, we trained sequence embedding
features for enhancers and promoters separately. We
implemented these feature extraction based on the GEN-
SIM packages [37].

Model training
In this section, we proceeded to interpret Stage 2 of
EP2vec workflow (Fig. 1), namely supervised learning for
EPIs classification. For each pair of an enhancer and a
promoter, we first concatenated the sequence embedding
features of the two sequences as the final features. Then
based on this feature representation, we trained a GBRT
classifier to predict the binary label, i.e., whether this
pair was a true EPI. GBRT was a classifier which used
decision trees as weak estimators and combines several
weak estimators into ensemble as a single model, in a
stage-wise fashion. The tree ensemble model was a set
of classification and regression trees (CART). The pre-
diction scores of each individual tree were summed up
to get the final score.
GBRT performed gradient descent algorithm for the

objective function for the binary classification of EPIs, and
its performance mainly depended on three hyper-
parameters: learning rate α, number of trees n, and tree-
depth D. Smaller learning rates tended to result in better
accuracy but require more iterations. Tree-depth D
controlled the size of each decision tree. To yield the best
performance, we figured out best hyper-parameter setting
α = 1e − 3, n = 4000, D = 25, using grid search strategy.
More details about training of GBRT could be found in
the online codes.

Model evaluation
To examine the performance of EP2vec in predicting EPIs
in specific cell line, we performed the stratified 10-fold
cross-validation experiment in all datasets. We randomly
partitioned training data into ten equal sized subsets and
each subset contained roughly the same proportions of
the two lines of class labels. One of the ten subsets was
used for testing the model, and the remaining nine were
used as training data. This validation process was repeated

ten times, with each of the ten subsets used exactly once
as test data.
We calculated F1 scores for each cross-validation, which

considered both the precision p and the recall r of the test.
Precision p is the number of correct positive results
divided by the number of all positive results, and recall r is
the number of correct positive results divided by the num-
ber of positive results that should have been returned. The
F1 score could be interpreted as the harmonic mean of
the precision and recall, as F1 = 2rp/(r + p), which reaches
its best value at 1 and worst at 0.
We compared the performance of EP2vec and several

other baseline methods, including TargentFinder, gkmSVM,
SPEID. We directly used the source codes their authors
published online. TargetFinder definde three training sets.
The first set included features for the enhancer and
promoter only (E/P). The second set included features for
an extended enhancer (using 3 kb of flanking sequence)
and a non-extended promoter (EE/P). The last set included
enhancers and promoters plus the window between them
(E/P/W), which were up to thousands of base pairs. Since
the performance of TargetFinder on the last set was consist-
ently better than other two sets according to their publica-
tion, we only evaluated this method on the E/P/W set. For
gkmSVM, we need to first transformed a pair of two
sequences (enhancer and promoter) into a single sequence
by concatenating them, and then used it as input for
gkmSVM.

Attention mechanism
Not all words contribute equally to the representation of
the sentence meaning. Hence, we introduced attention
mechanism to find out such critical words that were
most important to the meaning of the sentence. Consid-
ering the k-mer words as motifs, we essentially aimed to
find motifs that contribute more to the vector represen-
tation of the enhancer/promoter. Take the i-th enhancer
xi as example, it contained Ti words wci;1 ;wci;2 ;…;wci;Ti .
We measured the importance of each word by comput-
ing similarity between word vector wci;t and sentence
vector xi and got a normalized importance weight αit
through a softmax function, as

αit ¼
exp xTi w

ci;t
� �

X

j

exp xTi w
ci;j

� � :

Therefore, every word in the sentence had a weight
representing its importance to the sentence. In order to
validate that our model was able to select informative
words in a sentence, we visualized the high-weight words.
In detail, two sets of informative k-mers were obtained by
picking out the most important words for enhancer and
promoter respectively, in every sentence with positive
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label. Then we performed motif enrichment analysis using
CentriMo [38] to compare these words against known
motifs in the HOCOMOCO v9 dataset [39], and drew out
top enriched motifs with sequence logo [40].

Results
Computational performance
To consolidate the importance of our work, we compare
the performance of EP2vec against other three typical
baseline methods, including TargetFinder, gkmSVM and
SPEID. TargetFinder is based on experimental features
obtained from biological sequencing experiments, and
gkmSVM is based on k-mer features and SVM classifiers.
SPEID is based on deep learning which uses LSTMs with
sequence data to predict EPIs.
They all have their own advantages and disadvantages.

