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Abstract

Background: Gene fusions often occur in cancer cells and in some cases are the main driver of oncogenesis. Correct
identification of oncogenic gene fusions thus has implications for targeted cancer therapy. Recognition of this potential
has led to the development of a myriad of sequencing-based fusion detection tools. However, given the same input,
many of these detectors will find different fusion points or claim different sets of supporting data. Furthermore, the rate
at which these tools falsely detect fusion events in data varies greatly. This discrepancy between tools underscores the
fact that computation algorithms still cannot perfectly evaluate evidence; especially when provided with small amounts
of supporting data as is typical in fusion detection. We assert that when evidence is provided in an easily digestible form,
humans are more proficient in identifying true positives from false positives.

Results: We have developed a web tool that, given the genomic coordinates of a candidate fusion breakpoint,
will extract fusion and non-fusion reads adjacent to the fusion point from partner transcripts, and color code
reads by transcript origin and read orientation for ease of intuitive inspection by the user. Fusion partner transcript read
alignments are performed using a novel variant of the Smith-Waterman algorithm.

Conclusions: Combined with dynamic filtering parameters, the visualization provided by our tool introduces a powerful
new investigative step that allows researchers to comprehensively evaluate fusion evidence. Additionally, this allows quick
identification of false positives that may deceive most fusion detectors, thus eliminating unnecessary gene fusion
validation. We apply our visualization tool to publicly available datasets and provide examples of true as well as

false positives reported by open source fusion detection tools.
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Background

Chromosomal translocations occur naturally in a wide
variety of species from plants to mammals [1, 2]. The
proteins resulting from fusion genes can be benign or
even support the normal physiology of the organism [1].
However, in humans, gene fusions can also play an
important role in carcinogenesis and the progression of
cancer. This connection between genetic abnormalities
and cancer was hypothesized as early as 1914 [3] and
was confirmed with the discovery of the Philadelphia
Chromosome—a miniscule, hybrid chromosome
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generated from a fusion between two chromosomes
that was found exclusively in patients with certain
leukemias [4, 5]. As a result of studying the tumori-
genic role of an enzyme that this hybrid chromo-
some produced (tyrosine kinase), Druker et al. [6]
were able to adapt a drug which inhibited the pro-
duction of this enzyme (Imatinib), to become an ef-
fective oral treatment for some leukemias. This
breakthrough highlights the targetable nature of
oncogenic gene fusions thereby providing another
avenue of cancer treatment in addition to standard
chemotherapy. Furthermore, with the proliferation of
deep sequencing techniques, studies have found that
gene fusions occur in all major cancer subtypes [7].
This highlights the need and urgency in refining
computational approaches that specialize in their
detection.
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With this surge of research interest, many computa-
tional tools have been developed for detecting known
and novel fusion breakpoints in cancer genomes and
transcriptomes. In several recent comprehensive reviews
[8-10], the authors concluded that current detection
tools are imperfect on their own as the efficacy of each
tool is data dependent. There exists a trade-off between
sensitivity and accuracy that has not yet been optimized
by existing tools to accurately report all true positives
with a negligible number of false positives. Therefore,
when tested on the same data set, many detectors find
or overlook different fusion points deduced from
different sets of supporting data with varying degrees of
accuracy. This observation was further discussed in a
publication involving a synthetic fusion messenger
Ribonucleic Acid Sequencing (mRNA-Seq) data set [11].

This discrepancy between tools underscores the fact that
no computational method can perfectly evaluate evidence;
especially when provided with small amounts of support-
ing data as is typical in fusion detection. In addition, since
there are no consistent formats for tools to report their fu-
sion candidates or metrics to report the associated levels
of confidence, users must rely heavily on lab techniques to
validate large numbers of putative fusion events, which is
inefficient. Here we assert that if data is provided in an
easily digestible form, the human eye can be used as a
powerful tool to discern between true positives and false
positives thereby eliminating time spent on validating false
candidates. We have thus developed a tool that locally
aligns and maps reads against fusion reference sequences
to allow users to visualize and pinpoint fusion breakpoint
evidence. Below we explain the algorithms behind the
novel local alignment mechanism driving our tool and
apply it to the output of selected fusion detectors that
were run on publicly available data sets.

Implementation

FuSpot is designed to allow users to critically inspect
candidate fusion breakpoints derived from ribonucleic
acid (RNA) fusion detector tools. This is accomplished
by realigning reads adjacent to the breakpoint across
references representing the breakpoint of interest to
reveal alignment characteristics congruent with true or
false gene fusions. FuSpot takes as input one file
containing reads adjacent to the fusion point (two files
for paired-end format). To create this input, FuSpot
provides a tool that will extract from alignment files all
reads and their mates adjacent to the fusion point. Once
candidate fusion reads are gathered, to begin alignment
the user will need to enter: 1) two genomic coordinates
and strand information corresponding to the fusion
breakpoint and 2) a base-pair distance used as a search
radius centered at the breakpoint. From this, FuSpot will
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retrieve both genomic and exonic sequences flanking the
breakpoint to use as an alignment reference. Alterna-
tively, if the user prefers, they may upload custom refer-
ence files for FuSpot to use during the alignment step.
The basis of the tool is a local alignment algorithm that
incorporates a breakpoint and allows any number of ref-
erences on the left side and the right side of the break-
point. The process is based on a variation of the
Smith-Waterman local alignment algorithm which
generates a score matrix to calculate read alignments.
The alignment algorithm allows for any number of
insertions and deletions, allowing it to perform flex-
ible alignments about junctions with various tran-
scripts, as is frequent in fusion events.

Gathering references around a fusion breakpoint

FuSpot is built to perform alignments to fusion and non-
fusion gene constructs simultaneously. To accomplish
this, FuSpot will gather as references genomic sequences
and exonic sequences flanking either side of the putative
breakpoint for both fusion gene partners. References from
both the genome and transcriptome are required to per-
form comprehensive alignments and visualizations since
most fusion studies leverage RNA data. This sequence re-
trieval is depicted in Fig. 1.

