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Abstract

Background: The amount of intramuscular fat can influence the sensory characteristics and nutritional value of beef,
thus the selection of animals with adequate fat deposition is important to the consumer. There is growing knowledge
about the genes and pathways that control the biological processes involved in fat deposition in muscle. MicroRNAs
(miRNAs) belong to a well-conserved class of non-coding small RNAs that modulate gene expression across a range of
biological functions in animal development and physiology. The aim of this study was to identify differentially
expressed (DE) miRNAs, regulatory candidate genes and co-expression networks related to intramuscular fat (IMF)
deposition. To achieve this, we used mRNA and miRNA expression data from the Longissimus dorsi muscle of 30 Nelore
steers with high (H) and low (L) genomic estimated breeding values (GEBV) for IMF deposition.

Results: Differential miRNA expression analysis between animals with extreme GEBV values for IMF identified six DE
miRNAs (FDR 10%). Functional annotation of the target genes for these microRNAs indicated that the PPARs signaling
pathway is involved with IMF deposition. Candidate regulatory genes such as SDHAF4, FBXO17, ALDOA and PKM were
identified by partial correlation with information theory (PCIT), phenotypic impact factor (PIF) and regulatory impact
factor (RIF) co-expression approaches from integrated miRNA-mRNA expression data. Two DE miRNAs (FDR 10%),
bta-miR-143 and bta-miR-146b, which were upregulated in the Low IMF group, were correlated with regulatory
candidate genes, which were functionally enriched for fatty acid oxidation GO terms. Co-expression patterns
obtained by weighted correlation network analysis (WGCNA), which showed possible interaction and regulation
between mRNAs and miRNAs, identified several modules related to immune system function, protein metabolism,
energy metabolism and glucose catabolism according to in silico analysis performed herein.

Conclusion: In this study, several genes and miRNAs were identified as candidate regulators of IMF by analyzing DE
miRNAs using two different miRNA-mRNA co-expression network methods. This study contributes to the understanding
of potential regulatory mechanisms of gene signaling networks involved in fat deposition processes measured in
muscle. Glucose metabolism and inflammation processes were the main pathways found in silico to influence
intramuscular fat deposition in beef cattle in the integrative mRNA-miRNA co-expression analysis.
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Background
The amount of intramuscular fat (IMF) is an important
characteristic associated with juiciness and taste of beef
[1]. IMF deposition is associated with size and number
of adipocytes, the balance between lipogenesis and lipoly-
sis rate in muscle and changes in catabolic activities in dif-
ferent species [2–5]. In humans, skeletal muscle insulin
resistance can be associated with IMF deposition [6], or
more recently with lipid intermediates [7]. Overall meat
quality can be impacted by many factors such as nutri-
tional program, environment, age, sex and genetics. How-
ever, little attention has been paid to the role of microRNAs
in the regulation of IMF deposition in cattle.
MicroRNAs (miRNAs) are endogenous non-coding

(ncRNA) ribonucleic acids (RNAs) that are approximately
twenty-two nucleotides in length [8]. These molecules
modulate the expression of genes at the post-transcriptional
level by blocking the translation of target mRNAs [8, 9].
MiRNAs play an important role in post-transcriptional gene
regulation in many tissues and are associated with the con-
trol of several important biological processes related to lipid
metabolism [10]. Understanding the regulatory functions of
miRNA and other small RNAs on the expression of target
genes that impact lipogenesis and adipogenesis is important
to identify target molecules that influence fat deposition.
Several studies have been published, which demonstrate the
importance of miRNAs as potential biomarkers for var-
iations in subcutaneous adipose tissue [11–13]. How-
ever, limited information about the importance of
miRNA is available for IMF [14, 15]. Once identified,
biomarkers could be used in animal breeding programs
to improve meat quality and animal productivity [11, 13]
and potentially contribute to our understanding of insulin
resistance associated with human diseases such as obesity
and diabetes [16, 17].
Although RNA-seq analyses can be helpful for genomic

studies and can generate lists of expressed genes in spe-
cific tissues to ultimately detect differentially expressed
(DE) genes, the biological interpretation of this data is still
a challenge. Network approaches that integrate data have
proven useful in the identification of complex transcrip-
tional regulation. For example, hub genes, which are
highly correlated with a large number of genes, have been
shown to have key regulatory roles in gene expression
networks [18–20]. Thus, co-expression analysis may be
more sensitive at detecting biologically interesting path-
ways than analysis of DE genes expression [21]. Several
network approaches are available for this purpose, such
as the Weighted Gene Co-expression Network Analysis
(WGCNA) and the Partial Correlation with Informa-
tion Theory (PCIT) methods. The WGCNA method
identifies gene correlation networks, i.e. gene clusters
of biological significance, from expression profiling data
[22]. The PCIT method identifies differences in pairs of

correlated gene expression levels to measure a gene’s
differential connectivity across levels of a phenotype [23].
Utilization of both PCIT and WGCNA have enabled a
better understanding of the co-regulation of mRNAs and
miRNAs for different phenotypes [21, 24–27] to better
comprehend the biological mechanisms and regulatory
processes in lipid metabolism.
In this study, skeletal muscle microRNA and mRNA

expression data from animals with different IMF depos-
ition were integrated with two well documented systems
biology methodologies [22, 23]. These analyses indicate
that miRNAs play a role in IMF deposition by modulating
carbohydrate, lipid and immune response metabolic path-
ways in skeletal muscle.