(1) For TargetFinder, experimental features are rich of
cell line-specific predictive information, but they are
expensive and time-consuming to acquire. Besides, for
some cell lines, the dimension of accessible experimental
features is limited due to lack of biological experiments.
(2) For gkmSVM, k-mer features are an unbiased,
general, complete set of sequence features defined on
arbitrary-length sequences. However, the k-mers can
only capture local motif patterns because they only use
the k-mer counts information without making full use of
context information or co-occurrence information of k-
mers. (3) For SPEID, LSTM is a powerful supervised
deep learning technique which is able to capture long-
range dependencies. Nonetheless, deep learning methods
often have millions of parameters to learn in the training
process which takes a long time, and special attention
should be put on fine-tuning the network. Usually, it
takes time to optimize the network structure for a
specific dataset, but this optimal structure may be not
applicable to other datasets due to overfitting problems.
Our paper proposes an innovative approach to repre-

sent a DNA sequence (or a pair of two DNA sequences)
in a fixed-length vector, namely sequence embedding
features, using the unsupervised method Paragraph
Vector. The training of sequence embedding features
utilizes the global statistics information of k-mers, and
hence our features form a potentially better presentation
for DNA sequences. Specifically, for EP2vec, we set k =
6, the stride s = 1, the context window size m = 20, and
the embedding dimension d = 100. We report the F1
score statistics of the four methods in 10-fold cross-
validation for each dataset in Table 2. In addition, we
also calculate area under the Receiver Operating Charac-
teristic curve (auROC) score (Additional file 1: Table S1)
and area under the Precision Recall curve (auPRC) score
(Additional file 1: Table S2).
The results in Table 2 show that EP2vec is slightly

better than TargetFinder and significantly outperforms

the other two sequence-based methods, namely
gkmSVM and SPEID. For example, in the GM12878 cell
line dataset, the average F1 scores of EP2vec, TargetFin-
der (on E/P/W), gkmSVM and SPEID are 0.867, 0.844,
0.779 and 0.809, respectively. On the whole, the F1
scores for six cell line datasets of the above four
methods ranges from 0.867~ 0.933, 0.844~ 0.922, 0.731~
0.822, 0.809~ 0.900, respectively. We are convinced that
the sequence embedding features learned by EP2vec is
comparable to experimental features and has superiority
over the other two computational sequence features,
because we are able to capture the global context infor-
mation of DNA sequences.

Sensitivity analysis
The goal of EP2vec is to capture global sequence infor-
mation. In our approach, we must split sequences into
words using a sliding window fashion to form sentences
from which we could extract fixed-length embedding
features. To evaluate the stability of EP2vec, we carry

Table 2 The mean values and the standard deviations of F1
scores for EP2vec and other three baseline methods in 10-fold
cross-validation experiments. For FANTOM dataset, we do not
evaluate TargetFinder due to lack of experimental features, and
we do not evaluate SPEID since it is extremely time-consuming
to run 10-fold cross validation of SPEID on so many samples

Dataset EP2vec TargetFinder gkmSVM SPEID

K562 0.882 (0.019) 0.881 (0.014) 0.821 (0.018) 0.846 (0.024)

IMR90 0.872 (0.020) 0.863 (0.017) 0.749 (0.026) 0.825 (0.032)

GM12878 0.867 (0.014) 0.844 (0.010) 0.779 (0.015) 0.809 (0.018)

HUVEC 0.875 (0.024) 0.878 (0.022) 0.731 (0.028) 0.809 (0.023)

HeLa-S3 0.920 (0.013) 0.913 (0.014) 0.822 (0.021) 0.888 (0.023)

NHEK 0.933 (0.015) 0.922 (0.018) 0.800 (0.024) 0.900 (0.019)

FANTOM 0.841(0.004) / 0.803(0.017) /

0.80

0.85

0.90

1020 40 80 100 200 400

Feature Dimension

F
1 

sc
or

es

cell line

GM12878

HeLa−S3

IMR90

K562

HUVEC

NHEK

Fig. 2 The F1 scores of different embedding dimensions. As the
embedding dimensions increase, the performance increses. And
embedding dimension d = 100 is sufficient to obtain the near-optimal
performances in all these datasets
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out sensitivity analysis for hyper-parameters including k,
the stride s and the embedding dimension d.
As shown in Fig. 2, we find that when the embedding

dimension d decreases, our model degrades slightly. For
example, the F1 score of EP2vec on HUVEC dataset is
0.875 when d = 100. Setting d = 10 and retaining the
other hyper-parameters unchanged, we find the F1 score
decreases to 0.800. In general, the performance improves
with the increase of embedding feature dimension. We
note that although the mean F1 scores are not similar
across different cell lines, 100 is the common choice of
embedding dimension to obtain the near-optimal perfor-
mances for all datasets. Lower but acceptable perform-
ance requires embedding dimension of 40 in NHEK,
IMR90 and K562 while 80 in the other cell lines.
Furthermore, we explore the performance of different

settings of the model hyper-parameters including k, the
stride s and the embedding dimension d. The sensitivity
analysis of these hyper-parameters is shown in Additional
file 1: Tables S3-S5. These results indicate that EP2vec is
robust to all the three hyper-parameters and successful in
capturing the information of whole sentences.