FuSpot Reference Retrieval
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Fig. 1 FuSpot Reference Sequence Retrieval. FuSpot reference retrieval is
visualized. In this example, the putative fusion breakpoint exists between
the rightmost base of the 5' side of the Chr2 reference and the leftmost
base of the 3 side of the Chr17 reference. In order to perform
alignments of reads which may align over the putative breakpoint
or reads which may align to the normal sequence of either Chr2 or
Chr17, FuSpot will gather references by collecting sequences of a
defined length away from the breakpoint for both fusion gene partners.
FuSpot will collect genomic sequences (always sequential — blue and
yellow) and exonic sequences (potentially fragmented — green and
red). Thus a total of 8 reference sequences are retrieved — 4 on either

side of the breakpoint
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To obtain the flanking genomic sequences for a user-
specified fusion breakpoint, FuSpot will initiate a query
to the University of California, Santa Cruz (UCSC) direct
attached storage (DAS) server [12]. For a given side of
the breakpoint, the base representing the coordinate of
that side of the breakpoint will be depicted in the
reference list matching the orientation of the fusion
gene. If the reverse strand is specified for a given partner
of the breakpoint, FuSpot will search in the 5" direction
for 3" side references and vice versa, then finish by
reversing and complementing the sequences. In the
example below, if the input fusion breakpoint coordi-
nates are between chr1:10,000:+ =» chr2:20,000:- and the
user requests a 100 base pair (bp) search radius, the
genomic references to be retrieved would be as
follows:

Left side genomic references:

¢hr1:9,901-10,000

chr2:20,001-20,100

Right side genomic references:

¢chr1:10,001-10,100

¢hr2:19,901-20,000

where the sequences for chr2 are reverse complemented.

To retrieve exonic sequences, FuSpot follows this same
stranded search convention and references a list of all exons
obtained from the UCSC table browser [13] in order to
query only the exonic regions of the genome. First, FuSpot
checks if the breakpoint coordinate lies within the
boundaries of an exon. If this is not true, it will then
proceed to identify the boundary of the nearest exon in the
direction of search to begin the query. Otherwise, the
starting query position will follow the same convention
described above. FuSpot will then calculate the distance
from the starting position to the next boundary of the exon
in the direction of search. If this distance is greater than the
user-defined search radius, FuSpot will query the UCSC
DAS server for the sequence between the starting point
plus the distance of the search radius. However, if this
distance is less than the user-defined search radius, FuSpot
will query the DAS server for the sequence within this
distance, then identify the boundary of the next nearest
exon and mark that boundary as a starting point from
which to search for subsequent exonic bases. Once FuSpot
gathers enough exonic sequence fragments for the aggre-
gate length to match the user-defined search radius, it will
concatenate them in an order that maintains the stranded-
ness with respect to the genome. Further, if the given break-
point coordinate is specified in the reverse strand, the final
concatenated sequence will be reverse complemented. For
the example coordinates shown above, if a 200 bp exon
existed at chr1:9801-10,000 and two 70 bp exons existed at
chr1:10,031-10,100 and c¢chr1:10,201-10,270, the exonic
references associated with the first coordinate breakpoint
would be as follows:
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Left side exonic references:

chr1:9901-10,000.

Right side exonic references:

¢chr1:10,031-10,100, chr1:10,201-10,230.

FuSpot will extract references automatically as described
above for the hgl9 and GRCh38 builds of the human
genome and the mml0 build of the mouse genome. In
addition, FuSpot also allows users to upload their own
sequences as references, allowing for an arbitrary number
of references from any organism to be used as references
on either side of the breakpoint. In this way, FuSpot builds
in forward flexibility to accommodate fusion visualization
from new genome builds and available organisms.

Tool for extracting reads

Since current sequencing runs yield millions of reads, files
detailing the alignments of all reads can be on the order of
gigabytes. Since only a small portion of these reads is
needed to evaluate each putative fusion breakpoint, and
since files of such size are not suitable for upload to a web
tool, we provide an extraction tool to collect relevant reads
to be uploaded as input to FuSpot. This read gathering tool
is available for download on the FuSpot website and has to
be run locally by the user. Given the same search radius
and breakpoint coordinates input to the reference gathering
step, the read gathering tool will use PySAM [14, 15] to
extract from input Binary Alignment Map (BAM)
alignment files reads from all exonic regions out to an
exonic distance matching the search radius away from
the breakpoints. Additionally, it will gather all reads
with alignments that start within a genomic distance
equal to the search radius away from the breakpoints. If
desired, paired mates for these reads will also be extracted
regardless of their alignment. Exonic distances are calcu-
lated using the method described in Gathering References
Around A Fusion Breakpoint.

In order to generate useful chimeric alignments, we
recommend aligning reads with a chimeric-capable RNA
aligner such as Spliced Transcripts Alignment to a Reference
(STAR) [16]. Do note that when run in the chimeric mode,
STAR will include some reads in both the normal alignment
file and the chimeric alignment file. Therefore, if the read
extraction tool is used to gather reads from both the
chimeric and normal alignment BAM files, some reads may
be doubly counted.

Review of traditional Smith-Waterman alignment

Once the input reads and references are determined and
submitted to FuSpot, alignment will commence. Since
FuSpot’s alignment algorithm is a variant of Smith-
Waterman local alignment, we will briefly review the
Smith-Waterman algorithm as published by Temple F.
Smith and Michael S. Waterman in 1981 [17].
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Score matrices

We will consider alignment of a read sequence A of length
m and a reference sequence B of length #, whose bases are
represented by a;, b; respectively. A similarity function ¢ and
a gap scoring scheme W must be defined to compare the
bases of A and B. FuSpot declares these functions as follows:

a; = bj
ﬂiibl‘

1
O‘(&ll‘,bl‘) = {_1
W = -

The Smith-Waterman algorithm uses a matrix of
scores for partial alignments of the sequences up to a
specific pair of indices (ij). This Smith-Waterman score
matrix H is generated as follows:

Initialization:

H(i,0) =0, 0<i<m
H(0,j) =0, 0<j<n

Scoring:
0
Lo H(i-1,j-1) 4+ o(a;,b;) Match or Mismatch
H(i,j) = max H(i,j-1)+ W Deletion ’
H(i-1,j)+ W Insertion
1<i<m,
1<j<n

Where H(i,j) is the matrix element of the similarity
matrix.
This scoring process is visualized in Fig. 2.

Backtrack and alignment

Once the matrix is populated, the alignment producing
maximum similarity of the two sequences can be
obtained by finding the maximum matrix element, then
tracing it to its neighboring elements in descending
order of element score:

(i, j) where H(i, j)
= max{H(i), j,)}, 1<iysm,1<j <n

(i07j0)

(igs1:Jer) = (i) where H(i, )

H( -1, 1) +0(ai,b;) Diagonal Aot = a1y, Bus+ = b,
<q,1q ) Left Ao+ ="=",Bour+ = b”jq
(lq*I ]q) + W Above Aot = iy Bourt = =

until Hy(i,j) =0

Where: A,,:, B,y is the character sequence of the best
alignment of A against B and B against A respectively.
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This backtrack process is visualized in Fig. 2.