Results
Phenotypic and sequencing data
The genetic variance, residual variance and heritability for
intramuscular fat (IMF) obtained from this population were
0.196, 0.490 and 0.29 ± 0.16, respectively, as previously pub-
lished [28]. The animals were ranked using genomic esti-
mated breeding values (GEBV) for IMF values and fifteen
animals with high IMF GEBV (H) and fifteen with low IMF
GEBV (L) were selected for miRNA-Seq analysis (Table 1).
This strategy, to select animals with extreme GEBV, was
performed because the correlation (r) between the raw IMF
values (% IMF) and GEBV was high (r = 0.76) [28] and the
statistical T-test showed that the GEBV averages for groups
were statistically different (p-value = 2.2e-16).
A total of 32 million (M) sequence reads were obtained

from an Illumina MiSeq. The average number of total
reads per sample was one million. The total number of
mapped reads was 24 M with an average of 84% reads
mapped (Table 1).

Differentially expressed microRNAs and target genes
identification
Twenty-six novel and 463 known miRNAs were identified
using miRDeep2. Among all microRNAs identified, six of
them were differentially expressed (DE) with a False Dis-
covery Rate (FDR) of 10% (Table 2). Negative values of
fold change indicate lower miRNA expression in animals
with low IMF deposition and positive values indicate
higher miRNA expression for this group. These six micro-
RNAs targeted 2250 genes expressed in skeletal muscle
based on IPA analysis (Additional file 1: Table S1). Of
note, because bta-let-7f and bta-let-7a-5p belong to the
same family of miRNAs and have the same seed sequence,
they most likely target the same genes (Table 2).

Enrichment analysis of target genes from the DE microRNAs
Functional enrichment analyses of target genes by IPA
showed networks and canonical pathways related to fatty
acid metabolism (Table 3). Gene networks and the
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principal canonical pathways are described in Additional file 2:
Table S2, Additional file 3: Table S3, Additional file 4:
Figures S1, S2 and S3, and Additional file 5: Figures S4,
S5 and S6. The most relevant gene network was “lipid
metabolism, small molecule biochemistry, vitamin and
mineral metabolism” that involved genes such as
PPARGC1A, MYCN, ESR2 and ARL4D, that are targets
of downregulated miRNAs and MED1, SMAD4, NEDD4
and MBOAT2, that are targets of upregulated miRNAs in
the L group (Fig. 1).

Target genes enriched for PPAR-RXR signaling path-
ways (i.e. lipogenesis promoting) were negatively regulated
by miRNAs which were upregulated in L group. Target
genes associated with fatty acid oxidation were targets of
downregulated miRNAs. Some important genes for lipid
metabolism present in this pathway included: PPARa,
PKA and ADIPOR2. These genes are targets of the down-
regulated miRNAs bta-let-7 and bta-miR-423 (i.e. down-
regulated in the L group). On the other hand, STAT5b and
GPDH are targets of upregulated miRNAs (bta-miR-100
and bta-miR-143) in L group (Fig. 2).

Co-expression analysis: PCIT - differential Hubbing
After data filtering by expression in high (H) IMF and
low (L) IMF groups, a list with 383 miRNAs and 14,650
genes expressed in bovine skeletal muscle were used for
Partial Correlation with Information Theory (PCIT) ana-
lysis, which allowed for the identification of ten positive
and negative differentially hubbed (DH) genes and miRNAs
(Additional file 6: Table S4; Table 4).
The genes with a significant correlation with DH genes

were used to construct co-expression networks and
identify enriched GO terms (Additional file 7: Tables S5
and S6, Additional file 8: Tables S7 and S8). The GO
terms enriched among all genes correlated to the top ten
negative DH genes were most related to glucose metab-
olism (GO ID: 6006, GO ID: 6007, GO ID: 6096) (Fig. 3)
and for the top ten positive DH genes the GO terms
were related to protein and mRNA metabolism (GO ID:
6364, GO ID: 6350, GO ID: 30,163, GO ID: 30,162, GO
ID: 51,603) (Fig. 4). The DE miRNAs bta-miR-143 and
bta-miR-146b were upregulated in the low (L) IMF group
(Table 2), were positively correlated with negative DH
genes, and were associated with glucose and fatty acids
catabolism (Fig. 3). The most important DH genes po-
tentially involved in the regulation of lipid metabolism
and protein metabolism are shown in Table 5. The co-
expression networks of top DH genes were visualized
by BioLayout (Fig. 5).

Co-expression analysis: Phenotype impact factor (PIF) and
regulatory impact factor (RIF)
The PIF and RIF analyses were used to identify putative
regulatory genes that may explain differences in pheno-
type between groups of animals, based on differences in
gene expression (Additional file 9: Tables S9, S10 and
S11). The most relevant genes for fatty acid metabolism
found in the top RIF and PIF analyses and the GO terms
associated with them are shown in Table 6. The genes
with positive values for RIF 1 and 2 were PYGM, ENO3,
ATP2A1, GAPDH and ALDOA, which were principally
related to glucose metabolism and energy metabolism.
Those with negative values of RIF were mostly miRNAs.
Specifically miRNA bta-miR-143, which was identified as

Table 1 Phenotypic data for intramuscular fat percentage (IMF),
genomic estimated breeding values (GEBV) and number of
normalized mapped miRNA reads for all animals

