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Abstract

Background: We developed a classifier using RNA sequencing data that identifies the usual interstitial pneumonia
(UIP) pattern for the diagnosis of idiopathic pulmonary fibrosis. We addressed significant challenges, including limited
sample size, biological and technical sample heterogeneity, and reagent and assay batch effects.

Results: We identified inter- and intra-patient heterogeneity, particularly within the non-UIP group. The models
classified UIP on transbronchial biopsy samples with a receiver-operating characteristic area under the curve of ~
0.9 in cross-validation. Using in silico mixed samples in training, we prospectively defined a decision boundary to
optimize specificity at ≥85%. The penalized logistic regression model showed greater reproducibility across
technical replicates and was chosen as the final model. The final model showed sensitivity of 70% and specificity
of 88% in the test set.

Conclusions: We demonstrated that the suggested methodologies appropriately addressed challenges of the
sample size, disease heterogeneity and technical batch effects and developed a highly accurate and robust
classifier leveraging RNA sequencing for the classification of UIP.

Background
Interstitial lung disease (ILD) consists of a group of
diseases affecting the pulmonary interstitium with similar
clinical presentation; idiopathic pulmonary fibrosis (IPF) is
the most common ILD with the worst prognosis. By defin-
ition, the cause of IPF is unknown; this can make an
accurate, confident and timely diagnosis challenging. An
accurate diagnosis for IPF requires multidisciplinary
evaluation of clinical, radiologic and histopathologic
features [1, 2], with patients frequently subject to an
uncertain and lengthy diagnostic process. In particular,
determining the presence of usual interstitial pneumonia
(UIP), a hallmark characteristic of IPF, often requires
histopathology via invasive surgery that may not be an

option for sick or elderly patients. Furthermore, the qual-
ity of the histopathology reading is highly variable across
clinics, and access to expert pathology review may be
limited [3]. Thus, a consistent, accurate, non-invasive
diagnostic tool to distinguish UIP from non-UIP without
the need for surgery is critical to reduce patient suffering
and enable physicians to reach earlier, confident clinical
diagnoses and better treatment decisions.
To build this new diagnostic tool, we used exome-

enriched RNA sequencing data from transbronchial biopsy
samples (TBBs) collected via bronchoscopy, a less invasive
procedure compared to surgery. Several studies have
revealed that genomic information in transcriptomic data
is indicative of phenotypic variation in cancer and other
chronic disease [4, 5]. Complex traits are driven by large
numbers of genes distributed across the genome, including
those with no apparent relevance to disease [6]. More
importantly, the feasibility of recapitulating the UIP pattern
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using transcriptomic data has been established [7]. Here
we describe the algorithmic challenges we encountered
and the analytical solutions we developed to address them.
Machine learning methods have been applied extensively

to solve biomedical problems, and have deepened our
understanding of diseases such as breast cancer [8] and
glioblastoma [9] by allowing researchers to construct bio-
logical pathways, identify biologically relevant phenotypes
and better predict disease risk. However, recent advances
in machine learning are often designed for large (e.g. at
least thousands of samples) data sets such as medical
imaging data and sequential data [10, 11]. Clinical studies
often have limited sample sizes due to the challenges in ac-
cruing patients to clinical trials. The issue is compounded
in our study since many patients are too medically fragile
to undergo a surgical biopsy. Further, among the ones
collected, a substantial proportion yielded non-diagnostic
results, rendering them unsuitable for supervised learning.
Inter- and intra-patient heterogeneity adds significant

complexity to classification. The non-UIP category is not
one disease, but a collection of heterogeneous diseases
with a wide range of phenotypes, all of which are
encountered in the clinic. This, coupled with the small
sample size, resulted in limited numbers of samples in
each non-UIP disease category. Another unique feature
of this study is heterogeneity within a patient: histopath-
ology features are not uniform across the entire lung.
Not surprisingly, genomic signatures also vary depend-
ing on the location of the biopsy sample [12]. To better
understand heterogeneity, multiple samples (up to 5) per
patient were collected and sequenced separately for
patients in the training set. This multiple sampling
represents both a challenge and an opportunity, which
are described in detail in later sections.
Thus far, we have described challenges specific to machine

learning. However, since the classification models we devel-
oped serve as the foundation for a diagnostic test to be used
clinically, there are two additional requirements we need to
address. First, for cost-effectiveness, only one sequencing
run per patient is commercially viable and the independent
test set needs to reflect this reality. This necessitated analyt-
ically bridging individual samples used in the training set to
pooled samples in the test set. Secondly, we need to ensure
that the final locked classifier not only performs well on the
independent test set, but will maintain this performance on
all incoming future samples. Therefore, developing a classi-
fier that is highly robust to foreseeable batch effects in the
future becomes critically important.
In the following sections, we illustrate some of the

challenges with quantitative analysis, describe practical
solutions to overcome those challenges, show evidence
of improvement, and discuss limitations of these
approaches as well as directions of our future work
(Fig. 1a).