FuSpot fanned alignment
In order to align reads from the vicinity of a fusion
point, multiple references have to be available on
both sides of the fusion point. At a minimum, reads
on the 5 side of the fusion point can be derived
from the 5° end of the messenger RNAs (mRNAs) of
either of the two genes involved in the fusion. The
same is true of the 3" ends on the 3" side of the
fusion point, respectively. Alignments have to be able
to “start” in either of the two possible 5 ends and
“end” in either of the two possible 3’ ends in order
to identify the most parsimonious explanation for
every read (purely gene 1, purely gene 2, or fusion of
gene 1 and gene 2). Since mRNA-Seq data often also
contains some amount of reads derived from
unspliced precursor mRNA, it is also possible to
obtain reads that represent the genomic sequences on
either side of the fusion point from each of the two
genes. Alternative splicing near the fusion point in
either of the two genes would require even more
possible references on one or both sides of the fusion
point. Thus, the key feature of the alignment
algorithm underlying FuSpot is that it allows a read
to start in one of an arbitrary number of 5 refer-
ences, and continue through the common fusion
point to one of an arbitrary number of 3" references.
FuSpot’s algorithm introduces a third dimension to
the Smith-Waterman algorithm by generating a single
score matrix for each input reference and forcing
them to converge and diverge at the fusion break-
point. Effectively, FuSpot creates both a stack of score
matrices corresponding to the left side references and
a stack corresponding to the right side references;
each side fans out from a center breakpoint column.
These stacks of Smith-Waterman matrices will be
represented as follows:

H(i, j; f)

Where S will mark the side of the breakpoint
column on which the stack lies and f will indicate the
index of the score matrix and corresponding reference
on that side.

Scoring

Left side score matrices

For each matrix in the left side stack, scoring is
carried out almost exactly as described in traditional
Smith-Waterman where A for all matrices is one
candidate fusion read and B for each given matrix is
the left side reference sequence corresponding to the
given index f of that matrix. However, calculation of
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Smith-Waterman Review:
Scoring:
- A C C G T € A T T

. 0 0 0 0 0 0 0 0 0 0

A 0 1 0 0 0 0 0 1 0 0

C 0 0 2 1 0 0 1 0 0 0

G 0 0 1 1 2 1 0 0 0 0

i 0 0 0 0 1 3 2 1 1 1

G 0 0 0 0 il 2 2 1 0 0

A 0 i 0 0 0 1 1 3 2 1

T 0 0 0 0 0 1 0 2 4 3

Similarity Function: o(ay,b;) = {_11 [Z[ ; I:l}
Gap Scoring Function: W=-1
Backtrack:
. A C C G T C A g T

* 0 0 0 0 0 0 0 0 0 0

A 0 R ¢« N K N K K < N

C 0 T N R < N N P N N

G 0 R D N R ¢ D N N N

T 0 K T K T K < < <« £

G 0 K K K N 1 N LS K K

A 0 R < N T T N N < <

T 0 D R N R D N D R <
Fig. 2 Smith Waterman Alignment Algorithm. (Scoring) Smith-Waterman alignment score matrix for the example read sequence, A, (given in the left-most
column) against an example reference sequence, B (given in the top-most row) with the indicated scoring scheme. Each entry of the first row and first column
are initialized to 0. Then each subsequent matrix element is calculated by taking of the maximum of the following three values: (1) Value of immediate left entry
plus Gap Scoring Function, (2) Value of immediate top entry plus Gap Scoring Function, (3) Value of immediate top-left diagonal entry plus Similarity Function.
(Backtrack) A tracing of the backtrack mechanism resultant from the above score matrix. Backtracking begins at the maximum matrix element (green) and
continues to the matrix element from which its score was derived as defined by the scoring scheme. Movements to the diagonal produce a match or
mismatch, movements to the top produce an insertion in the read, and movements to the left indicate a deletion in the read. This backtrack produces the
alignment: Read: A C G T GA T, Reference ACCGTCAT

the left side matrices differs slightly from traditional
Smith-Waterman in that no score is computed for
the final column of each matrix. Instead, as de-
scribed next, the last base of each left side reference
is used to generate a “breakpoint column” corre-
sponding to the fusion breakpoint to which all left-
side score matrices are then forced to converge.

Breakpoint column

The elements of the breakpoint column are calculated
by taking the maximum over all possible moves out of
the second to the last column of each left side matrix.
The center column will be represented by:

H i (7)

The breakpoint column is populated as follows:
Initialization:

Hipipe(0) = 0

Scoring:

0
max; < fg]_{H[gft(i—l, n-1;f) + o(a,-, bn,f) } Match or Mismatch
maxlsfg[_{Hleft(l', n-1;f) + W} Deletion ’
Hpie(i-1) + W Insertion

1<ism

Right side score matrices

A score matrix is then generated for each sequence
provided as a right side reference. The first column of
each right side score matrix is initialized with the values
of the breakpoint column, effectively causing each right
side matrix to fan out from the breakpoint column. After
this initialization step, all of the right side matrices are
populated with scores exactly as described in traditional
Smith-Waterman scoring where A for all matrices is one
candidate fusion read and B for each given matrix is
the right side reference sequence corresponding to
the given index f of that matrix.

Best strand
Once all of the score matrices and the breakpoint
column are populated, the maximum matrix element
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over all Hy(i,j;f) and Hpj,(i) is calculated and stored.
FuSpot then generates a full set of fanned score
matrices for the read’s reverse complement strand
and calculates the maximum matrix element again.
The read strand with a higher maximum value has
more total matches against the reference sequences
and so this strand of the read along with its corre-
sponding set of score matrices passes to the next step
to provide the best possible alignment. If the reverse
complemented sequence of an original read is se-
lected, that read’s strand is marked as “-” in the final
FuSpot plot.

FuSpot backtrack and alignment

The fanned backtrack mechanism employed by FuSpot
is very similar to that of the traditional Smith-
Waterman algorithm but is built to handle traversal of
the breakpoint column. As with traditional Smith-
Waterman backtracking, the process begins at the
maximum matrix element, previously calculated while
determining the best read strand. Noting the fanned
structure of FuSpot alignment, this maximum element
also determines the side and index of the matrix from
which backtracking commences. If the maximum
exists in the breakpoint column backtracking commences
from that element of the breakpoint column. The starting
position is calculated as follows:

(i0: jor fo,S) = (i, j, f.S) where H(i, j; f)

maX{Hleft (iaw ]},ﬁle) }
max{kupr(i)} )

max Hright ixvjyz;fzz }

l<ism,l<j,<m,1<j,<n
1<f, <L, 1<sf,<R

Where:

fa1=z1th index of the left side matrices.
f2= zoth index of the right side matrices.
L=number of left side references.
R=number of right side references.