Animal IMF (%) GEBV Mapped Reads

High1 4.42 0.44 676,705.83

High2 4.12 0.51 722,149.21

High3 4.35 0.57 856,445.98

High4 5.02 0.47 564,721.48

High5 4.74 0.81 1,477,652.40

High6 3.99 0.51 382,812.08

High7 4.17 0.66 1,372,859.97

High8 4.95 0.59 714,291.96

High9 3.97 0.57 637,211.41

High10 4.38 0.71 628,643.15

High11 5.27 0.85 803,295.42

High12 4.35 0.61 675,159.48

High13 3.75 0.42 610,860.91

High14 2.99 0.36 327,429.32

High15 4.13 0.81 578,590.62

Low1 2.06 −0.57 681,969.11

Low2 1.32 − 0.77 825,926.83

Low3 1.35 −0.36 654,790.36

Low4 1.7 −0.31 510,809.28

Low5 1.44 −0.51 661,870.55

Low6 1.04 −0.33 675,033.41

Low7 1.58 −0.5 711,330.33

Low8 1.39 −0.52 421,474.63

Low9 1.94 −0.29 727,950.69

Low10 1.86 −0.24 980,827.28

Low11 1.38 −0.43 754,990.11

Low12 1.6 −0.59 655,706.88

Low13 1.62 −0.57 862,654.84

Low14 0.65 −0.22 821,821.32

Low15 1.69 −0.27 1,398,620.62

Mean High 4.306 0.592 735,255.28

Mean Low 1.508 −0.432 756,385.08

Oliveira et al. BMC Genomics  (2018) 19:126 Page 3 of 16



DE in this study (Table 1), was a miRNA with one of
the most negative RIF2 value. The PIF analysis also
identified ALDOA as a putative regulatory gene for the
difference in fat deposition between H and L groups.
The enrichment of GO terms was similar with those
found in DH analysis (Additional file 8: Tables S7 and S8;
Additional file 10: Table S12).

Co-expression analysis: WGCNA - miRNAs correlated with
mRNA modules
The weighted correlation network analysis (WGCNA)
methodology was applied in two different manners, first
to integrate mRNAs and miRNAs by analyzing those
modules (i.e. co-expression networks) that had a negative
correlation between them and second by identifying
modules that are important to phenotypic variation by
correlating all modules identified in WGCNA with
intramuscular fat (IMF) deposition. A total of 27 mRNA
modules in high (H) IMF and 44 in the low (L) IMF group
were identified. Furthermore, there were 14 miRNA mod-
ules in H and 22 in L. The grey module contained all genes
not included in a correlated module (Additional file 11:
Tables S13 and S14; Additional file 12: Tables S15 and S16).
After correlating all miRNA and mRNA modules with

one another, those modules that were negatively corre-
lated with one another were investigated further. Among
all correlated modules, three miRNA modules were nega-
tively correlated with five mRNA modules in the H group,
while six miRNA modules were negatively correlated with

seven mRNA modules in the L group (p-value > 0.05;
Additional file 13: Table S17). The genes that composed
each mRNA module were significantly over enriched for
GO terms related to lipid metabolism (adj. p-value < 0.1;
Additional file 14: Tables S18 and S19). These lipid metab-
olism GO terms that were enriched from mRNA modules
were then used to construct mRNA-miRNA co-expressed
networks for both groups H and L (Figs. 6 and 7).
The miRNAs modules were enriched for GO terms
based on the hub miRNA target genes of each module
(Additional file 14: Tables S20 and S21).
The WGCNA results indicated that the cyan and light-

green mRNA modules in the high (H) IMF group were
enriched for inflammatory response and adaptive immune
response (Additional file 14: Table S18). They were also
negatively correlated with the black and pink miRNA mod-
ules (Fig. 6), whose target genes were associated with car-
boxylic acid transport and positive regulation of leukocyte
migration (Additional file 14: Table S20). Unlike the high
(H) group, the low (L) IMF group contained multiple
miRNA modules that were negatively correlated with the
same mRNA module (Additional file 13: Table S17, Fig. 7).
The target genes of the most connected miRNA module
(midnightblue) in the L group were associated with
metal ion homeostasis and regulation of interleukin-1
beta (IL-1B) production (Additional file 14: Table S21).
This module was negatively correlated with four mRNA
modules (green, orange, yellowgreen and black) (Fig. 7).
These four mRNA modules were enriched for protein

Table 2 List of differentially expressed miRNAs between Low and High groups, based on genomic estimated breeding values (GEBV) for
intramuscular fat, identified by miRDeep2 and the number of target genes obtained by IPA® for each miRNA

miRNA FDR1 Fold Change2 Low GEBV3 High GEBV3 Target Genes4

bta-let-7f 0.04 −1.67 2617.43 3767.18 1236

bta-let-7a-5p 0.08 −1.45 1526.04 1908.20 1236

bta-miR-146b 0.08 1.55 423.46 301.78 544

bta-miR-100 0.09 1.71 1968.02 840.72 176

bta-miR-143 0.09 1.30 32,275.17 27,539.78 648

bta-miR-423-5p 0.09 −1.60 311.91 488.05 294
1False discovery rate adjusted p-values by Benjamini-Hochberg methodology
2Log2 Fold Change from low to high groups
3Mean normalized counts from low and high groups
4Target genes identified by IPA

Table 3 List of the top gene networks and signaling pathways related with lipid metabolism identified by IPA®

Gene Networks Target genes P-score1 Signaling Pathways Target genes P-value2

Drug Metabolism, Lipid Metabolism, Molecular Transport 32 31 PPAR Signaling 33 1.00E-08

Lipid Metabolism, Small Molecule Biochemistry, Vitamin
and Mineral Metabolism

31 30 PPARα-RXR Activation 44 3.00E-06

Gene Expression, Cell Cycle, Cancer 32 28 Adipogenesis 27 0.003
1P–score = −log10 (p-value)
2Nominal p-value
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kinase B (PKB) signaling cascade, positive regulation of
fatty acid oxidation and negative regulation of protein
ubiquitination (Additional file 14: Table S19).
The hub miRNAs in the green module from the high

IMF group (e.g. bta-miR-106a, bta-miR-671) (Fig. 6) and
midnightblue module from the low IMF group (e.g. bta-
miR-122, bta-miR-1291) (Fig.7) identified in the WGCNA,
were also found correlated with the DH genes in the PCIT
analysis (Additional file 7: Tables S5 and S6). Additionally,
the miR-1291 was both a hub in the WGCNA midnight-
blue module from low (L) IMF group (Fig. 7) and a nega-
tively DH gene (Table 4). These results indicate that
WGCNA and PCIT not only identify similar biological
processes associated with fat deposition, but they can also
identify the same miRNAs in co-expression networks.