Methods
Study design
Patients under medical evaluation for ILD that were
18 years of age or older and were undergoing a planned,
clinically indicated lung biopsy procedure to obtain a
histopathology diagnosis were eligible for enrollment in
a multi-center sample collection study (BRonchial sAm-
ple collection for a noVel gEnomic test; BRAVE) [7].
Patients for whom a bronchoscopy procedure was not
indicated, not recommended or difficult were not eli-
gible for participation in the BRAVE study. Patients were
grouped based on the type of biopsy being performed
for pathology: BRAVE-1 patients underwent surgical
lung biopsy (SLB), BRAVE-2 patients underwent TBB,
and BRAVE-3 patients underwent transbronchial cryo-
biopsy. The study was approved by institutional review
boards, either centrally (Western IRB) or at each institu-
tion, and all patients provided informed consent, prior
to their participation.
During study accrual, 201 BRAVE patients were pro-

spectively divided into a group of 113 considered for use
in training (enrolled December 2012 to July 2015) and
88 used in validation (enrolled August 2014 through
May 2016). The training group ultimately yielded 90
patients with usable RNA sequence data and reference
labels derived from pathology (described below) that
were used to train and cross-validate the models. The
independent test group yielded 49 patients that met pro-
spectively defined inclusion criteria related to sample
handling, sample adequacy, and the determination of
reference truth labels. All clinical information related to
the test set, including reference labels and associated
pathology, were blinded to the algorithm development
team until after the classifier parameters were finalized
and locked. The test set was prospectively scored by an
independent third party who was not involved in
algorithm development, sequencing data generation or
reference label generation.

Pathology reviews and label assignment
Histopathology diagnoses were determined centrally by
a consensus of three expert pathologists using biopsies
and slides collected specifically for pathology, following
processes described previously [7, 12]. The central path-
ology diagnoses were determined separately for each
lung lobe sampled for pathology. A reference label was
then determined for each patient from the aggregated
lobe-level diagnoses according to the following rules: If
any lobe was diagnosed as any UIP subtype, e.g. Classic
UIP (all features of UIP present), Difficult UIP (not all
features of classic UIP well represented), Favor UIP
(fibrosing interstitial process with UIP leading the differ-
ential), or combinations of these, then ‘UIP’ was assigned
as the reference label for that patient. If any lung lobe
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was diagnosed with a ‘non-UIP’ pathology condition [7]
and the other lobe was non-diagnostic or diagnosed with
unclassifiable fibrosis (e.g. chronic interstitial fibrosis,
not otherwise classified (CIF, NOC)), then ‘non-UIP’ was
assigned as the patient level reference label. When all
lobes were diagnosed with unclassifiable fibrosis or were
non-diagnostic, then no reference label could be
assigned and the patient was excluded. This patient-level
reference label process was identical between training
and test sets.

Molecular testing, sequencing pipeline, and data QC
Up to five TBB samples were sampled from each pa-
tient and typically, two upper lobe and three lower lobe
samples were collected. TBB samples for molecular
testing were placed into a nucleic acid preservative
(RNAprotect, QIAGEN, Valencia, CA) and stored at 4 °
C for up to 18 days, prior to and during shipment to
the development laboratory, followed by frozen storage.
Total RNA was extracted (AllPrep DNA/RNA Micro
Kit, QIAGEN), quantitated (QuantiFluor RNA System,

Promega, Madison, WI), pooled by patient where
appropriate, and 15 ng input into the TruSeq RNA
Access Library Prep procedure (Illumina, San Diego,
CA), which enriches for the coding transcriptome using
multiple rounds of amplification and hybridization to
probes specific to exonic sequences. Libraries which
met in-process yield criteria were sequenced on Next-
Seq 500 instruments (2 × 75 bp paired-end reads) using
the High Output kit (Illumina, San Diego, CA). Raw
sequencing (FASTQ) files were aligned to the Human
Reference assembly 37 (Genome Reference Consor-
tium) using the STAR RNA-seq aligner software [13].
Raw read counts for 63,677 Ensembl-annotated gene-
level features were summarized using HTSeq [14]. Data
quality metrics were generated using RNA-SeQC [15].
Library sequence data which met minimum criteria for
total reads, mapped unique reads, mean per-base cover-
age, base duplication rate, the percentage of bases
aligned to coding regions, the base mismatch rate, and
uniformity of coverage within genes were accepted for
use in downstream analysis.