(a) If S = left:
(igs1egins f) = (jof) where Hig G, i f)
H,ef,(iq—lﬁjq—lz,f) +0(ai,bny) Diagonal Avt = a1, Bugt = by,

Hig(iq,J,-1:f) + W Left Aot ="~".Bout =by,
Hl@ﬁ(iq_l‘jq:f) +W Above Aout = @iy, Bout+ = -

= max )

until Hin(i, j; f) =0

(b) If S = bkpt; £, j = 0 (starts directly on breakpoint):
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(iar1sg1of.S) = (i) f,S) where H(i, i f)
maxj <, 5[‘{H[gﬁ(iq*1.n|’l;le) + o(a;.b,,f)} Diagonal ~ Aowt = ai,, Bou
= max maxic s, <o {Hiep(igym-1; f) + W} Left At =" ou brym ¢,
Hiypi (ig=1) + W Above Agu+ = ai,, Bt =~

until Hs(i,j: f) =0or S = left

If S = left and Hs(i, j; f) = 0: continue on using step a.
() If S = right (starting in the right-side score
matrices):

(ig12igiasf ) = (i.jo ) where Hig (i, j: )

Hyight (i,,—l,jq—l;f) +o(ai, by,j) Diagonal Aot = i, Bout = by
H,ig;,,(i,,, j-Li f) W Lot Awut="~".Bout = by},
Hnghr(iq*l,l},?f) +W Above Aourt = @iy, Buut =~

= max

until Hygu(i, j; f) =0o0r j=0

If j=0 and H,,,(i, j; f) = 0: continue on using step b,
setting (i; . 1,8) = (ig + 1, bkpt).

Once step a, b, or ¢ encounters a matrix element of 0,
backtracking ceases and the finalized alignments are saved.
This special fanned technique allows a user to query the
alignment of a given read against numerous reference
sequences simultaneously. This is particularly important
when working with RNA data. In Fig. 3 we conceptualize
this alignment method and show an example of how FuSpot
can be used to locally align an entire set of reads, each of
which may be a fusion or non-fusion read as well as a gen-
omic or exonic read.

Alignment score

Once alignment is finished, each read is assigned an
alignment score to track the quality of the reported
alignment. If a read aligns perfectly somewhere along the
references, it receives a score of 100. However, FuSpot’s
alignment algorithm allows for any number of insertions,
deletions and mismatches, each of which can contribute
negatively to a read’s final alignment score. This metric is
valuable as a filtering parameter on the web interface and
will be discussed in more detail in the next section.

Alignment score is calculated as follows:

o — ollosifo) 0
m

Where:
o Hiy, jo. fo)=value of the maximum matrix element

where backtracking commenced
e m=length of the read
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5' genomic DNA of gene 1 - s 3' genomic DNA of gene 1 - s

5' genomic DNA of gene 2 - 3' genomic DNA of gene 2 -

5' exonic sequence of gene 1 - mmmmm  3' exonic sequence of gene 1 - s

5' exonic sequence of gene 2 - mmmmm 3’ exonic sequence of gene 2 - s
Fig. 3 FuSpot Fusion Alignment Algorithm Visualized. A conceptual
representation of the FuSpot alignment algorithm. Each colored line
represents an overhead view of a 2D Smith Waterman score matrix
representative of a given read and one of eight reference sequences (4 on
the 5" end of the breakpoint and 4 on the 3" end) The central black circle
marks the fusion breakpoint. Since fusion analysis is typically conducted
with RNA data, the ability to align against many references simultaneously
is crucial. Here the chosen references exemplify how FuSpot can be used
to align a set of reads, each of which may be fusion or non-fusion as well
as genomic or exonic. During FuSpot realignment, should backtracking
commence from a matrix on the 3" side of the breakpoint, tracing could
follow through to the breakpoint. In such a case, FuSpot's realignment
algorithm would search the rightmost column of each of the four matrices
on the 5" end of the breakpoint for the appropriate next step to trace.
Once determined, it will follow the dotted line to that matrix, then trace
through it for the remainder of the backtrack. Subsequently, the traced 5
and 3" matrices and their associated references will be assigned a color
during FuSpot’s visualization step and the aligned read will take on the
appropriate color for the reference to which it aligned on either side of
the breakpoint

FuSpot web interface

Once every read is assigned an alignment and a score,
all reads are then traced and colored on a user-
friendly web platform. References on each side of the
breakpoint are assigned a unique color, and the reads
that align to that reference will take on the same
color. As such, fusion reads are readily identifiable
since any read that aligns across the breakpoint will
take on two distinct colors. By clicking a read, the
user will see all information associated with it, includ-
ing the read name, the input strand orientation, and
its alignment score.

FuSpot allows two options for filtering read align-
ments. First, the user may dynamically set a minimum
alignment score to examine the quality of the alignments
of their reads. This becomes useful in ascertaining
whether the supporting reads reported by a fusion tool
truly align well to the fusion breakpoint in question.
This is also valuable for quickly filtering out input reads
that did not align well to any of the reference sequences.
Second, the user has the option to view only spanning
reads. In most cases, a minimum of two spanning reads

Page 7 of 16

is required by fusion detector tools to report a fusion.
This is because without any spanning reads, it is impos-
sible to know the exact position of the breakpoint. Using
this option, the user can quickly discern the number of
these important reads in their data.

Additional features

Paired-end

FuSpot is able to align and display paired-end reads.
During alignment, read-pair information is ignored and
all reads are aligned independently. However, the read-
pair information is utilized in the web interface to plot
mates along the same line. During filtering, the align-
ment score of each read in a pair must be greater than
the minimum alignment score for the pair to be
displayed. If the user selects the spanning filter option,
read pairs that have at least one read spanning the fusion
breakpoint will be displayed.