Co-expression analysis: WGCNA – Modules correlated
with phenotype
Besides the integration of mRNA and miRNA data, the
correlation of modules with the phenotype (high or low
IMF deposition) was also performed (Additional file 15:
Figure S7; Additional file 16: Figure S8). Three mRNA
modules in the high (H) IMF group and two in the low
(L) IMF group, and three miRNA modules both the H
and L groups were correlated with IMF (Table 7). In
the H group, the black miRNA module and the cyan
mRNA module were negatively correlated with each other
(Additional file 13: Table S17).

The enrichment analysis results of modules correlated
with IMF are presented in Table 7. The table shows the
biological processes downregulated by miRNAs modules
correlated with phenotype and the biological processes
associated with mRNAs modules correlated with pheno-
type in both groups. The GO terms associated with each
mRNA and miRNA module that was significantly correlated
with IMF are presented in Additional file 17: Tables S22,
S23, S24 and S25.
The hub miRNAs in modules that were correlated with

intramuscular fat (IMF) in both H and L groups downreg-
ulate processes related with lipid metabolism. The mRNA
modules that were correlated with IMF in both groups
were enriched for inflammatory response and immune
system GO terms (Table 7).

Discussion
The regulation of lipid oxidation and biosynthesis is under
strong feedback control in order to maintain homeostasis
[29]. Intramuscular fat deposition in cattle is of economic
importance and has been studied in several breeds, includ-
ing Nelore under different nutritional conditions [30].
However, there is still limited knowledge on the molecular
processes, in particular regarding microRNA involvement
in the control of this trait [31]. It is important to remem-
ber that samples collected in this study are from the Long-
issimus dorsi (LD) muscle and thus contains myofibers
and other cell types such as adipocytes, fibroblast, blood

Fig. 1 Gene network “lipid Metabolism, Small Molecule Biochemistry, Vitamin and Mineral Metabolism” identified from the DE miRNA’s target genes
list generated by IPA. Grey shapes represent target genes and the white shapes are other genes of the network that are not target genes. Solid lines
mean direct interaction and dashed lines an indirect interaction between genes
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and nerve cells. Thus, the gene expression profile obtained
can be influenced by the proportion of the different cell
types in the sample and/or by genes being differentially
expressed in a specific cell type.

Networks enriched for lipid and carbohydrate metabolism
Although research studying the influence of miRNAs
on metabolism has been recently published [32], there
has been a rapid growth in the number of identified
miRNAs that are involved in the regulation of genes
and signaling molecules responsible for maintaining
lipid homeostasis [26, 33].
The comparison of miRNA expression between animals

with different genetic potential for intramuscular fat (IMF)
deposition resulted in the identification of six differentially
expressed (DE) miRNAs involved in fatty acid metabolism
and lipid deposition. The miR-423 and let-7 family, up-
regulated in the high (H) IMF group, have been previ-
ously reported to be associated with obesity in humans

and disorders in glucose metabolism in mice [16, 34]
and have been implicated as possible biomarkers for
risk of obesity [16, 34]. The miRNAs upregulated in the
low (L) IMF group, miR-100, miR-146 and miR-143,
have been reported to control aspects of adipogenesis
in humans [35–38]. By in vitro analysis Chen et al. [35]
suggested that overexpression of mir-143 in adipose-
derived stem cells (ADSCs) in rats could promote or in-
hibit adipogenesis by regulation of MAPK signaling path-
way depending on the stage of development. Interestingly,
they found that upregulation of miR-143 expression in
early stages of adipogenesis blocks adipocyte differenti-
ation, but when it happens later induces clonal expansion
of adipose tissue.
The enrichment analysis of DE miRNAs’ target genes

revealed that the PPAR pathway was overrepresented in
IPA analysis (Additional file 5: Figures S4, S5 and S6).
Furthermore, many important target genes related to lipid
metabolism were present in the gene networks identified

Fig. 2 The PPARα-RXR signaling pathway is over-represented in miRNA target genes identified by IPA. The shapes highlighted in purple represent
the miRNA target genes and the white shapes represent the other genes of the pathway that are not target genes
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by IPA (Table 3 and Additional file 4: Figures S1, S2
and S3). Among them, PPARs were found, which are a
class of ligand-activated transcription factors that have
a well-known influence on lipid metabolism and glu-
cose homeostasis [39–43]. The target genes of miRNAs
downregulated in the low (L) IMF group were enriched
for the GO term fatty acid oxidation involved in PPARa
pathway. On the other hand, based on IPA enrichment
results, miRNAs upregulated in this group would down-
regulate genes of lipogenesis and adipogenesis.
In a previous comparison of gene expression profile

between Angus (higher IMF deposition capacity) and
Nelore, Martins et al. (2015) [30] did not observed a dif-
ference in PPARγ mRNA expression; however, a higher
amount of PPARγ protein was detected by western blot.
This result highlights the limitation of individual mRNA
gene expression analysis and shows the importance of a
systems biology approach, in which co-expression analysis
can indicate a modulation in a pathway even without de-
tectable difference in individual gene expression.
To gain additional insights into the pathways impacted

by miRNAs, we performed co-expression analysis by inte-
gration of the miRNA and mRNA data. The PCIT analysis
revealed that the top negatively differentially hubbed (DH)
genes, which had more connections in the low (L) IMF
group, were correlated with genes associated mostly with
carbohydrate metabolism (Table 5). The DH genes that
may be the most relevant for IMF were SDHAF4 and
bta-miR-24. SDHAF4 is important for the assembly of
succinate dehydrogenase and plays a role in ATP syn-
thesis by the electron transport chain. Both SDHAF4 and
bta-miR-24 are associated with carbohydrate metabolism

