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Abstract

Background: Influenza viruses are undergoing continuous and rapid evolution. The fatal influenza A/H7N9 has
drawn attention since the first wave of infections in March 2013, and raised more grave concerns with its increased
potential to spread among humans. Experimental studies have revealed several host and virulence markers,
indicating differential host binding preferences which can help estimate the potential of causing a pandemic. Here
we systematically investigate the sequence pattern and structural characteristics of novel influenza A/H7N9 using

computational approaches.

Results: The sequence analysis highlighted mutations in protein functional domains of influenza viruses. Molecular
docking and molecular dynamics simulation revealed that the hemagglutinin (HA) of A/Taiwan/1/2017(H7N9) strain
enhanced the binding with both avian and human receptor analogs, compared with the previous A/Shanghai/02/
2013(H7N9) strain. The Molecular Mechanics - Poisson Boltzmann Surface Area (MM-PBSA) calculation revealed the
change of residue-ligand interaction energy and detected the residues with conspicuous binding preference.

Conclusion: The results are novel and specific to the emerging influenza A/Taiwan/1/2017(H7N9) strain compared
with A/Shanghai/02/2013(H7N9). Its enhanced ability to bind human receptor analogs, which are abundant in the
human upper respiratory tract, may be responsible for the recent outbreak. Residues showing binding preference

were detected, which could facilitate monitoring the circulating influenza viruses.
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Background

Influenza A viruses are undergoing continuous and rapid
evolution, leading to the concerns about an outbreak or
even a pandemic [1]. There have been four major pan-
demics in recent centuries caused by mutations and
reassortment of influenza A viruses, which enabled these
pathogens to break the barrier of cross-species transmis-
sion and evade the human immune system [2, 3]. As
documented by the World Health Organization (WHO),
the co-circulating strains of influenza viruses are mainly
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A/HIN1-pdm09, A/H3N2 and B viruses [4]. In addition,
the novel and lethal A/H7N9 has attracted attention
with a high case-fatality rate of 40% since the first wave
of human infections in late March 2013. At least 489
deaths have been reported to WHO among 1307
laboratory-confirmed human infections as of 16 March
2017 [5]. The unusual increase of infected cases com-
pared to earlier waves since September 2016 has caught
the urgent attention of health authorities [6]. The fact
that infections of H7N9 in poultry are subclinical makes
it challenging to surveil its spreading among poultry and
to measure the risk of human infection [7]. Most cases
have been identified following their exposure to live
birds or live poultry markets. Even with small clusters of
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human infection cases being detected, the WHO declared
low likelihood of human-to-human transmission of avian
influenza A/H7NO9, with the support of current epidemio-
logical and virological evidence [5].

It is of profound concern that the deadly H7N9 may
evolve to enhance its ability to spread among humans,
although no sustained evidence has been discovered yet.
To date, it is not clear how the mutations of influenza
viruses lead to the shift of host specificity, the increase
of pathogenicity, and the ability of airborne transmission
[8], all of which are taken as requirements for avian in-
fluenza to cause pandemics. Great efforts have been
made in annotating signatures for cross-species trans-
mission and increased virulence, which can facilitate
early detection of potential pandemic strains [9]. However,
identifying such genetic markers is under debate, since the
adaptation, characterized by positive and repeated selec-
tion of mutations, can hardly be distinguished conclusively
from other ecological and evolutionary processes that
drive the mutations [10]. To address this issue, parallel
adaptive animal models are commonly applied to analyz-
ing the process, which can identify repeated and probably
gain-of-function mutations [11, 12]. Thus, the parallel
adaptive animal models serve as a useful yet expensive
tool to provide a basis for understanding host jump.
Experiments have shown differential abilities of influenza
viruses to bind host-specific sialic acid (SIA) -linked
receptors influenced by HA protein [13-15]. However,
the mechanisms of adaptive mutation leading to host-
specificity shift still need to be elucidated.