Semi-global alignment

FuSpot may also be run in semi-global alignment mode.
Users may prefer this option since it guarantees that the
entire read will be traced during the backtrack step and
that every base will be used in the reported alignment.
This is achieved by forcing the backtracking mechanism
to begin on the bottom row of a matrix, and only cease
execution when the top row of a matrix is encountered.
The process is as follows:

Scoring

Scoring for left side matrices, the breakpoint column
and right side score matrices is calculated using the
same method as described in FuSpot Fanned Alignment:
Left Side Score Matrices, FuSpot Fanned Alignment:
Breakpoint Column, and FuSpot Fanned Alignment:
Right Side Score Matrices respectively, with the following
two exceptions: matrix elements are permitted to
become negative (i.e. the floor value is omitted from
input to the max function). In addition, the left side
score matrices are initialized as follows:

Hlef't(i,o,f):—i7 0<i<m
Hie(0,/,f) =0, 0<j<n

0<f<L

Starting matrix element
The matrix element on which to begin the backtrack
scheme is calculated as follows:
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(iOajOafmS) = (i, ), f,s) where H(i, ], f)

max{Hleﬁ (m,jyl,le) }
kupt(ma 070) B

max{Hright (Wl7 jy27fz2) }

= max

Backtrack termination
Backtracking only terminates when the top row of a
matrix is reached:

iy =0

Alignment score

The value of the starting matrix element of the semi-
global backtrack mechanism is used when calculating
the alignment score in semi-global mode:

H;(io, joi fo)

Results and discussion

Since, to the best of our knowledge, no other tool exists to
visualize fusion read alignments, we evaluated the perform-
ance and utility of FuSpot by examining data supporting
gene fusions whose validity was known a priori. Given the
frequency at which new fusion tools are being developed,
FuSpot is designed to analyze putative fusion candidates
independent of the detector tool that reported them. To
demonstrate this versatility, herein we present cases in
which we run four different fusion detectors on two
publicly available data sets, and use FuSpot to validate the
reported true and false positives.

Many factors influence the performance of any given
fusion detection algorithm; the most important of these
are the characteristics of the input data. These include
read length, strandedness, insert length, sequencing
coverage, whether the data is paired-end or single-end,
and whether the data is deoxyribonucleic acid (DNA) or
RNA. When evaluating the performance of a given tool,
the most important considerations are its run time,
memory footprint, sensitivity and specificity. To present
a diverse set of cases in which a researcher might carry
out a fusion study, we selected four tools (FusionCatcher
[18], FusionMap [19], EricScript [20], and Bellero-
phontes [21]) that were reported to vary significantly in
these categories, and that recent reviews [8, 9] agreed
were the most effective over diverse data sets. Per Liu et
al. and Kumar et al. [8, 9], FusionCatcher has good
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precision and sensitivity but a relatively higher computa-
tion cost and run time whereas FusionMap has slightly
lower precision and sensitivity but a very low run time.
These tools were also selected because they included
supporting reads for candidate fusion junctions in their
output files. For simplicity we ran only these two tools
on our positive data set. For the negative dataset, we ran
these two tools as well as EricScript and Bellerophontes
in order to demonstrate the diverse false positive
populations that each tool may report — and which
FuSpot can effectively analyze. EricScript has a runtime
that rivals FusionMap, a small memory footprint, and
relatively high predictive power, whereas Bellerophontes
has similar predictive power with higher computation
cost and runtime [8, 9].

First, we ran FusionCatcher and FusionMap on a publicly
available paired-end RNA Sequencing (RNA-Seq) data set
derived from the BT474 breast cancer cell line, used in
Edgren et al. [22] and available on the National Center for
Biotechnology Information (NCBI) Sequence Read Archive
(SRA) [SRA:SRP003186]. This data set contains several
polymerase chain reaction (PCR) validated gene fusions
and has been used as a test set in other fusion detector
publications [18, 20, 21, 23, 24]. To search for false
positives, FusionCatcher, FusionMap, EricScript, and
Bellerophontes were also run on a publicly available
synthetic paired-end RNA-Seq data set generated
using the Benchmarker for Evaluating the Effective-
ness of RNA-Seq Software (BEERS) [25]. This dataset
is claimed to be free of fusion events and used in the
publication of the JAFFA fusion detector tool [26]
and is available on the JAFFA website [27]. Since this
data set is built to contain no true fusions, any fusion
junction events reported by the selected fusion tools
should be regarded as false positives.

To provide more information adjacent to the fusion
junctions reported by the four tools, we also aligned both
data sets using the STAR RNA aligner [16] in chimeric
mode, then extracted with FuSpot reads which STAR
reported to align in the vicinity of each breakpoint. In
chimeric mode, STAR provides both chimeric and normal
RNA alignments thereby allowing us to gather reads from
both fusion and non-fusion gene transcripts. By visualizing
both types of reads in FuSpot, researchers can gain a more
incisive view of the fusion junctions, which is not possible
by viewing just fusion-supporting reads alone.

For the following fusion junctions, 200 bp genomic and
exonic sequences on either side of the breakpoints were
used as references for FuSpot alignment and visualization.

True positive: ACACA-STAC2

Edgren et al. [22] reported 10 PCR validated true positive
fusions in the BT474 data set. Of these, the ACACA-STAC2
fusion gene had the highest read coverage and was therefore
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the best candidate to comprehensively illustrate the
functionality of FuSpot. We ran FusionCatcher and
FusionMap using their default parameters on the
Edgren et al. [22] data set and both reported ACACA-
STAC2 as a fusion candidate. We also ran STAR with
chimeric options enabled to identify a separate set of
fusion reads local to the breakpoint.

FuSpot: Supporting reads by FusionMap

FusionMap includes in its output a list of supporting reads
that align over the implicated fusion breakpoint. However,
these supporting reads are exclusively single-ended and
therefore lack valuable information about the fusion as we
will show below. Figure 4 depicts the FuSpot visualization
of reads reported by FusionMap supporting the ACACA-
STAC?2 fusion junction. All 18 of these supporting reads
achieved at least a 95/100 FuSpot alignment score. The
reads span the breakpoint evenly providing compelling
evidence that this is likely a true fusion candidate.
However, as read mates are not part of the FusionMap
output, reads flanking the breakpoint are not present to
build a comprehensive view to fully support the assertion.
In Fig. 5 and Fig. 6, we illustrate the power of including
flanking reads in FuSpot to further augment the evidence
of the presence of ACACA-STAC?2 fusion in the data.
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FuSpot: Supporting reads by FusionCatcher

The other fusion tool we evaluated on the positive data set
was FusionCatcher. As supporting evidence, this tool
provides reads with mates spanning or flanking the fusion
point. Figure 5 depicts FuSpot’s output showing the Fusion-
Catcher reads supporting the ACACA-STAC2 fusion
junction. Of the 87 read pairs provided by FusionCatcher as
supporting reads, 74 were aligned by FuSpot with a 95/100
alignment score or higher. These include 30 read pairs
which have the first mate align in ACACA and the second
mate aligning over the gap into STAC2. Conversely, 11 read
pairs align with the first mate aligning over the gap and the
second mate aligning fully in STAC2. Further, the anchor
lengths of spanning reads vary from a few base pairs up to
25 bp on each side of the gap. Finally, 33 reads flank the
breakpoint such that each mate lies in a unique gene
without aligning over the breakpoint. In all, the visual dis-
play of candidate RNA-seq reads to the ACACA-STAC2
chimeric gene illustrate all the characteristics expected of a
true fusion gene. This clearly highlights the value of FuSpot
as an accompanying tool to fusion detection algorithms.