Fig. 1 An overview of challenges and solutions in our machine learning application, and our analysis pipeline. a Challenges and solutions in
machine learning application. b Analysis pipeline in the development and evaluation of a molecular genomic classifier to predict usual interstitial
pneumonia (UIP) pattern in interstitial lung disease (ILD) patients
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Normalization
Sequence data were filtered to exclude any features that
were not targeted for enrichment by the library assay,
resulting in 26,268 genes. For the training set, expression
count data for 26,268 Ensembl genes were normalized by
sizefactor estimated with the median-of-ratio method and
transformed by parametric variance-stabilizing transform-
ation (VST), asymptotically equal to the logarithm to base
2 (DESeq2 package [16]). To mimic the processing of
future clinical patients, the vector of geometric means and
the parameters of VST from the training set were frozen
and separately reapplied to the independent test set for
the normalization.
For algorithm training and development, RNA sequence

data was generated separately for each of 354 individual
TBB samples from 90 patients. Eight additional TBB sam-
ples (‘sentinels’) were replicated in each of eight processing
runs, from total RNA through to sequence data, to moni-
tor potential batch effects. For independent validation,
total RNA extracted from a minimum of three and a max-
imum of five TBBs per patient were mixed by equal mass
within each patient prior to library preparation and se-
quencing. Each patient in the training set thus contributes
up to five sequence samples to training, whereas each
patient in the test set is represented by a single sequenced
sample, analogous to the planned testing of clinical
samples.

Differential expression analysis
We first explored whether differentially expressed genes
found using a standard pipeline [17] could be applied dir-
ectly to classify UIP from non-UIP samples. Differentially
expressed genes were identified using DESeq2, a Biocon-
ductor R package [16]. Raw gene-level expression counts
of 26,268 genes in the training set were used to perform
the differential analysis. A cutoff of p-value < 0.05 after
multiple-testing adjustment and fold change > 2 was used
to select differentially expressed genes. Within the training
set, we performed pairwise differential analyses between
all non-UIP and UIP samples, and between UIP samples
and each non-UIP pathology subtype with more than 10
samples available, including bronchiolitis (N = 10), hyper-
sensitivity pneumonitis (HP) (N = 13), nonspecific intersti-
tial pneumonia (NSIP) (N = 12), organizing pneumonia
(OP) (N = 23), respiratory bronchiolitis (RB) (N = 16), and
sarcoidosis (N = 11). Principal component analysis (PCA)
plots of all the training samples were generated using
differentially expressed genes identified above.

Gene expression correlation heatmap
The correlation r2 values of samples for six representative
patients were computed using their VST gene expression,
and a heatmap of the correlation matrix with patient order
preserved was plotted to visualize intra- and inter-patient

heterogeneity in gene expression. The 6 patients were
selected to represent the full spectrum of within patient
heterogeneity including two non-UIP and two UIP
patients with the same or similar pathology subtypes
between upper and lower lobes, as well as one UIP and
one non-UIP patient each having different pathology
subtypes, one being UIP and the other being non-UIP, in
upper versus lower lobes. The heatmap was generated
using the gplots R package.

Classifier development
We summarize the development and evaluation of a
classifier in Fig. 1b. Our specific goal is to build a robust
binary classifier on TBB samples to provide accurate and
reproducible UIP/non-UIP predictions. We designed a
high specificity test (specificity > 85%) to ensure a high
positive predictive value. Thus, when the test predicts
UIP, that result is associated with high confidence.

Feature filtering for classifier development
First, features that are not biologically meaningful or less
informative were removed due to low expression level
without variation among samples. We filtered genes
annotated in Ensembl as pseudogenes, ribosomal RNAs,
individual exons in T-cell receptor or Immunoglobulin
genes, and excluded low expressed genes with raw
counts expression level < 5 for the entire training set or
expressed with count > 0 for less than 5% of samples in
the training set.
We also excluded genes with highly variable expres-

sion in identical samples processed in multiple batches,
as this would suggest sensitivity to technical, rather than
biological factors. To identify such genes, we fitted a
linear mixed effect model on the sentinel TBB samples
that were processed across multiple assay plates. We fit
this model for each gene separately

gij ¼ μþ βsampleij þ batchi þ eij ð1Þ

where gij is the gene expression of sample j and batch i, μ
is the average gene expression for the entire set, sampleij is
a fixed effect of biologically different samples, and batchi is
the batch-specific random effect. The total variation was
used to identify highly variable genes; the top 5% of genes
by this measure were excluded (See Additional file 1:
Figure S1). Thus, 17,601 Ensembl genes remained as candi-
dates for the downstream analysis.

In silico mixing within patient
The classifiers were trained and optimized on individual
TBB samples to maximize sampling diversity and the
information content available during the feature selec-
tion and weighting process. However, for patients in the
test set and in commercial setting, ideally multiple TBB
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samples would be pooled at the post-extraction stage, as
RNA, and processed as pooled RNA in a single reaction
through library prep, sequencing and classification [7].
To evaluate whether a classifier developed on individual
samples could maintain high performance on pooled
samples, we developed a method to simulate pooled
samples “in silico” from individual sample data. First,
raw read counts were normalized by sizefactor computed
using geometric means across genes within the entire
training set. The normalized count Cij for sample i = 1,
…, n and gene j = 1, …, m is computed by

Cij ¼ Kij=S j

where s j ¼ mediani
K ij

ð
Qm

v¼1
KivÞ

1=m and Kij is the raw count

for sample i and gene j. Then, for each training patient
p = 1, …, P, in silico mixed count Kp

ij is defined by

Kp
ij ¼

1
np

X

i∈I pð Þ
Cij

where I(p) is the index set of individual sample i that be-
longs to patient p. The frozen variance stabilizing trans-
formation (VST) in the training set was applied to Kp

ij.