With the development of high-throughput sequencing
technology and the enriched protein structure databases,
it is possible to computationally analyze the sequences
and protein structures, and thereby optimize therapies
[16]. Su et al. combined molecular docking and molecu-
lar dynamics simulation to analyze the conformational
changes of drugs bound to neuraminidase (NA) of
H7N9 under the mutation R289K [17]. Similarly, Pan et
al. and Kannan et al. investigated the binding prefer-
ences of A/HIN1 HA protein for different host cell re-
ceptors, giving insight into the virulence enhanced by
the HA mutation D222G [18, 19]. As to the emerging
influenza A/H7N9 outbreak, one case declaring no ex-
posure to any live bird, live poultry market or suspicious
patient caught our attention (reported on 22 February
2017) [20]. The isolated strain of this patient is A/
Taiwan/1/2017(H7N9), denoted as TW17. Here we in-
tend to computationally and systematically investigate
this new strain. We conducted both sequence and struc-
ture analyses, aiming to explore its potential to gain the
ability to spread among humans. Our preliminary se-
quence analysis shows that the HA protein bears the
most mutations among all viral proteins. Therefore, we
pointed out the mutations in the HA protein and their
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corresponding functional domains. Besides, we analyzed
the viral binding preference and the residue contribu-
tions, giving insight into how the mutations could
change the protein structure, especially structures of the
functional domains of the protein. First, we generated
the HA structure of representative A/H7N9 strains by
homology modelling. Then, molecular docking was
applied to find the most favorable complexes with avian
and human host receptor analogs respectively. Further,
molecular dynamics simulation was conducted to reveal
the change of residue-ligand interaction induced by the
mutations of HA protein. The obtained results are novel
and specific to the TW17 strain, providing deeper under-
standing about the impact of HA mutations and the
mechanism of receptor recognition.

Results and discussion

Suspicious functional markers and binding regions of the
TW17 strain

To select representative strains of influenza A/H7N9, we
constructed phylogenetic trees for all segments of influ-
enza A/H7N9. We observed that HA and NA of recent
influenza A/H7N9 emerged from two major clusters as
shown in Fig. 1. A bootstrap-based substitution model
showed no conspicuous positive selection in each clus-
ter. Moreover, Fig. 1 indicates that HA and NA of the
current circulating strains probably originated from the
A/Shanghai/2/2013(H7N9) strain (or SH13 in short). See
Additional file 1 for phylogenetic trees of the other seg-
ments. Viral protein sequences of the target strain
TW17 from the patient who denied any exposure to
poultry and live market can be downloaded from the
website of Global Initiative on Sharing All Influenza
Data (GISAID) [21] by specifying the strain name A/

Taiwan/1/2017(H7N9).
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Fig. 1 Phylogenetic trees for influenza A/H7N9 HA and NA protein.
The blue and green boxes show two major clusters from which HA
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We observed four insertions RKRT after site 337 and 15
mutations compared to the HA protein of the reference
strain SH13. Phenotypically or epidemiologically interest-
ing mutations of the other proteins are categorized by
functional impact, summarized in Table 1 with annota-
tions retrieved from FluSurver [22]. Since HA bears the
most mutations related with protein functions, we focused
on the impact of HA in TW17 strain. Most documented
mutations of HA, 14 out of 15, are located at viral
oligomerization interfaces, including A130P, S136N,
1138T, L235Q and 1335V, where the equivalent sites have
also been reported as related to antigenic shifts or mild
drug resistance [23]. A new potential N-glycosylation site
with pattern NGTR at sites 136—139 was introduced by
the mutations S136N and I138T, and the potential of
NNTY at site 493 to be N-glycosylated is also likely to in-
crease as predicted by NetNGlyc [24]. It has been reported
that glycosylation of HA and NA is associated with host
specificity, virulence and human immune response. Thus,
glycosylation has been taken as an important way for the
influenza viruses to evolve [25].

The results of FluSurver suggested possible significant
change of viral binding with small ligands, especially host
receptors (Table 1). Furthermore, we applied a carbon
probe based approach implemented in SITEHOUND to
identify putative ligand binding sites [26]. SSTEHOUND
calculated an affinity map for the carbon probe and then
clustered the points with favorable interaction energies.
The cluster with the highest total interaction energy is
consistent with known equivalent receptor binding
domain (RBD) in H3, including mutations A143V and
L235Q which are associated with antibody recognition

Table 1 Mutations of the influenza TW17 compared to the

SH13 strain
Impact Protein  Mutations
Viral oligomerization HA 156T, A130P, ST36N, 1138T, A143V,
interfaces or binding K182E, L235Q, M245|, A310T, 1335V,
small ligands G338A, E396A, E403K, S499R
M2 E24D
NA M261, M721, Y166H, A210V, S242P,
R289K, N322S
PA G665
°PB2 M570I, E627K
Host receptor binding HA 1235Q, E396A
Host specificity shift PB2 1292V, E627K
Glycosylation HA S136 N, 1138T