Visualizing motifs by attention mechanism
In order to interpret that our model is able to detect
informative k-mers or motifs in a sequence, we visualize
k-mers with high weights selected using the attention
mechanism for K562 and HUVEC in Fig. 3. We consider
the most informative k-mers as sequence motifs that
determine sequence function. Consequently, we calcu-
late the most informative k-mers in positive samples and
present the top enriched known motifs in enhancers and
promoters (Additional file 1: Tables S6 and S7).
For example, HUVECs are cells derived from the endo-

thelium of veins from the umbilical cord and are reported
to play an important role in hematopoiesis. Among the
top five enriched motifs in HUVEC, MYB_f1, GFI1_f1,
IKZF1_f1 and SOX15_f1 present some clues to HUVEC
cell line-specific information. MYB_f1 will bind to MYB,
which plays an essential role in the regulation of
hematopoiesis. MYB may be aberrantly expressed or rear-
ranged or undergo translocation in leukemias and lymph-
omas, and is considered to be an oncogene [41]. GFI1_f1

will bind to GFI1, which functions as a transcriptional
repressor. This TF plays a role in diverse developmental
contexts, including hematopoiesis and oncogenesis. It
functions as part of a complex along with other cofactors
to control histone modifications that lead to silencing of
the target gene promoters [42]. IKZF1_f1 will bind to
IKZF1, which belongs to the family of zinc-finger DNA-
binding proteins associated with chromatin remodeling.
Overexpression of some dominant-negative isoforms have
been associated with B-cell malignancies, such as acute
lymphoblastic leukemia [43]. SOX15_f1 will bind to
SOX15, which is involved in the regulation of embryonic
development and in the determination of the cell fate [44].
All of these top enriched motifs in HUVEC are experi-
mentally proved to be related with hematopoiesis or other
similar functions, which indicates that we successfully find
informative motifs through applying attention mechanism
in EP2vec.
As another example, K562 cells are of the erythroleu-

kemia type, and the line is derived from a 53-year-old
female chronic myelogenous leukemia patient in blast
crisis. The top two enriched motifs in K562 is KLF6_si
and TFE3_f1, which also give evidence to K562 specific
information. KLF6_si will binding to KLF6. The TF is a
transcriptional activator, and functions as a tumor
suppressor. Multiple transcript variants encoding differ-
ent isoforms have been found for this gene, some of
which are implicated in carcinogenesis [45]. TFE3_f1 will
bind to TFE3. This TF promotes the expression of
genes downstream of transforming growth factor beta
(TGF-beta) signaling. This gene may be involved in
chromosomal translocations in renal cell carcinomas
and other cancers, resulting in the production of
usion proteins [46].
TF annotations for top five enriched motifs in all six cell

lines are reported in Additional file 1: Tables S8 and S9.
From these results, we conclude that sequence embedding
features not only perform well but also are interpretable
through motif enrichment analysis. Although deep learn-
ing is widely applied and always surpass conventional
methods in various tasks, it is hard to interpret why deep
models perform well. We make use of attention mechan-
ism and try to find out why sequence embedding features

Fig. 3 The enriched motifs in HUVEC and K562. MYB_f1, IKZF1_f1, GFI1_f1 and SOX15_f1 are enriched in HUVEC. KLF6_si and TFE3_f1 are enriched in K562
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outperform others methods. One reasonable explanation
is that EP2vec can capture important motifs in a sequence
that reveal sequence information.

Combination of two types of features
According to Table 2, we observe that our sequence
embedding features outperform experimental features in
TargetFinder and sequence features computed in
gkmSVM and SPEID. Here, to further improve the pre-
diction accuracy of our model, we attempt to combine
our sequence embedding features and experimental
features in TargetFinder.
Concretely, we concatenate the 200-dimensional se-

quence embedding features and the experimental
features and then we use a GBRT with the same hyper-
parameters as EP2vec to train a classifier for predicting
EPIs. According to Fig. 4, we can see that sequence
embedding features are better than experimental
features in capturing useful sequence information, while
the combination of both types of features generate even
better performance. Consequently, sequence embedding
features in enhancers and promoters and experimental
features in windows between enhancers and promoters
facilitate each other and combination of them performs
better than all other feature sets. Finally, we conclude
that sequence embedding features and experiment
features can be complementary to each other and we
could take advantage of existing experimental features
and extracted sequence embedding features to predict
true EPIs with high accuracy.