FuSpot: Supporting reads by STAR
Figure 6 shows FuSpot’s output depicting the STAR
alignment reads adjacent to the ACACA-STAC2 fusion

Reads take on color of
references to which they align

ACACA-STAC2 BT474 True Positive (FusionMap)

Putative Breakpoint

|||I||‘ it

the breakpoint

Fig. 4 FuSpot Visualization of ACACA-STAC2 True Fusion Gene Using FusionMap Supporting Reads. FuSpot's visualization of the lab-validated ACACA-STAC2
fusion gene from Edgren et al. [22] The breakpoint for the fusion is marked by the dotted line in the center of the plot. Each colored horizontal line in the plot
corresponds to one read local to the fusion breakpoint that was realigned by FuSpot. On either side of the breakpoint, references used for realignment are
assigned a unique color in the legend atop the plot and the reads that align to each reference will take on the same color. Each read seen here was reported
by the FusionMap fusion detector tool when run on the data set from Edgren et al. [22] As supporting read evidence, FusionMap provides exclusively single-
end reads which align over the breakpoint. The even distribution of these reads about the breakpoint support the existence of the candidate fusion, but the
omission of the mates leaves the picture incomplete; specifically, it excludes any reads which, along with their paired mates, may align on either side of




Killian et al. BMC Genomics (2018) 19:139 Page 10 of 16

%

ACACA-STAC2 BT474 True Positive (FusionCatcher)

mic ACACA

Putative Breakpoint

» (Reads take on color of

: references to which they align
C )

osuccc | Fuspot

Fig. 5 FuSpot Visualization of ACACA-STAC2 True Fusion Gene Using FusionCatcher Supporting Reads. An alternative visualization produced by FuSpot of
the lab-validated ACACA-STAC2 fusion gene from Edgren et al. [22] Each read seen here was reported by the FusionCatcher fusion detector tool when run
on the data set from Edgren et al. [22] Unlike FusionMap, FusionCatcher provides in its output supporting reads and available mates which span or flank the
breakpoint. Here, several reads span the breakpoint, some with a spanning first mate and some with a spanning second. Anchor lengths over the breakpoint
vary from a few base pairs to about half the length of the read. Two reads flank the breakpoint. This distribution provides clear and present evidence that the

ACACA-STAC2 fusion is a true positive

junction. The reads were extracted from both the
normal and chimeric alignment files and make up 4
distinct groups. Group 1 is made up of chimeric reads
which represent a clear expression of the putative fusion
gene, similar to the reads in Fig. 5. Groups 2 and 3
contain reads extracted from STAR’s normal alignment
file. As seen in the figure, these reads are not involved in
the fusion transcripts — rather they support the normal
ACACA and normal STAC2 transcripts respectively.
Such reads are expected in fusion sequencing data since
a fusion is usually present in only one copy of a given
chromosome. Group 4 is made up of reads that were
extracted from the normal alignment file, but that are
truly chimeric reads. These reads were placed in the
normal alignment file since STAR successfully aligned
them with many bases in the first or second mate soft
clipped. When these soft clipped reads were aligned by
FuSpot, they were revealed as chimeric reads supporting
the putative fusion. These four groups exemplify the
utility of FuSpot in building a comprehensive visual
representation of a putative fusion using all the data
available to the researcher.

False positives

Next, we ran FusionCatcher, FusionMap, EricScript, and
Bellerophontes with default options on the BEERS [25]
data set in order to discover false positive fusion points.

The number of false positives reported by each tool can
be seen below in Table 1.

FusionCatcher detected 142 fusion events, 141 of which
were labeled as having a gap of less than 100 kilobase pairs
(kb). The relatively small distance between the breakpoints
suggested that these events were transcriptional read-
throughs rather than potential genomic relocations. Thus
these breakpoints were eliminated from the final analysis
with FuSpot. Alternatively, FusionMap detected 5 fusion
events, 2 of which were on the same chromosome spanning
a gap less than 100 kb. One of the three remaining fusions
suggested the presence of a breakpoint between Chr3 and
Chrl and provided four spanning supporting reads as
evidence. The fusion gene connected THRB and AZIN2
(formerly known as ADC). We chose to first investigate this
gene with FuSpot due to the significant level of supporting
evidence and the scale of the relocation event.

THRB-AZIN2: Supporting reads by FusionMap

Figure 7 shows the FuSpot alignment of the four putative
supporting reads provided by FusionMap to the THRB-
AZIN2 fusion gene. Inspection in FuSpot revealed that
the second and fourth reads were reverse complemented
copies of the first and third reads respectively, further
diminishing the amount of reliable supporting evidence.
The lack of a distribution among the supporting reads and
consistent short anchor length suggest that this candidate
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Fig. 6 FuSpot Visualization of ACACA-STAC2 True Fusion Gene Using Extracted STAR Supporting Reads. FuSpot's final visualization of the lab-validated ACACA-
STAC2 fusion gene from Edgren et al. [22] Each read seen here was extracted from either the normal or chimeric output file produced by aligning the data set
from Edgren et al. [22] with STAR. All reads were extracted using the FuSpot extraction tool available on the FuSpot website. In the plot, these reads make up 4
distinct groups. Group 1 is made up of chimeric reads which represent a clear expression of the putative fusion gene. Groups 2 and 3 contain reads extracted
from STAR's normal alignment file which support the normal ACACA and normal STAC2 transcripts respectively. Group 4 is made up of reads

building a comprehensive visual representation of a putative fusion

that were extracted from the normal alignment file, but that are truly chimeric reads. These four groups exemplify the utility of FuSpot in

breakpoint may be a false positive, matching the hallmarks
of false positives reported by Edgren et al. [22]

THRB-AZIN2: Supporting reads by STAR chimeric

Figure 8 shows the FuSpot alignment of reads reported by
STAR to align near the THRB-AZIN2 fusion point.
Extraction and examination of fusion reads from STAR’s
chimeric file yielded no reads that aligned with at least a
95/100 score percentage. However, STAR’s normal align-
ment file contained many reads, which we will call Group
1, that were local to the AZIN2 breakpoint coordinate as
depicted by FuSpot in Fig. 8. Most of the reads were non-
fusion reads with an even distribution across the AZIN2

Table 1 False Positives Reported by the Fusion Detectors

Tool False Positives Large Scale FP
FusionCatcher 142 1

FusionMap 5 3

EricScript 298* 137

5060 4984

We ran FusionCatcher, FusionMap, EricScript, and Bellerophontes on the
synthetically generated BEERS [25] data set known not to contain any true
gene fusions. The False Positives column indicates the total number of
fusions reported by each tool. The Large Scale FP column depicts the
number of reported fusions that involved gene partners at least 100
kilobase pairs apart or on different chromosomes (all others were
considered read-throughs rather than potential genomic relocations.)