Antibody recognition sites  HA [56T, A130P, S136 N, 1138T, A143V,

1235Q, 1335V, E396A, S499R
NA S242P
Drug binding NA S242P, R289K

“Best reference hit strain for PB2 is the
influenza A/Duck/Guangdong/E1/2012(H10N8)
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and host receptor binding. Hence, we used the equivalent
RBD of H3 as tentative binding regions to dock host
receptor analogs to HA protein, namely 130-loop (139-
146), 190-helix (192-204), 220-loop (228-237) and some
conserved residues (106, 152, 160—162).

Molecular docking predicted the optimal conformations
and indicated that the mutant TW17 strain enhanced
binding with both avian receptor analogs (LSTa) and
human receptor analogs (LSTc)

To obtain the optimal complexes of HA protein with host
receptors, we conducted molecular docking. LSTa and
LSTc are the avian and human receptor analogs respect-
ively. Quick Vina 2 [27] was used to dock the LSTa and
LSTc independently with the HA proteins. Besides the
target strain TW17, receptor binding properties of two
other strains, i.e. the HA of SH13 and A/Quzhou/1/
2015(H7N9) (or QZ15 in short), were also investigated for
comparison. The SH13 strain was detected as the best ref-
erence hit by FluSurver [22], and the HA sequence of
QZ15 was the most similar to our target protein which
was detected by BLAST as of 31 December 2016 [28].
Each docking experiment was conducted 500 times inde-
pendently to obtain the best conformation and to analyze
the group mean difference. Results of binding affinities
for each group of experiments are presented in Fig. 2.

As observed, the HA protein acquired enhanced ability
to bind both LSTa and LSTc as the viral strain evolved from
SH13 to QZ15 and TW17. The observations were sup-
ported by Student’s T-test, shown in Table 2, which was
used to assess the significance of group mean difference of
docking. Note that LSTc is abundant in human upper re-
spiratory tract, while LSTa, the avian-like cell receptors, is
abundant in human lower respiratory tract. The enhanced
binding ability to LSTc suggests easier infection to human
and a higher potential of airborne transmission, which may
partially explain the current epidemic wave.

Furthermore, the best and worst conformations were
superimposed as shown in Additional file 2. In each HA
complex with LSTa, the optimal pose of LSTa has SIA
close to the 220-loop, and the worst pose has SIA close
to the 130-loop. It is the other way around for the HA
complex with LSTc. The optimal pose of LSTc has SIA
towards the 130-loop, while the worst pose has SIA to-
wards the 220-loop. The superimposition demonstrates
that the docking scores can differentiate reliable poses
from non-reliable poses.

However, as tested in [29], docking score functions are
good at searching for optimal conformations of ligands,
but usually less accurate than atomic scale force fields
for describing binding energy. Therefore, the docked
complexes with the optimal binding affinity are used to
conduct molecular dynamics simulations for further
analysis (see Molecular dynamics simulation).
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Fig. 2 Binding affinity of host receptor analogs with the H7N9 HA proteins. Binding affinity of 500 independent experiments docking LSTa and LSTc to
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Molecular dynamics simulation reveals residues that
contribute to enhanced binding of HA protein with host
cell receptors

To observe the dynamic HA-receptor interaction and
compare the change of interaction energy induced by sub-
stitutions on the protein, we conducted molecular dynam-
ics simulation for the HA proteins to form complexes
with receptor analogs. The result of root-mean-square de-
viation (RMSD) analysis of Ca atoms of HA-LSTa/LSTc
complexes from the starting coordinates is shown in Fig. 3.
The RMSD indicates that all the trajectories fluctuate
within a small range. The TW17-LSTc complex has the
largest fluctuation among the four trajectories, but still in
a small range (around 0.45 nm).