Table 4 List of the top ten positive and negative Differentially
Hubbed (DH) genes and miRNAs, when comparing High and
Low groups of GEBV for IMF

ENSEMBL Gene ID Gene Symbol DH

Top Positive Differentially Hubbed genes

ENSBTAG00000009084 ATG3 1849

ENSBTAG00000005688 MRPS2 1793

ENSBTAG00000008664 EIF2B2 1785

ENSBTAG00000012113 HCCS 1781

ENSBTAG00000005196 TYW3 1755

ENSBTAG00000001022 AMDHD2 1750

ENSBTAG00000010339 ABHD11 1736

ENSBTAG00000017941 NSUN5 1735

ENSBTAG00000003066 NSA2 1731

ENSBTAG00000001783 FBXO17 1730

Top Negative Differentially Hubbed genes

ENSBTAG00000027049 SDHAF4 −851

ENSBTAG00000010952 C2CD4B − 850

ENSBTAG00000005275 PKIG − 837

ENSBTAG00000009876 C4BPA −835

ENSBTAG00000011184 FTH1 − 828

ENSBTAG00000008895 BPGM −819

- bta-miR-24-3p − 811

- bta-miR-1291 − 810

ENSBTAG00000031778 HIST1H2BD − 799

ENSBTAG00000038275 CYP27C1 −795

Fig. 3 GO terms enriched from genes significantly correlated with negatively differentially hubbed (DH) genes. Bubble color indicates the user-provided
p-value and the lower the p-value of the processes grouped in the category, the more intense is the coloring of bubbles; bubble size indicates
the frequency of the GO term in the underlying GOA database. Highly similar GO terms are linked by edges in the graph, where the line width
indicates the degree of similarity
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and could indicate that a change in myofiber type is as-
sociated with IMF. However, in our previous study in
which we measured DE genes associated with IMF in
these same animals [28], there was no significant differ-
ence in myosin heavy chain (MyHC) isoform expres-
sion. Interestingly, miR-24 has been shown to negatively
regulate adipocyte differentiation and hepatic lipid accu-
mulation in mice [44, 45].
The candidate regulatory genes identified by PIF and

RIF that negatively regulate intramuscular fat (IMF) de-
position were PKM, bta-miR-143 and bta-miR-26b. PKM
is associated with glucose metabolism, while bta-miR-26b
was related to control cholesterol efflux and lipogenesis in

mice [46, 47] (Table 6). The target genes of bta-miR-143
were enriched for glutamate catabolism. Glutamate is a
key component in cellular metabolism, and it is related to
biosynthesis of lipids, because it is utilized in the citric
acid cycle to produce ATP through α-ketoglutarate [48].
MiR-143 downregulates this process by blocking excess
ATP production that could induce storage of lipids instead
of undergoing lipid degradation. This co-expression
analysis reaffirms the importance of the bta-miR-143 in
control of fat deposition.
WGCNA revealed that the mRNA module in the high

(H) IMF group that was positively correlated with IMF
deposition (darkorange) was enriched for vitamin B6

Fig. 4 GO terms enriched from genes significantly correlated with positively differentially hubbed (DH) genes. Bubble color indicates the user-provided
p-value and the lower the p-value of the processes grouped in the category, the more intense is the coloring of bubbles; bubble size indicates
the frequency of the GO term in the underlying GOA database. Highly similar GO terms are linked by edges in the graph, where the line width
indicates the degree of similarity

Table 5 List of the top two differentially hubbed (DH) genes and the GO terms associated with them. The negative DH genes have
higher number of connections in Low GEBV group and positive DH genes in High GEBV group

ENSEMBL Gene ID Gene Symbol DH GO terms of genes correlated

Top Negative Differentially Hubbed genes

ENSBTAG00000027049 SDHAF4 −851 GO ID 44275:cellular carbohydrate catabolic process

GO ID 44282:small molecule catabolic process

GO ID 16052:carbohydrate catabolic process

bta-miR-24-3p −811 GO ID 44275:cellular carbohydrate catabolic process

GO ID 6096:glycolysis

GO ID 6936:muscle contraction

Top Positive Differentially Hubbed genes

ENSBTAG00000008664 EIF2B2 1785 GO ID 6090:pyruvate metabolic process

GO ID 30162:regulation of proteolysis

GO ID 6364:rRNA processing

ENSBTAG00000001783 FBXO17 1730 GO ID 30162:regulation of proteolysis

GO ID 6364:rRNA processing

GO ID 70585:protein localization in mitochondrion
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metabolic process (Table 7), which is indirectly related
to lipogenesis. Several enzyme reactions involved in fatty
acid metabolism require vitamin B-6 as a coenzyme,
such as the biosynthesis of sphingolipids [49], which are
a class of lipids that are components of cell membranes.
Moreover, the black and yellow miRNA modules in the
high (H) IMF group were positively correlated with IMF
deposition. The target genes for the miRNA in these mod-
ules are associated with carboxylic acid transport and
regulation of translation (Table 7). Fatty acids are carbox-
ylic acids and their transport into the mitochondria leads
to activation of β-oxidation to produce energy. This indi-
cates that miRNAs associated with high fat deposition are
downregulating biological processes such as transport and
catabolism of fatty acids, while miRNAs negatively associ-
ated with higher fat deposition downregulate glycolipid
degradation. Interestingly in the high (H) IMF group, the
black miRNA module and cyan mRNA module were
negatively correlated with each other (Additional file 13:
Table S17) and both were differently correlated with IMF,
positively and negatively, respectively (Table 7). These
miRNAs were associated with downregulation of fatty
acid transport, while the mRNAs were associated with
inflammation.
In the low (L) IMF group, the greenyellow and light-

green miRNA modules were positively correlated with
IMF. The miRNA in these modules downregulate genes
enriched for lipid metabolic process and calcium ion
homeostasis, respectively (Table 7). Calcium (Ca) partici-
pates in many signaling networks that contribute to modu-
lation of enzyme function, including Ca-sensitive enzymes
involved in lipolysis and lipogenesis [50]. The purple
miRNA module was negatively correlated with IMF. Most