*The total number of false positives for EricScript was counted using the
reported list of fusions containing EricScore > 0.5 [20]

Bellerophontes

gene. Four reads near the bottom of the plot (which we
will call Group 2) align such that the first mate spans the
fusion breakpoint with a small anchor on the 5" end and
the second mate aligns entirely in the 3" end of the AZIN2
reference. Below these are five reads, which we will call
Group 3, that align such that the first mate aligns fully in
the 5’ end of the AZIN2 reference and the second mate
aligns such that its first few bases align to the 5" end of
the THRB reference and the remaining bases align to the
3" end of the AZIN2 reference, defying genome orienta-
tions. These “nonsense alignments” reveal why FusionMap
reported this breakpoint. The Group 3 reads suggest that
there is homology between the sequence at the terminus
of the 5" end of the THRB reference and the sequence at
the terminus of the 5’ end of the AZIN2 reference. To
confirm this homology, we aligned the reads from Groups
2 and 3 with FuSpot using only the AZIN2 sequences as
references. All 9 reads aligned with a 94/100 or greater
score (see Fig. 9). This similarity between the references
likely caused FusionMap to misalign the four reads from
Group 1 over the breakpoint rather than over the true
AZIN2 gene, resulting in false supportive reads. This illus-
trates the functionality of FuSpot to inspect putative fusion
reads by inspecting three different lines of evidence
(Groups 1, 2, and 3 reads) thereby allowing us to mark this
candidate breakpoint with confidence as a false positive fu-
sion candidate.
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Fig. 7 FuSpot Visualization of THRB-AZIN2 False Positive Fusion Junction Using FusionMap Supporting Reads. FuSpot's visualization of the putative THRB-
AZIN2 fusion gene claimed by FusionMap when given the BEERS data set [25]. Each read seen here was reported by the FusionMap fusion detector tool
when run on the above-mentioned data set. To begin, FusionMap identified 4 supporting reads. Inspection in FuSpot revealed that the second and fourth
reads were reverse complemented copies of the first and third reads respectively, diminishing the amount of reliable supporting evidence. This evidence
alone is insufficient to draw a meaningful conclusion about the validity of the fusion

chr3:24184810 - Genomic THRB

DNAJC21-CNGAT1: EricScript false positive

EricScript generally requires low run time and computation
resources and is therefore a promising tool for general
purpose fusion detection. However, it returned a larger
number of false positives than either FusionCatcher or
FusionMap when presented with the synthetic BEERS [25]

data set, underscoring the value and need for FuSpot in
evaluating its fusion candidates. Figure 10 shows the
FuSpot alignment of reads reported by STAR to align near
the EricScript’s falsely reported DNAJC21-CNGA1 fusion
point. The reads in Group 1 all align normally across the
DNAJC21 partners and the majority of reads in Group 2

THRB-AZIN2 BEERS False Positive (STAR)

chr3:24184810 - Genomic THRE

1:33585662 + Exonic AZIN2

Putative li!reakpoint

Group 1

Group 2

Group 3

0SUCCC | Fuspot

Fig. 8 FuSpot Visualization of THRB-AZIN2 False Positive Fusion Junction Using Extracted STAR Supporting Reads. FuSpot's alternative visualization of the
putative THRB-AZIN2 fusion gene claimed by FusionMap when given the BEERS data set [25]. Each read seen here was extracted from either the normal or
chimeric output file produced by aligning the BEERS [25] data set with STAR. All reads were extracted using the FuSpot extraction tool available on the FuSpot
website. STAR's chimeric file yielded no reads that aligned near the breakpoint with at least a 95/100 score percentage. However, STAR's normal alignment file
contained many non-fusion reads (Group 1) which together form an even distribution across the AZIN2 gene. Four reads (Group 2) align such that the first
mate spans the fusion breakpoint with a small anchor on the 5 end and the second mate aligns entirely in the 3" end of the AZIN2 reference. Below these are
five reads (Group 3) that align such that the first mate aligns fully in the 5" end of the AZIN2 reference and the second mate aligns such that its first few bases
align to the 5" end of the THRB reference and the remaining bases align to the 3" end of the AZIN2 reference. These “nonsense alignments” in Group 3 suggest
that there is homology between the sequence at the terminus of the 5" end of the THRB reference and the sequence at the terminus of the 5 end of the
AZIN2 reference. This homology is confirmed in Fig. 9 by aligning Groups 2 and 3 to only AZIN2 references
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Fig. 9 FuSpot Alignment of THRB-AZIN2 Supporting Reads to only AZIN2 References: FuSpot's visualization of reads from Groups 2 and 3 of Fig.
8 realigned to only AZIN2 references. In Fig. 8, all reads of Groups 2 and 3 aligned to their respective references with at least at 95/100 alignment
score. Similarly, in this plot, all reads align with at least a score of 94/100. This shows the homology between the AZIN2 and THRB reference se-

quences and provides evidence as to why this false fusion candidate was reported by FusionMap

align in a congruent manner across the CNGALI partners.
However, through FuSpot’s realignment of the putative
supporting reads, the alignment of the first Group 2 read
reveals that there is sequence homology among the last few
base pairs of the 5 references; this is likely what caused
EricScript to falsely report the fusion point. The plot
visually confirms that there is insufficient evidence in the
underlying data to support the presence of this fusion.