The VAW energy, electrostatic energy and total inter-
action energy of SH13-LSTa, SH13-LSTc, TW17-LSTa
and TW17-LSTc are visualized in Additional file 3. The
comparison of their total energy is shown in Fig. 4. As ob-
served, the total energy of TW17-LSTa fluctuates obvi-
ously during around 25 ns. Each trajectory fluctuated
within a small range after 30 ns. Therefore, we chose the
last 20 ns frames for further analysis. The average total
binding energy values of SH13-LSTa, SH13-LSTc, TW17-
LSTa and TW17-LSTc were calculated and listed in

Table 2 T-test for docking experiments (N = 500)

Table 3. The mutant TW17 HA obtained the largest bind-
ing energy with LSTc (- 664.779 kJ/mol) among the four
complexes. In addition, the mutations enhanced binding
of HA protein with both LSTa and LSTc. The binding with
LSTc was increased by 69.67 kJ/mol, while the binding
with LSTa was increased by 13.58 kJ/mol. Both the SH13
and TW17 strains have binding preferences for LSTc. The
results may partially explain the outbreak in 2013 and the
current epidemic wave in early 2017. To further test this
hypothesis, we conducted another 50 ns of molecular dy-
namics simulation. The results are consistent. The mutant
TW17 HA obtains the largest binding energy, and en-
hances the binding with two types of receptors, especially
LSTc. Both SH13 and TW17 strains have binding prefer-
ences to LSTc. Additional file 4 shows the simulation re-
sults of each system and the average total binding energy.
To analyze the residue contribution to the enhanced
binding, we visualize the receptor-ligand interactions in
the optimally docked complexes in Fig. 5. For the SH13
strain, H192, 1235 and S236 interacted with both LSTa
and LSTc, the numbers have been converted to equiva-
lent sites in the TW17 HA protein. For the TW17 strain,
residues R139, T140, G142 and N164 interact with both
LSTa and LSTc. Residue Al143 in the HA of SH13

Group 1 Group 2 *Mean Difference 99% Confidence p-value
(kcal/mol) Interval (kcal/mol) (one-tailed)
TW17-LSTa SH13-LSTa —0.205 (—0.237,-0.173) < 0.0001
TW17-LSTc SH13-LSTc —0.655 (— 0696, —0.614) < 0.0001
SH13-LSTc SH13-LSTa —0.345 (-0.307, —0.383) < 0.0001
TW17-LSTc TW17-LSTa —0.105 (= 0.141, — 0.069) <0.0001

“Mean difference = Mean (Group 1) - Mean (Group 2)
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Fig. 3 The monitoring of root-mean-square deviation (RMSD) of Ca
atoms from the starting coordinates

interacts with LSTa, but in the HA of TW17, V143
interacts with LSTc.

Furthermore, we decomposed the total interaction
energy to observe the contribution of each residue. The
convergence of energy contributions of the residues in-
volved in interaction is shown in Additional file 5. To be
consistent with the analysis of total energy, we also used
the last 20 ns frames. The average contribution of each
residue to the total binding energy was calculated. We
focused on the residues that are involved in receptor-
ligand interactions in the optimally docked complexes.
Additional file 6 shows their average energy contribution
in each complex. R139 enhances the binding of HA of
TW17 strain with both LSTa and LSTc and it has binding
preference for LSTa. Similarly, we quantified the binding
preference of all residues by calculating the difference be-
tween energy contribution to binding LSTa and LSTc
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(AAG = AGyaista — AGra1ste). For the HA of SH13
strain, the differences of energy contribution are all less
than 10 kJ/mol. For instance, R139 had mild preference
for LSTc. In contrast to the HA of SH13 strain, the mu-
tant TW17 HA protein contains more residues showing
apparent binding preference, including R139, V143, N164
(preferring LSTa) and K202 (preferring LSTc). The top 10
residues showing binding preference are visualized in
Fig. 6. To investigate the impact of mutations on energy
contribution, we also calculated the change of interaction
energy before and after the mutations (AAG = AGsp13.re.
ceptor — AGTW17-receptor)- The top 10 residues that affect
the binding with receptors are presented in Fig. 7. R139
and K202 largely enhanced (with AAG > 100 kJ/mol) the
binding the LSTa and LSTc respectively. Note that R139 is
located at a new potential N-glycosylation sites introduced
by the mutations S136 N and I138T, which may explain
the increased binding with receptors. E199 and K202,
which located at the 190-helix, have enhanced the binding
with LSTc, but no mutation is observed in this region.
The mutations nearby the 190-helix might be responsible
for the change of residue contributions.