Fig. 5 Negative (a) and positive (b) differentially hubbed (DH) genes
associated with lipid metabolism between the High GEBV and Low
GEBV IMF groups. The blue edges represent negative correlations
between hub gene and the correlated genes while the red edges
represent positive correlations

Table 6 List of the genes with the most extreme Phenotypic Impact Factor (PIF) and Regulatory Impact Factor (RIF) 1 and 2 values
and the GO terms associated with them

ENSEMBL Gene ID Gene Symbol Score GO terms of genes correlated/targets

Top PIF

ENSBTAG00000012927 ALDOA 4.895E + 10 GO ID 30163:protein catabolic process

GO ID 6006:glucose metabolic process

GO ID 6091:generation of precursor metabolites and energy

Top Positive RIF1 and 2

ENSBTAG00000012927 ALDOA 105.5434 GO ID 6006:glucose metabolic process

ENSBTAG00000005534 ENO3 4.121744 GO ID 6007:glucose catabolic process

ENSBTAG00000001032 PYGM 6.417047 GO ID 16052:carbohydrate catabolic process

ENSBTAG00000014731 GAPDH 4.403429 GO ID 22900:electron transport chain

ENSBTAG00000006541 ATP2A1 5.891178 GO ID 6006:glucose metabolic process

Top Negative RIF2

ENSBTAG00000001601 PKM −0.5742 GO ID 6006:glucose metabolic process

ENSBTAG00000030114 bta-miR-143 −0.74594 GO ID 6538:glutamate catabolic process

ENSBTAG00000029850 bta-miR-26b −0.84051 GO ID 6793:phosphorus metabolic process
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of the miRNAs in this module were expressed at lower
levels in lean animals. The target genes of these miRNA
were associated with lipid storage. Overall, the miRNAs in
co-expression networks associated with low IMF were re-
lated to lipid metabolism, lipolysis, lipogenesis and lipid
storage.

Networks related to immune system and inflammatory
response
It is known that lipid accumulation in obesity activates
the immune system which leads to an inflammatory state
due to secretion of proinflammatory molecules by adipo-
cytes [51]. Genes associated with inflammatory response

Fig. 6 Co-expression networks showing the negative correlation among miRNAs and biological processes enriched in mRNA modules in High IMF
GEBV group. Colored circles represent hub miRNAs, with higher connectivity, inside each module and squares represent the GO terms associated with
each mRNA module, represented by different letter color

Fig. 7 Co-expression networks show the negative correlation among miRNAs and biological processes enriched in mRNA modules in Low IMF
GEBV group. Colored circles represent hub miRNAs, with higher connectivity, inside each module and squares represent the GO terms associated
with each mRNA module, represented by different letter color
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were identified as target genes of DE miRNAs that were
upregulated in the low (L) IMF group, which was enriched
for the PPAR-RXR signaling pathway (Fig. 2). These
genes mediate signal transduction from members of the
interleukin-1 (IL-1) family. IL-1, which is regulated by
PPARa, can induce and regulate a network of proin-
flammatory cytokines that initiate inflammatory re-
sponses [52]. Using the same population of animals as
utilized here, Cesar et al. [28] previously reported that
DE genes were associated with inflammatory response.
The WGCNA results of co-expressed mRNA-miRNA

modules in the high (H) IMF group (Fig. 6) were enriched
for GO terms associated with inflammatory response and
adaptive immune response. These same modules were
indirectly correlated with carboxylic acid transport and
leukocyte migration (Additional file 13: Table S17). Adap-
tive immune cells have been reported to be increased in
obese mice and humans, which can trigger a sequence of
proinflammatory reactions and could be associated with
impaired glucose tolerance and insulin sensitivity [53–56].
This indicates that mRNA and miRNA co-expression
networks constructed for animals with differences in
lipid accumulation (high IMF group) may be involved in
pathways that regulate the immune system and inflamma-
tion and are correlated with lipid metabolism.

Conclusion
A combination of DE and co-expression based analyses
indicate that lipid metabolism, glucose metabolism and
inflammatory response are the main biological processes
associated with IMF deposition in Nelore cattle. The
miRNAs identified in this study were not only associated
with extreme intramuscular fat deposition levels, but also
participate in co-expression networks that may affect

mRNA expression and metabolic pathways modulating
fat deposition. Furthermore, both co-expression approaches
could construct similar miRNAs networks that were corre-
lated with genes and pathways important for IMF accumu-
lation. This study allowed us to better understand the
potential roles of miRNA regulation and interaction in fat
deposition and revealed new candidate regulatory genes
and miRNAs associated with IMF.