Discussion
Deep learning has successful applications in both com-
puter vision and natural language processing (NLP). As is
well known, Convolutional Neural Network (CNN) is a
powerful deep learning model in computer vision area.
Inspired by deep learning applied in image processing,

DeepSEA and DeepBind first regard DNA sequences as
binary images through one-hot encoding. They both
preprocess the DNA sequences by transforming them into
4xL images (L is the length of a sequence), and then use a
CNN to model DNA sequences. Many other deep learn-
ing approaches applied in sequence analysis recently all
follow this idea and achieve excellent performance.
Our deep learning framework EP2vec is different from

them. We solve this sequence analysis problem from a
different perspective inspired from NLP. In fact, there
are also many successful applications of deep learning in
NLP area, such as word2vec which embeds words into a
vector space. Paragraph Vector is based on word2vec,
and it embeds whole sentences to vectors encoding their
semantic meanings. We think it is more natural to treat
a DNA sequence as a sentence other than an image,
since the DNA sequence is only a one-dimensional data
while images are often two-dimensional data. Hence, we
regard a DNA sequence as a sentence which is com-
prised of k-mers (or words). We learn good representa-
tions of DNA sequences using Paragraph Vector as the
results shown in Computational performance. In this
unsupervised feature extraction stage, we apply deep
learning to extract sequence embedding features which
will be used in supervised classification. The superiority
of our framework mainly lies in that we utilize the global
statistics of k-mer relationships, and can learn a global
representation of a DNA sequence.
Our method is innovative in using a different deep

learning diagram from existing methods in the following
several aspects:
First, we draw strength from recent advance in deep

learning and successfully extract fixed-length embedding
features for variable-length sequences. Our results sug-
gest that it is possible to use only sequence embedding
features instead of traditional genomic and epigenomic
features to predict EPIs with competitive results, and
that DNA sequences themselves provide enough infor-
mation about what function they perform in different
cell lines. Different from other computational features
for DNA sequences, we learn the sequence embedding
features on basis of the k-mer co-occurrence statistics
using Paragraph Vector, and by learning an embedding
vector directly for a sequence we can better represent
the global sequence information.
Second, we carry out sensitivity analysis with regard to

model hyper-parameters involved in the unsupervised
feature learning stage. The result indicates that EP2vec
is robust to its hyper-parameters and is effective in
capturing the information of whole sequences. Even
using only 10-dimensional sequence embedding features,
EP2vec still yields satisfactory results.
Third, we explore important motifs that account for

enhancers and promoter when mining the information
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Fig. 4 The F1 scores of combined features and two single types of
features in 10-fold cross-validation. The combination of both types of
features generate even better performance, indicating sequence
embedding features and experiment features can be complementary
to each other
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in sequence embedding features. As we all know, deep
learning often behaves like black box and people find it
hard to explain what the extracted features mean. We
illustrate the meaning of sequence embedding features
by visualizing the motifs found by attention mechanism
with sequence logo. These results indicate that sequence
embedding features have underlying biological meanings
which we need to pay more attention to.
Last but not the least, we train a hybrid model using

both sequence embedding features and the experimental
features, which generates better classification results
than using a single type of features. We conclude that
the two types of features are complementary to each
other, and their combination is beneficial for prediction
of EPIs.
Nevertheless, our approach can still be improved in the

following several aspects. First, we treat every word equally
without discrimination in the training. Nevertheless, using
the attention mechanism, we pay more attention on
important words in the visualizing process. Hence, we
could adopt attention mechanism in the training process
and gain better representation of the whole sequence.
Second, in the unsupervised feature extraction stage of
EP2vec workflow, we train sequence embedding features
for enhancers and promoters separately, without using
interaction information. In fact, we can inject the EPIs label
information in this stage, so that we can encode not only
the cell line specific information of enhancer and promoter
sequences but also the paired information of enhancers and
promoters in the feature representation. Third, we could
combine sequence-based features and massive biological
experiments data in the network training process for
sequence embedding features. Although sequence features
show good performance, they lose cell line specific informa-
tion which is enriched in experimental features. We can
fuse the cell line specific experimental features in training
process and predict EPIs genome-wide.

Conclusions
In conclusion, EP2vec extracts sequence embedding fea-
tures using unsupervised deep learning method and
predicts EPIs accurately using GBRT classifier achieving
state-of-the-art performance. Different from the previous
sequence-based methods, EP2vec is innovative in
extracting fixed-length embedding features for variable-
length sequences and retaining the context information.
Given the excellent performance of EP2vec, we will con-
tinue to improve our approach according to the above
discussion. We expect EP2vec and the future revised
version to play an important role in all kinds of se-
quence prediction tasks, such as identification of miRNA
target sites and RNA-RNA interactions, and benefit
further downstream analysis.

Additional file

Additional file 1: Supplementary Tables and Supplementary Figures.
(DOCX 302 kb)
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