Training classifiers
As the test is intended to recognize and call a reference
label defined by pathology [1], we defined the reference
label to be the response variable in classifier training [4],
and the exome-enriched, filtered and normalized RNA
sequence data as the predictive features. We evaluated
multiple classification models, including random forest,
support vector machine (SVM), gradient boosting,
neural network and penalized logistic regression [18].
Each classifier was evaluated based on 5-fold cross-
validation and leave-one-patient-out cross-validation
(LOPO CV) [19]. Ensemble models were also examined
by combining individual machine learning methods via
weighted average of scores of individual models [20].
To minimize overfitting during training and evalu-

ation, we stratified each cross-validation fold such that
all data from a single patient was either included or held
out from a given fold. Hyper-parameter tuning was
performed within each cross-validation split in a nested-
cross validation manner [21]. We chose random search
and one standard error rule [19] for selection of best
parameters from inner CV to further minimize potential
overfitting. Ultimately, we repeated the hyper-parameter
tuning on the full training set to define the parameters
in the final, locked classifier.
Best practices for a fully independent validation

require that all classifier parameters, including the test
decision boundary, are prospectively defined. This there-
fore must be done using only the training set data. Since
the test set would be composed of TBBs pooled at the

patient level, an in silico mixing model was used to
simulate the distribution of patient-level pooled scores
within the training set. We simulated within-patient
mixtures 100 times at each LOPO CV-fold, with gene-
level technical variability added to the VST gene expres-
sion. The gene-level technical variability was estimated
using the mixed effect model (Eq. (1)) on the TBB sam-
ples replicated across multiple processing batches. The
final decision boundary was chosen to optimize specifi-
city (> 0.85) without severely compromising sensitivity
(≥ 0.65). Performance was estimated using patient-level
LOPO CV scores from replicated in silico mixing simu-
lation. To be conservative for specificity, we used a
criterion for averaged specificity of greater than 90% to
choose a final decision boundary. For decision boundar-
ies with similar estimated performance in simulation the
decision boundary with highest specificity was chosen
(See Additional file 1: Figure S2).

Evaluation of batch effects and monitoring scheme for
future samples
To ensure the extensibility of classification performance
to a future, unseen clinical patient population, it is
crucial to ensure there are no severe technical factors,
referred to as batch effects, that may cause significant
shifts, rotations, compressions, or expansions of score
distributions over time. To quantify batch effects in
existing data and to evaluate the robustness of the candi-
date classifiers to observable batch effects, we scored
nine different TBB pools, triplicated within each batch
and processed across three different processing batches,
and used a linear mixed effect model to evaluate vari-
ability of scores for each classifier. The model that is
more robust against batch effects, as indicated by low
score variability in the linear mixed model, was chosen
as the final model for independent validation.
To monitor batch effects, we processed UIP and non-

UIP control samples in each new processing batch. To
capture a potential batch effect, we compared the scores
of these replicated control samples and monitored
whether estimated score variability remains smaller than
the pre-specified threshold, σsv, determined in training
using the in silico patient-level LOPO CV scores (see
Additional file 1 for details regarding how acceptable
variability levels were determined).

Independent validation
The final candidate classifier was prospectively validated
on a blinded, independent test set of pooled TBB sam-
ples from 49 patients. Classification scores on the test
set were derived using the locked algorithm and com-
pared against the pre-set decision boundary to give the
binary prediction of UIP vs. non-UIP calls: classification
scores above the decision boundary were called UIP, and
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those equal to or below the decision boundary were
called non-UIP. The continuous classification scores
were compared against the histopathology labels to
construct the receiver-operator characteristic curve
(ROC) and calculate the area under the curve (AUC).
The binary classification predictions were compared
against the histopathology reference labels to calculate
sensitivity and specificity.

Results
Distribution of ILD patients
Table 1 summarizes the distribution of ILD patients
within UIP and non-UIP groups. Among collected pa-
tients, the prevalence of patients with a UIP pattern is
higher in the training set (59%) than in the test set
(47%), however this difference is not statistically signifi-
cant (p-value 0.27). Three patients in the training set
and one patient in the test set have potential within pa-
tient disease heterogeneity: one lobe was labeled as one
of non-UIP subtypes (nonspecific interstitial pneumonia,
pulmonary hypertension, or favor hypersensitivity pneu-
monitis), while the other lobe was labeled as a UIP

pattern, driving the final patient-level label to a designa-
tion of UIP.
The non-UIP group includes a diversity of heteroge-

neous subtypes commonly encountered in clinical prac-
tice. Due to the small sample size, several subtypes have
only one or two patients. Three subtypes—amyloid or
light chain deposition, exogenous lipid pneumonia, and
organizing alveolar hemorrhage—are present in the test
set, which do not exist in the training set.