Methods
Animals and phenotypic data
Genotypic and phenotypic data were collected on 310
Nelore steers sired by 34 unrelated sires that represent
the main breeding lineages in Brazilian Nelore from an
experimental breeding herd from EMBRAPA between
2009 and 2011 [57]. The animals were raised in feedlots
under identical nutrition and handling conditions until
slaughter at an average age of 25 months. Samples from
Longissimus dorsi (LD) muscle located between the 12th
and 13th ribs were collected at two time points: at slaugh-
ter for RNA sequencing analysis, and 24 h after slaughter
for the intramuscular fat (IMF) deposition measurement
as described below [28].
Approximately 100 g of muscle were lyophilized and

ground to measure IMF deposition using an Ankom
XT20 extractor and the AOCS procedure (official Proced-
ure Am 5–04) as described Cesar et al. [57]. Animals with
extreme values for intramuscular fat (IMF) deposition
were selected based on their genomic estimated breeding
values (GEBV) [57]. GEBV was predicted by Genomic
Best Linear Unbiased Prediction (GBLUP) methodology,
which was conducted using ASREML software [58]. A
group of 30 animals were selected (fifteen with high IMF

Table 7 GO term enrichment of modules significantly correlated with the IMF trait, for mRNAs and miRNAs in the High (H) and Low
(L) groups

Group module corr p-value #molecules FDR GO terms

microRNAs modules

H black 0.7 0.007 21 0.045 GO ID 46942:carboxylic acid transport

yellow 0.5 0.09 25 0.041 GO ID 6417:regulation of translation

turquoise −0.5 0.07 105 0.064 GO ID 19377:glycolipid catabolic process

L greenyellow 0.5 0.04 13 0.007 GO ID 6629:lipid metabolic process

lightgreen 0.6 0.02 7 0.0001 GO ID 55074:calcium ion homeostasis

purple −0.5 0.07 14 0.028 GO ID 19915:lipid storage

mRNAs modules

H darkorange 0.5 0.09 63 0.052 GO ID 42816:vitamin B6 metabolic process

cyan −0.5 0.08 187 0.01 GO ID 6954:inflammatory response

darkgrey 0.5 0.08 83 0.002 GO ID 4117:calmodulin-dependent cyclic- nucleotide phosphodiesterase activity

L plum1 −0.5 0.06 63 0.053 GO ID 19955:cytokine binding

magenta −0.5 0.03 474 0.093 GO ID 2385:mucosal immune response
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GEBV values and fifteen with low IMF GEBV values) for
mRNA and miRNA analyses.

RNA extraction and RNA-sequencing
Total RNA was isolated from 100 mg of LD muscle sam-
ples from 30 steers with extreme GEBV values. The ex-
traction of total RNA was performed using the Trizol
reagent (Invitrogen) according to the protocol described
by Chomczynski and Sacchi [59]. After extraction, total
RNA was quantified by spectrophotometer (NanoDrop
200 - Thermo Scientific. Wilmington. Delaware, USA).
The integrity of the RNA was verified by size separation
on a 1% agarose gel and analysis on a Bioanalyzer 2100
(Agilent Technologies - Santa Clara, CA, USA) with the
RNA 6000 Nano kit. All samples had an RNA integrity
number (RIN) greater than or equal to 8. Then samples
were diluted to a final concentration of 200 ng/μL. Sequen-
cing libraries were generated with the TruSeq® smallRNA
Sample Preparation kit (Illumina - San Diego, USA). The
concentration of the cDNA libraries was determined with
the KAPA Library Quantification Kit (KAPA Biosystems)
and then samples were sequenced on a Miseq machine
(Illumina), using MiSeq Reagent Kit v3 (150 cycles), gener-
ating around 1 million reads/sample.

Reads filtering and miRNAs identification
After sequencing, data quality was evaluated with FastQC
[60] and filtered by Phred score quality using FASTX-
Toolkit [61] software, where the minimum quality Phred
score was 28. Then, the miRDeep2 [62] program was used
to identify and quantify miRNAs, using the default param-
eters. The sequences were mapped against the bovine ref-
erence genome Bos taurus UMD 3.1 and compared with
miRBase database (v. 21) [63].

Differentially expressed miRNAs
In order to identify differentially expressed (DE) miRNAs
between the L and H groups, the total count data of each
miRNA was analyzed with the DESeq2 package [64], using
a statistical model that fitted contemporary group (animal
origin and year that the animal enter the experiment) as a
categorical fixed effect and age at slaughter of an animal
as a covariate. To remove variation due to the preparation
of sequencing libraries, the expression data were normal-
ized by library size, as described in the manual of the
DESeq2 package [64]. The Benjamini-Hochberg (BH) [65]
methodology was used to control the False Discovery Rate
(FDR) of DE at 10%.

Identification of miRNA target genes and enrichment
analysis of DE miRNAs
The miRNA target genes were obtained from the
MicroRNA Target Filter tool of QIAGEN’s Ingenuity
Pathway Analysis (IPA®, Redwood City-CA) that uses

TargetScan, miRecords and TarBase as the miRNA tar-
get genes databases. The IPA® uses information from
predicted targets of mammalian microRNAs, based on
the fact that target sites are usually conserved because
miRNAs are highly evolutionarily conserved [66–69].
After this first approach, to obtain the target genes by
IPA, we selected only those target genes that were
expressed in our animals, using the data generated by
RNA-seq of skeletal muscle samples of the same animals
from previous study [28]. The functional enrichment of
target genes was also performed by IPA software to
identify enriched metabolic pathways and gene networks
associated with lipid metabolism.

PCIT and differential hubbing (DH) network analysis
To improve the functional annotation of miRNA and mRNA
interactions in a systems biology context, the Partial
Correlation with Information Theory (PCIT) analyses
[70, 71] were conducted on the combined list of miR-
NAs (383) and mRNAs (14,650) after normalization of
expression level by DESeq2. The miRNAs and mRNAs
were filtered to select only those expressed in animals
in both H and L IMF groups. The mRNA expression
data utilized in this study was previously published by
Cesar et al. [28].
PCIT was used to evaluate the specific behavior or co-

expression between all miRNAs and genes and from this
information, differential connectivity or hubbing (DH)
[71] was calculated. Differential hubbing is the difference
in the number of significant partial correlations (connec-
tions) a gene has between two different treatments, in this
case compared between H and L groups and filtering
those correlations higher than 0.9. BioLayout Express3D
[72] software was used to visualize gene networks.