Conclusions

In this study, we analyzed the mutations of the current
circulating influenza A/H7N9 virus strain, isolated from a
patient claiming no exposure to any live bird, live poultry
market or suspicious patient. We highlighted mutations
bearing critical protein functions, namely host receptor
binding, drug binding, antibody recognition and glycosyla-
tion. Furthermore, we focused on the HA binding with
different host cell receptors by performing molecular
docking and molecular dynamics simulation. The obtained
results indicate that the mutant HA enhances its binding
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|
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25k 30k 35k 40k 45k
Time (ps)

Fig. 4 Comparison of HA-SIA vacuum MM total energy. Visualize the fluctuation of total energy and its components for each complex
(namely SH13-LSTa, SH13-LSTc, TW17-LSTa and TW17-LSTc) during the whole MD simulation process
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Table 3 Average total binding energy (kJ/mol) of the HA-LSTa/
LSTc complexes

LSTa LSTc °AE,
SH13 — 541559 —~595.111 +53553
W17 —555.135 - 664.779 +109644
PAE, +13576 +69.667

Binding preference of HA protein: AE; = AEup, 1512 — AEna, LsTc
bDifference of HAs binding to receptors: AE; = AEsp3, receptor — AETwi7, receptor

with both avian and human receptor analogs, especially hu-
man receptor analogs. Also, the MM-PBSA calculations of
residue-ligand interaction revealed several critical residues
showing binding preference, including residues R139, V143,
N164 and K202. Similarly, major residues contributing to
the change of interaction energy between HA and receptors
were highlighted. We detected the mutations S136 N,
[138T and mutations near the 190-helix as the most im-
portant substitutions in the HA protein. Although S136N,
[138T do not cause direct change to the interaction energy,
they introduce a new glycosylation pattern. Besides, their
neighboring residue R139 enhances binding to both avian
and human receptors.

The obtained results are novel and specific to the
influenza A/Taiwan/1/2017(H7N9) strain, shedding light
on the impacts of HA mutations and the mechanisms of
receptor recognition. In addition, our pipeline of analysis
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should be applicable to analyzing the impacts of other
mutations on the binding of proteins with small ligands.

Methods
Data
All protein sequences of influenza A/H7N9 were re-
trieved from Global Initiative on Sharing All Influenza
Data (GISAID) EpiFlu Database [21] as of 8 April 2017.
The virus strain in the patient claiming no exposure to
any live bird or any live poultry market is influenza A/
Taiwan/1/2017(H7N9) (Isolate ID: EPI_ISL_248778),
denoted as TW17. HA of the strain from the first wave
A/Shanghai/02/2013(H7N9) and the most similar HA
sequence from A/Quzhou/1/2015(H7N9) were selected
as references, denoted as SH13 and QZ15 respectively. The
three representative strains were used to docking with host
receptor analogs to show the changes of HA binding
preference. The accession IDs are YP_009118475 and
AKI82233 for HA proteins of SH13 and QZ15 respectively.
To conduct protein-ligand docking and molecular
dynamics simulation, we need the structures of HA pro-
teins and receptor analogs. Examining the Protein Data
Bank (PDB), we found crystal structures of SH13 HA with
LSTa (PDB ID: 4N5K) and LSTc (PDB ID:4N60) [30].
However, extra four residues were observed in the HA
protein of the new TW17 strain, by comparing it with the
sequences of available HA structures in PDB. Hence, we

C TW17-LSTa

Fig. 5 The receptor-ligand interactions in the optimally docked complexes. a The optimally docked SH13-LSTa complex. b The optimally docked
SH13-LSTc complex. ¢ The optimally docked TW17-LSTa complex. d The optimally docked TW17-LSTc complex

b sH13.LsTc

d Tw17-LsTe
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8 Residues with mild binding preference to LSTc

4 Residues with mild binding preference to LSTa
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Fig. 6 The top 10 residues in HA that show binding preference for LSTa or LSTc
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obtained the HA structures of the other representatives
from homology modelling described in the next section.
Avian and human receptor analogs were obtained from
PDB:5E2Z [31] and 2YP3 [32] respectively.

Homology modelling

We used SWISS-MODEL for the homology modelling,
constructing an atomic-resolution model of the target
HA protein from its amino acid sequence [33, 34]. First,
the primary sequence of the HA protein from the TW17
strain was searched with BLAST [35] and HHBIits [36]
against the SWISS-MODEL template library [37], find-
ing 1218 templates. Three templates with the highest
quality were selected, two of which were found by
HHBIits (PDBID: 3WHE.1.A and 4LN6.1.A) and one
found by BLAST (PDBID: 4WSW.L.F). Models were

built based on the target-template alignment using Pro-
Mod3 and measured with Global Model Quality Estima-
tion (GMQE), a quality estimation combining properties
from the target-template alignment while considering
the QMEAN score of the obtained model [38, 39]. The
model constructed from template 3WHE.1.A had the
highest GMQE value of 0.72. Thus, it was selected for
further analysis.