Intra-patient heterogeneity
Heterogeneity in samples from the same patient was
observed in both histopathologic diagnosis and gene
expression. Three such patients with pathology diagno-
ses spanning UIP and non-UIP groups posed a computa-
tional challenge for patient-level diagnostic classification.
The correlation matrix of samples from six patients also
revealed prominent intra- and inter-patient variability in
expression profiles (See Additional file 1: Figure S3). We
found two non-UIP patients with the same labels across
different lobes and similar gene expression pattern
(patients 1 and 2 in Additional file 1: Figure S3), two
UIP patients with the same or similar labels and highly

Table 1 The distribution of patients and samples.

Representative histopathology types Training set Test set

# samples # patients # patients

UIP Total 212 (60%) 53 (59%) 23 (47%)

Usual Interstitial pneumonia (UIP) 136 34 11

Difficult UIP 40 11 7

Favor UIP 22 5 4

UIP (lower lobe) + Nonspecific interstitial pneumonia (NSIP) (upper lobe) 5 1

Difficult UIP (lower lobe) + NSIP (upper lobe) 4 1

UIP (lower lobe) + Pulmonary hypertension (upper lobe) 5 1

Favor HP (lower lobe) + Difficult UIP (upper lobe) 1

Non-UIP Total 142 (40%) 37 (41%) 26 (53%)

Respiratory bronchiolitis (RB); Smoking-related interstitial fibrosis 26 7 7

Hypersensitivity pneumonitis; Favor HP 19 4 4

Sarcoidosis 17 5 4

NSIP; Cellular NSIP; Favor NSIP 18 5 3

Diffuse alveolar damage; DAD with hemosiderosis 2 1 2

Amyloid or light chain deposition 1

Bronchiolitis 12 3 1

Eosinophilic pneumonia (EP) 5 1 1

Exogenous lipid pneumonia 1

Organizing alveolar hemorrhage 1

Organizing pneumonia (OP) 29 7 1

Pneumocystis pneumonia (PP) 4 1

Emphysema 10 3

Total 354 90 49
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correlated expression profiles (patients 5 and 6 in
Additional file 1: Figure S3), as well as one UIP and one
non-UIP patient with dissimilar labels and heteroge-
neous expression (patients 3 and 4 in Additional file 1:
Figure S3), providing a representative visualization of the
full spectrum of heterogeneity we observe within and
across patients.

DE analysis between UIP and non-UIP
We first investigated whether differentially expressed
genes found by DESeq2 between UIP and non-UIP were
predictive of the two diagnostic classes. We identified
151 differentially expressed genes between UIP and non-
UIP with statistical significance (adjusted p < 0.05, fold
change > 2): 55 were up-regulated and 96 were down-
regulated genes in UIP (Fig. 2a and Table 2). However,
using these differentially expressed genes alone was in-
sufficient to separate the two classes perfectly, as shown
by the PCA plot (Fig. 2b). In contrast, PCA spanned by
the 190 classifier genes selected for the final classifier
could separate the two classes much better (Fig. 2c).

Heterogeneity in non-UIP patients
We observed heterogeneity in gene expression of non-
UIP samples, consisting of more than a dozen different
histopathology pattern diagnoses. We identified genes
that were significantly different (adjusted p < 0.05, fold
change > 2) between UIP samples and each non-UIP
pathology subtype with a sample size greater than 10
(Table 2). The higher the number of differentially
expressed genes, the more dissimilar the non-UIP path-
ology subtype is from UIP. A comparison of the list of
differential genes in each non-UIP subtype with that
from all non-UIP samples showed that the number of
overlapping genes was highly dependent on the number

of differential genes identified in the individual non-UIP
subtype, indicating that some non-UIP pathologies may
have more dominant effects on the overall differential
genes found between all non-UIP and UIP samples
(Table 2). Moreover, there are few overlapping differen-
tial genes among those identified in individual non-UIP
pathology patterns. For example, 172 genes were com-
mon between 1174 differential genes in Sarcoidosis and
701 in RB, and 6 common genes were found among
differential genes from sarcoidosis, RB and NSIP. There
are no common genes among differential genes from
bronchiolitis, NSIP and HP. This suggests distinct
molecular expression patterns within different non-UIP
pathology subtypes.
PCA plots using the differentially expressed genes

between selected non-UIP subtypes and UIP samples
showed that the specific non-UIP pathology subtypes
tend to be well-separated from UIP samples for subtypes
such as RB and HP (See Additional file 1: Figures S4A,
C), while other non-UIP samples may be interspersed
with UIP samples (See Additional file 1: Figures S4B, E).
This demonstrated that differential genes derived from
one non-UIP subtype may not be generalizable to other
non-UIP subtypes.