VDAC1-VDACP2: Bellerophontes false positive

Bellerophontes, like EricScript, was ranked highly in
recent reviews for its overall performance in fusion
detection across the four main performance categories.
However, the performance of Bellerophontes on the
BEERS [25] synthetic dataset reveals its low specificity,
resulting in the greatest number of false positives of all
the tested tools, further underscoring the need for

Title
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Fig. 10 FuSpot Visualization of DNAJC21-CNGA1 False Positive Fusion Junction Reported by EricScript. FuSpot's visualization of the putative DNAJC21-
CNGA1 fusion gene claimed by EricScript when given the BEERS data set [25]. Each read seen here was extracted from either the normal or chimeric
output file produced by aligning the BEERS [25] data set with STAR. All reads were extracted using the FuSpot extraction tool available on the FuSpot
website. The reads in Group 1 all align normally across the DNAJC21 partners and the majority of reads in Group 2 align in the congruent manner
across the CNGA1 partners. However, through FuSpot's realignment, the first read of Group 2 reveals that there is sequence homology along the last
few base pairs of the 5' references; this is likely what caused EricScript to falsely report the fusion point
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FuSpot to visualize outputs from current fusion
detectors. Figure 11 shows the FuSpot alignment of
reads reported by STAR to align near the falsely re-
ported VDAC1-VDACIP2 fusion point. The reads in
Group 1 and 3 align as non-fusion reads to their respect-
ive gene partners. However, FuSpot’s realignment and
visualization exposes the reads in Group 2 which all lack
biological significance. Similar to the THRB-AZIN2
fusion point above, these alignments show that the
VDACI and VDACI1P2 sequences on the 3’ side of the
breakpoint are highly similar and is likely what caused
the tool to report the fusion candidate. Once again,
FuSpot enables us to visually confirm that this fusion
point can be eliminated from downstream analysis.

Impact

Despite much advancement in fusion detection algo-
rithms, no tool has emerged as the gold standard for this
area of research. Currently, each fusion detector tool of-
fers unique features that researchers may want to utilize
for their specific study design and focus. Some studies
may demand high sensitivity, others absolute precision
and most would appreciate computation speed. Most
importantly, researchers need a way to remove false pos-
itives and to prioritize potential true positives so as to
identify the most promising set of true positive fusion
candidates for laboratory-based gene fusions validations.
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A recently published tool, chimeraviz [28], can help with
this prioritization. This R package visualizes the metrics
provided by any of nine modern fusion detectors to help
users evaluate fusion candidates. This can be useful to
prioritize which candidates to analyze on a detector by
detector basis. However, since chimeraviz uses as its
evidence exactly the data reported by a given detector,
its visualizations will be subject to the same biases or
underlying errors that the tools themselves report.
FuSpot offers greater evaluative power than chimeraviz
because it realigns all reads adjacent to a given fusion
candidate’s breakpoint, exposing faults (such as sequence
homology) that often cause detectors to report false
positives.

FuSpot purposefully does not attempt to combine the
evidence for or against a fusion candidate into a single
one-dimensional score or p-value, which then could be
subjected to a cutoff that separates true from false
positives. FuSpot’s philosophy is rather that evidence for
a fusion is intrinsically multidimensional and that a
holistic review of intuitively presented evidence by a
human expert is superior to any given scoring system as
the final step in the prioritization of fusion candidates
for experimental validation. As explained in the
examples above, evidence for true positives includes
multiple reads that switch reference at the breakpoint
with switching-points well distributed over the entire

chr5:133328637 - Genomic VDACT \

Group 1

VDAC1-VDAC1P2 BEERS False Positive (Bellerophontes)

Putative Breakpoint

~

chr5:133328337 - Genomic VDAC1
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Fig. 11 FuSpot Visualization of VDAC1-VDACTP2 False Positive Fusion Junction Reported by Bellerophontes. FuSpot's visualization of the putative VDACT-
VDACTP2 fusion gene claimed by Bellerophontes when given the BEERS data set [25]. Each read seen here was extracted from either the normal or chimeric
output file produced by aligning the BEERS [25] data set with STAR. The reads in Group 1 and 3 align as non-fusion reads to their respective gene partners.
However, FuSpot's realignment and visualization exposes the reads in Group 2 which all lack biological significance. Similar to the THRB-AZIN2 fusion point in
Fig. 8, these alignments show that the VDACT and VDAC1P2 sequences on the 3'side of the breakpoint are highly similar and is likely what caused the tool
to report the fusion candidate. We can visually reject this candidate from downstream analysis
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lengths of the reads and with consistent partners in the
read pair. On the contrary, when one of the two gene
partners only occupies a small and consistent fraction of
the switching reads, this is likely an indication of a false
positive caused by a sequence homology; reads that
switch from one gene to the other in opposite directions
or where the partner in the read pair is placed inconsist-
ently, are even stronger indicators of false positives.
Ultimately, FuSpot gives researchers the power to
visualize and qualitatively determine the validity of
reported fusions regardless of the detection tool they use.
If a detection tool provides supporting reads as output,
users can validate and visualize the reads to gain a much
deeper understanding of why the detector reported the fu-
sion point than can be surmised from a tools’ confidence
metrics alone. Importantly, if a detection tool does not
provide supporting reads, FuSpot will be able to extract
the appropriate information from the output of a chimeric
aligner such as STAR to build highly detailed visualiza-
tions around the breakpoint of interest. Users can simply
supply FuSpot with alignment data from the chimeric
aligner together with the breakpoint reported by their de-
tector of choice. In return, FuSpot will retrieve the flank-
ing references, extract reads local to the breakpoint, and
construct a cogent representation of the candidate fusion
using all the evidence embedded in the sequencing data.
Thus, FuSpot allows researchers to thoroughly investigate
any fusion breakpoint even if the detection tool they use
does not provide sufficient information to do so alone.

Additional applications

In addition to being a companion tool to visually examine
fusion candidates from existing fusion detectors, the flex-
ible nature of FuSpot is designed with the future in mind.
Recently, we came across a special type of gene fusion in
the form of circular RNA, implicated by some to be a new
cancer therapy target [29]. Circular RNA results when the
3" end of a gene loops and fuses to a preceding 5’ end.
Current fusion detectors may miss this type of fusion due
to a lack of targeted, specialized filtering. Researchers
would then be forced to loosely align their reads with a
chimeric aligner and filter for circular style breakpoints
unaided by any tool. With the availability of FuSpot, once
reads are aligned and candidate breakpoints are identified
by the researcher, researchers can then use FuSpot to ex-
tract all reads local to the breakpoint, gather the novel
breakpoint references and analyze this unique form of
fusion meaningfully. We will be watchful in gauging the
utility of FuSpot as scientists continue to explore the
genome in finer granularity.

Conclusions
By presenting fusion data in a visually pleasing and
intuitive manner, FuSpot puts the analytical power in
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the hands of the researcher, rather than the algorithm.
Our tool empowers researchers to work with even the
most sensitive fusion detectors by allowing them to
easily identify and eliminate obvious false positives and
to systematically select candidates for downstream
validation. By enabling quick visualization of real-world
fusion candidates, we hope to facilitate gene fusion
studies that will lead to more targeted cancer therapies.
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