Phylogenetic tree construction

For phylogenetic tree analysis of PB2, PB1, PA, HA, NP,
NA, M1 and NS1 genes of influenza H7N9 strains, 125
available isolates were collected (two genomes, whose
isolate IDs are EPI ISL 148744 and EPI ISL 142188, were
removed due to quality considerations). For each gene,
the coding sequences (CDSs) were obtained from each
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Fig. 7 The top 10 residues in HA that affect the HA binding with LSTa or LSTc
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isolate using influenza virus sequence annotation tool
provided by NCBI [40], and then the CDSs were aligned
to codon positions using MUSCLE [41]. Then, the
Bayesian Markov Chain Monte Carlo (MCMC) imple-
mented in Beast v2.4.4 [42] was used to infer a time-tree
from the alignment. The Beast software was run under
the HKY substitution model, a Bayesian skyline coales-
cence model, and a strict molecular clock model to
produce 2000 tree samples logged every 25,000 genera-
tions. Beast’s outputs were assessed with TRACER v1.6
[43] and summarized as a maximum clade credibility
(MCQC) tree using TreeAnnotator v2.4.4 with 10% burn-
in. The time-tree for each gene was visualized using
ggtree package [44].

Protein-ligand docking

Molecular docking is commonly used to estimate the
pose of conformation and roughly compare the binding
affinity of a small number of complexes. With the struc-
tures of HA and host cell receptor analogs obtained, we
applied protein-ligand docking using QuickVina 2,
which optimized the local search of docked conform-
ation candidates by a novel first-order-consistency-check
heuristic [27]. All available rotatable bonds of receptor
analogs, LSTa and LSTc, were activated to ensure flexi-
bility. They were docked respectively to the receptor
binding domain of the H7N9 HA protein (sites 106,
139-146, 152, 160-162, 192-204, 228-237). The top
conformation with the optimal binding affinity among
500 independent docking experiments was selected to
analyze the interactions between the host receptor ana-
logs and the HA proteins.

Molecular dynamics simulation

The complexes of SH13 and TW17 HA proteins with
LSTa and LSTc were used in molecular dynamics simu-
lation. The complexes SH13-LSTa and SH13-LSTc were
obtained from PDB (PDB ID: 4N5K and 4N60), while
complexes TW17-LSTa and TW17-LSTc were from the
optimal docking results.

GROMACS 5.1.2 [45] was used in the whole simula-
tion process, energy minimization and equilibration of
the system involved. The AMBER99SB-ILDN force field
was used to describe the system [46]. All complexes
were solvated by using the explicit TIP3P water model
in a cubic box and counter ions were added to neutralize
the system [47]. Steepest-descent energy minimization
was applied to each complex. Position restrains for both
NVT and NPT equilibration were conducted for 100 ps
with modified Berendsen thermostat and Parrinello-
Rahman pressure coupling [48, 49]. Temperature, pres-
sure, density and total energy were all well equilibrated
before running the production MD simulation for 50 ns.
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Binding free energy and residue-ligand interaction energy
calculation

Snapshots of MD simulations were recorded to analyze the
binding free energy. We applied Molecular Mechanics -
Poisson Boltzmann Surface Area (MM-PBSA) to estimate
the binding free energy AGy,q under the assumption of no
configurational rearrangement upon which the free energy
changes. It is computed as:

AGbind = AC';bind,vac + AGbind,solv (1)

The binding free energy AGy,q comprises the binding
free energy in the vacuum phase AGping, vac @and the solv-
ation free energy AGp;ng, soiw Which is the difference of solv-
ation free energy values of complex, receptor and ligand:

AGbind,solv = AGsolvﬁcomplex_ (AGsolv,receptor + AGsolv,ligand)

(2)

The solvation free energy for each component is com-
posed of polar and non-polar energy derived from the
PB equation and the SA method, computed as:

AGsolv = AGsolv,polar + AGsolv,nonpolalr (3)

The binding free energy and decomposed interaction
energy between residues of HA protein and receptor an-
alogs were calculated using the g_mmpbsa package [50].
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