Comparison between in silico mixing and in vitro pooling
within patient
In silico mixed samples within each patient were developed
to model in vitro pools using the training set samples. To
ensure in silico mixed and in vitro pooled samples were rea-
sonably matched, the pooled samples of 11 patients were se-
quenced and compared with in silico mixed samples (data
not shown). The average r-squared value based on expres-
sion level of 26,268 genes for the pairs of in silico mixed and
in vitro pooled samples was 0.99 (standard deviation

Fig. 2 Gene selection using DESeq2 and our classifier. a Volcano plot showing 151 genes selected by DESeq2 (adjusted p-value < 0.05 and fold
change > 2) and 190 predictive genes in our classifier, with 32 common ones (pink) between the two sets of genes. b PCA plot of all TBB samples
using only DESeq2 selected genes showing that these genes are not sufficient to separate UIP samples (orange circle) from non-UIP samples (blue
cross). c PCA plot of all TBB samples using classifier genes illustrating that TBB samples can be classified into UIP (orange circle) and non-UIP (blue
cross) samples using these genes
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(SD) = 0.003), which indicated that the simulated expression
level of in silico mixed samples was well-matched with that
of in vitro pooled samples, considering the average
r-squared values were 0.98 (SD = 0.008) for technical repli-
cates and 0.94 (SD = 0.04) for biological replicates.
The classification scores of in silico and in vitro mixed

samples by two candidate classifiers, the ensemble and
penalized logistic regression models (described below)
were also compared in a scatterplot (Fig. 3). The number
of replicates for each in vitro pooled sample ranges from
3 to 5, so the mean score of the multiple replicates was
used. The classification scores of in silico mixed samples
were highly correlated with those of in vitro pooled
samples with a Pearson’s correlation of 0.99 for both
classifiers (Fig. 3). The points fell right around the line
of X = Y with no obvious shift or rotation.

Cross-validation performance on the training set
We evaluated multiple methods of feature selection and
machine learning algorithms on our training set of 354

TBB samples from 90 patients. As an initial attempt, in-
dividual and ensemble models were evaluated separately
based on 5-fold CV and cross-validated AUC (cvAUC),
as estimated using the mean of the empirical AUC of
each fold. Overall, the linear models such as the penal-
ized regression model (cvAUC = 0.89) outperformed
non-linear tree-based models such as random forest
(cvAUC = 0.83) and gradient boosting (cvAUC = 0.84).
The cvAUC of a neural network classifier was under 0.8.
The best performance was achieved by (1) the ensemble
model of SVMs with linear and radial kernels, and (2)
penalized logistic regression; both of which had
cvAUC = 0.89. However, with the heterogeneity among
diseases and the small sample size, CV performance on
all models was found to vary significantly depending on
the split.
In LOPO CV, we evaluated the patient-level perform-

ance by using 100 replicates of in silico mixed samples
for each patient within LOPO CV folds. The computed
classification scores of individual samples and averaged

Table 2 The number of significantly expressed genes (multiple-testing adjusted p-value < 0.05, fold change > 2) between each non--
UIP subtype and UIP samples (N = 212). The number of differentially expressed genes overlapping with those between UIP and
non-UIP samples was summarized in the third columns

Up-regulated
genes

Down-regulated
genes

Total number of differentially
expressed genes

# genes overlapping with those from all
non-UIP samples

All non-UIP (N = 147) 55 96 151 151 (100%)

Bronchiolitis (N = 10) 41 34 75 6 (8%)

Hypersensitivity pneumonitis
(HP) (N = 13)

32 53 85 14 (16%)

Nonspecific interstitial
pneumonia (NSIP) (N = 12)

37 49 86 13 (15%)

Organizing pneumonia
(OP) (N = 23)

1 15 16 31 (52%)

Respiratory bronchiolitis (RB)
(N = 16)

549 152 701 64 (9%)

Sarcoidosis (N = 11) 448 726 1174 93 (8%)

Fig. 3 Comparison between in silico and in vitro mixing within patient. Scatterplot of in silico and in vitro mixing comparison scored by (a) an
ensemble classifier with an R-squared value of 0.99, and (b) a penalized logistic regression classifier with an R-squared value of 0.98
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scores of in silico mixed samples are shown in Fig. 4.
Overall, the patient-level performance was slightly
higher compared to the sample-level performance. Based
on combined scores across LOPO CV folds, the ensem-
ble model and the penalized logistic regression model
achieved the best performance, with an AUC of 0.9
[0.87–0.93] and 0.87 [0.83–0.91] at sample-level and
0.93 [0.88–0.98] and 0.91 [0.85–0.97] at in silico mixing
patient-level, respectively (Fig. 5a and Table 3).