PIF and RIF analysis
To identify putative candidate regulators responsible for
the differences observed in phenotypes, the Phenotypic
Impact Factor (PIF) and Regulatory Impact Factor (RIF)
approaches were performed [23, 70, 73]. PIF gives a
‘weight’ for the contribution and importance of genes to
the differences involved between phenotypes, based ex-
clusively on their numerical properties. RIF is based on
differences in the regulator’s correlations and it represents
the relative importance of genes/miRNAs on the pheno-
typically relevant part of the network. The RIF1 value is
based largely on changes in correlation between two treat-
ments levels (i.e. differential wiring). The RIF2 value al-
lows genes to be ranked as potential regulators based
on the expression changes of a regulator and how it
can affect the expression of other genes in the network
due to treatment differences [23].
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WGCNA
The same list of genes and miRNAs used in the PCIT
analysis was utilized to run the R package WGCNA [22].
This analysis constructs clusters of highly correlated
genes and miRNAs in modules and allows the correlation
of them to each other and to a trait (i.e. intramuscular fat
(IMF) deposition). In contrast to the analysis performed
with PCIT, the WGCNA was done separately for genes
and then for miRNAs.

Modules of mRNA
To construct clusters of genes, pair-wise Pearson correl-
ation coefficients were first calculated between all expressed
transcripts to generate a signed similarity. To emphasize
(weight) stronger correlations and punish weaker correla-
tions, the signed similarity matrix was then raised to the
lowest power β that approximated a scale-free network top-
ology (R2 > 0.90) to generate an adjacency matrix [74]. The
β’s used to construct the mRNA modules from the L and H
IMF group’s expression data were 12 and 8, respectively
(Additional file 18: Figure S9). The topological overlap dis-
tance calculated from the adjacency matrix is then clustered
with the average linkage hierarchical clustering. The default
minimum cluster merge height of 0.25 was retained. The
clusters created by WGCNA are called modules, and the
minimum number of genes in a module was set to 30. Each
module represents a group of highly interconnected genes
with similar expression profiles across the samples and the
expression profile pattern is distinct from those of other
modules [22]. Modules were named by a conventional color
scheme and genes not classified in a correlated module
were grouped in the grey module. After modules were de-
fined, the module Eigengene (MEs) values were calculated.
The Eigengene of a module is defined as the eigenvector as-
sociated with the first principal component of the expres-
sion matrix representing the expression profile of all genes
within a given module [22, 75].

Modules of miRNA
The steps for constructing miRNA co-expression mod-
ules were as described above. After generating the signed
similarity matrix, a power β value was chosen to generate
the adjacency matrix, the β’s used to construct the miRNA
modules were 9 for the L and 4 for the H IMF groups
(Additional file 19: Figure S10). The topological overlap
distance was calculated and a minimum module size of
five miRNAs was chosen. Five was chosen as the mini-
mum module size for the miRNAs due to the smaller
size of the miRNA transcriptome relative to the mRNA
transcriptome [22, 75].

Correlation between mRNA and miRNA modules
An integrative analysis was performed correlating the
ME of miRNAs with the ME of mRNAs, for each group.

Those modules with a negative correlation higher than
− 0.4 with a p-value < 0.05 were used for enrichment
analysis. The co-expression networks among hub miRNAs,
representing the whole module, and the GO terms of
mRNAs inside the correlated modules were constructed in
Cytoscape v.3.3.0 0 [76].

Correlation of modules with phenotype
Using the ME, the Module-Trait relationships were esti-
mated by calculating the Pearson’s correlations between
the ME and the animals’ phenotypic information (i.e. %
IMF) to select potential biologically interesting modules
that could explain the phenotypic differences between
groups. To avoid losing information and expand biological
response, we set a p-value threshold of correlation of 0.1
to select modules correlated with trait.

MiRNA target gene identification and enrichment analysis
of co-expression data
The general gene enrichment of GO terms for biological
processes was made using BiNGO (Biological Networks
Gene Ontology), tool for Cytoscape v.3.3.0 [76] and
REVIGO [77] to visualize clusters of GO terms. The
Benjamini-Hochberg (BH) [65] methodology was used
as a multiple testing correction to control the False Dis-
covery Rate (FDR) at 10%. For miRNAs, the combined
results from miRanda and TargetScan approaches were
used to identify the target genes and these genes were
also filtered by skeletal muscle RNA-seq data of previous
study [28] to do the enrichment. MiRanda is a method
for target site identification from sequence information
[78]. It compares the miRNAs complementarity to 3’UTR
regions of genome. Using a perl script we generated a fasta
file with all 3’UTR regions of bovine genome (UMD 3.1)
from ENSEMBL to use as input in miRanda. The TargetS-
can was performed for mammals and customized by spe-
cies (cow/Bos taurus) (http://www.targetscan.org/vert_70/).
The enrichment of miRNA modules identified by

WGCNA was conducted using the target genes informa-
tion of specific hub miRNAs in each miRNA module. In
this case the hub miRNAs were those with the highest
Modular Membership (MM) value for the module, which
means that these miRNAs have higher connectivity inside
the module and are probably more informative [18].

Additional files
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table contains the Fold change (FC) of each DE miRNA and the ENSEMBL
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Additional file 2: Table S2. Full list of gene networks constructed by
IPA using the miRNA’s target genes list. The table contains the gene
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