Robustness of classifiers
The estimated score variability was 0.46 and 0.22 for the
ensemble model and the penalized logistic regression
model, respectively (Table 4). Both were less than 0.9
and 0.48, the pre-specified thresholds of acceptable score
variability (See Additional file 1: Figures S5 and S6).
Considering that the score range of the ensemble classi-
fier is wider than that of the penalized logistic regression
classifier, the proportion of the variability to the range of
5% and 95% quantiles of scores was compared. Overall,
the penalized logistic regression classifier had less vari-
ability in scores than the ensemble model. This implied
that the penalized logistic regression model was more
robust to technical (reagent/laboratory) effects and thus
offered more consistent scores for technical replicates
(Table 4). With high cross-validation performance and
robustness, the penalized logistic regression model was
chosen as our final candidate model for the independent
validation.

Independent validation performance
Using the locked penalized logistic classifier with a pre-
specified decision boundary at 0.87 (See Additional file 1:
Figure S2), the validation performance was evaluated
based on the independent test set of samples that were
prospectively pooled and processed. The final classifier
achieved specificity of 0.88 [0.70–0.98] and sensitivity of
0.70 [0.47–0.87] with an AUC of 0.87 [0.76–0.98] (Fig. 5b
and Table 3). The point estimate of the validation
performance was lower than in silico patient-level train-
ing CV performance, but p-values of 0.6, 0.7, and 1 for
AUC, sensitivity, and specificity, respectively, indicate
negligible differences.

Discussion
In this study, we demonstrate that accurate and robust
classification is achievable even when critical challenges
exist. By leveraging appropriate statistical methodologies,
machine learning approaches, and RNA sequencing tech-
nology, we provide a meaningful diagnostic test to
improve the care of patients with interstitial lung diseases.
Machine learning, particularly deep learning, has experi-

enced revolutionary progress in the last few years.
Empowered with these recently developed and highly

sophisticated tools, classification performance is dramatic-
ally improved in many applications [10]. However, most of
these tools require readily available and high-confidence
labels as well as large sample sizes: the magnitude of the
performance improvement is directly and positively
related to the number of samples with high-quality labels
[22, 23]. In this project, like many other clinical studies
based on patient samples, the sample size is limited: we
have a total of only 90 patients in the training set (Table 1).
Additionally, the non-UIP group is a collection of many
pathology subtypes, each with its own distinct biology,
several of which have only one or two patients in the
training set [24] (Table 1). Not surprisingly, these various
pathology subtypes are different at the molecular and gen-
omic level. We attempted to use the training samples to
identify common features across non-UIP pathology with
respect to differentiating them from the UIP group, but
none emerged (Table 2 and See Additional file 1: Figure
S4). Furthermore, three pathology subtypes (Amyloid or
light chain deposition, Exogenous lipid pneumonia, and
Organizing alveolar hemorrhage) present in the test set
were not encountered in the training set (Table 1). We
also observed a change in UIP proportions between train-
ing (59%) and testing (47%). The last two factors may help
explain the slightly lower performance in the test set com-
pared to the cross-validation performance of the training
set. With this work showing the feasibility of successfully
separating UIP vs. non-UIP pathology using genomic
information on minimally-invasive samples, it may pave
the path and make it easier to collect required diagnostic
samples from these patients soon. If that’s the case, one
direction of our future work will potentially be about
collecting sufficient samples from each distinct non-UIP
pathology subtypes to better represent the heterogeneity
of that group and further enhance the classification per-
formance. Unfortunately, as of now, the sample size is very
limited and the recent advances in machine learning that
leverage large sample sizes are not applicable in this
situation. For this reason, our focus has been on more
traditional linear models or tree-based models. It may also
explain why, among our candidates, the linear models out-
perform the non-linear tree-based models, since we have
too small a sample size in individual non-UIP pathology
subtypes to power any interaction which the tree-based
model attempts to capture.
To directly address the small training size, up to 5

distinct TBB samples within the same patient were run
from RNA extraction to sequencing and were included
to successfully expand the 90-patient set to encompass
354 samples (Table 1). This, in concept, is similar to the
concept of data augmentation [25], but instead of simu-
lating or extrapolating the augmented data, we generated
sequencing data from real experiments on multiple TBB
samples from the same patient. The goal is to provide
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additional information to enhance classification
performance. We took special precautions to use a
single patient as the smallest unit when defining the
cross-validation fold and evaluating performance. This
prevents patients with more samples from having higher
weight, or samples from the same patient straddling on
both sides of model building and model evaluation,
causing over-fitting. We also applied nested cross-
validation as well as the one SD (standard deviation) rule
for model selection and parameter optimization, to
factor-in the high variability on performance due to
small sample size, and to aggressively trim down the
model complexity to guard against overfitting.

While running multiple TBB samples per patient in
the training set helps with the sample size limitation, it
creates a new challenge. The commercial setting is
economically viable only if we can limit the test to one
sequencing run per patient. To achieve that, RNA
material from multiple TBB samples within one patient
needs to be pooled together before sequencing. However,
whether a classifier trained on individual TBB samples is
applicable to pooled TBB samples becomes a critical
question to answer before performing the validation
experiment. To address this, we designed a series of in-
silico mixing simulations to mimic patient-level in-vitro
pools of the test set. This approach is also the

Fig. 4 Cross-validated classification scores for the two candidate models. Classification scores of (a) Ensemble Model and (b) Penalized Logistic
Regression Model from leave one patient out (LOPO) cross validation. Red, blue and gray indicate samples with histopathology UIP, non-UIP, and
non-diagnostic respectively. Circle, up-pointing triangle, square and down-pointing triangle indicate in silico mixed sample, upper, middle and
lower lobe samples respectively. Each vertical line represents one distinct patient; all the points on the same line are the multiple samples from
the same patient. The X-axis is the patient-specific pathology label where non-UIP patients are on the left and UIP patients are on the right. The
Y-axis is the cross-validated classification score. The purple horizontal dash line is the prospectively defined classifier decision boundary. Scores
above the decision boundary is predicted as UIP and scores below or equal to the decision boundary is predicted as non-UIP
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fundamental building block for defining the prospective
decision boundary of the classifier as well as the optimal
number of TBBs required to achieve the best classifica-
tion performance (data show in supplementary Figure
E1 in [7]). The simulated in-silico data agrees well with
the experimental in-vitro data (Fig. 3) giving us confi-
dence in using this approach to extrapolate expected
performance to pooled samples and proceed with the
validation experiments with the pooled setting. This in-
silico approach works well in this study since samples
pooled together are the same type (TBB) and from the
same patient, thus have similar characteristics such as
the rate of duplicated reads or the total number of reads.
However, we found that it may be tricky to extend the
proposed in-silico mixing model to mix samples of
different characteristics or qualities, for example UIP vs
non-UIP samples or TBB mixed with different type of
samples such as blood. In those cases, samples with sub-
stantially higher total number of reads tend to dominate
the expressions of combined samples violating the basic
assumptions of the mixed model proposed here. More
sophisticated methodology is required to accurately
model such complex mixtures.

A successful validation that meets the required clinical
performance (Fig. 5 and Table 3) is only the first step to-
wards a useful commercial product aiming to improve
patient care. Equally important is the importance of pro-
viding consistent and reliable performance for the future
patient stream. This requires us to proactively anticipate
and address any potential batch effects of sequencing
data from incoming patients that may cause systematic
changes in classification scores. We tackle this important
issue starting from the upstream feature selection step
(See Additional file 1: Figure S1) where genes that are
highly sensitive to batch effects were removed from
downstream analysis. Furthermore, additional experi-
mental data were generated for 9 distinct TBB pools in
three different batches that were distinct from those
used to process samples for training. We leverage this
experiment to directly evaluate the robustness of each
candidate model against unseen batches and help select
the final model.

Conclusion
Limited sample size and high heterogeneity within the
non-UIP class are two major classification challenges we

Fig. 5 Evaluation of classifier performance. Receiver operating characteristics (ROC) curves of (a) classification performance from leave-one-patient-out
(LOPO) cross-validation and (b) validation on independent test set. The asterisk on each ROC curve corresponds to the prospectively defined decision
boundary of each proposed model

Table 3 The performance of the two models on the training set and our final selected model on the test set, evaluated using area
under the curve (AUC), specificity and, sensitivity

LOPO CV Independent Testing

Ensemble Model Penalized Logistic Model Penalized Logistic Model

Sample-level In silico mixing Sample-level In silico mixing In vitro mixing

AUC 0.90
[0.87–0.93]

0.93
[0.88–0.98]

0.87
[0.83–0.91]

0.91
[0.85–0.97]

0.87
[0.76–0.98]

Specificity 0.92
[0.86–0.96]

0.95
[0.82–0.99]

0.91
[0.85–0.95]

0.95
[0.82–0.99]

0.88
[0.70–0.98]

Sensitivity 0.73
[0.67–0.79]

0.79
[0.66–0.89]

0.71
[0.64–0.77]

0.72
[0.58–0.83]

0.70
[0.47–0.87]
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faced in this project and which commonly exist in clin-
ical studies. In addition, a successful commercial product
needs to perform economically and consistently for all
future incoming samples, which requires the underlying
classification model to be applicable to pooled samples
and highly robust against assay variability. We demon-
strated that it is feasible to achieve highly accurate and
robust classification despite these difficulties and we
described practical solutions to each of these challenges.
The methodologies have proven to be successful in this
study and could be applicable to other clinical scenarios
facing similar difficulties.

Additional file

Additional file 1: Supplementary document including a description of
score variability simulation and supplementary Figures S1 to S6. (PDF
3639 kb)
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