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Bart Versteeg' @, Sylvia M. Bruisten'?, Yvonne Pannekoek??, Keith A. Jolley*, Martin C. J. Maiden?,
Arie van der Ende®? and Odile B. Harrison*

Abstract

Background: Chlamydia trachomatis (Ct) plasmid has been shown to encode genes essential for infection. We
evaluated the population structure of Ct using whole-genome sequence data (WGS). In particular, the relationship
between the Ct genome, plasmid and disease was investigated.

Results: WGS data from 157 Ct isolates deposited in the Chlamydiales pubMLST database (http//pubMLST.org/chlamydiales/)
were annotated with 902 genes including the core and accessory genome. Plasmid associated genes were
annotated and a plasmid MLST scheme was defined allowing plasmid sequence types to be determined. Plasmid allelic
variation was investigated. Phylogenetic relationships were examined using the Genome Comparator tool available in
pubMLST. Phylogenetic analyses identified four distinct Ct core genome clusters and six plasmid clusters, with a strong
association between the chromosomal genotype and plasmid. This in turn was linked to ompA genovars and disease
phenotype. Horizontal genetic transfer of plasmids was observed for three urogenital-associated isolates, which possessed
plasmids more commonly found in isolates resulting from ocular infections. The pgp3 gene was identified as the most
polymorphic plasmid gene and pgp4 was the most conserved.

Conclusion: A strong association between chromosomal genome, plasmid type and disease was observed, consistent
with previous studies. This suggests co-evolution of the Ct chromosome and their plasmids, but we confirmed that
plasmid transfer can occur between isolates. These data provide a better understanding of the genetic diversity occurring
across the Ct genome in association with the plasmid content.
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Background

Chlamydia trachomatis (Ct) is responsible for the major-
ity of bacterial sexually transmitted infections worldwide
[1]. In addition, ocular Ct infections (trachoma) are the
worlds leading cause of preventable blindness [2, 3].
Although there are few documented reports of antibiotic re-
sistance in Ct and infections can be easily treated, the per-
sistent rates of Ct globally, makes this infection an
important public health priority.
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Ct isolates can be grouped into 15 main genovars based
on sequence data of ompA, the gene encoding the major
outer membrane protein [4—6]. Specific genovars have been
strongly associated with distinct disease pathologies:
genovars A-C are associated with conjunctival epithelia;
genovars D-K with urogenital, pharyngeal and anorectal
epithelia; and genovars L1-L3 with submucosal connective
tissue layers resulting in dissemination to locoregional
lymph nodes and lymphogranuloma venereum (LGV) [7].
Ct clonal groups identified through different multilocus
sequence typing (MLST) schemes based on 7 housekeeping
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genes as well as phylogenetic analyses of whole-genome se-
quence (WGS) data [8—11], have also shown an association
between Ct strains and tissue tropism.

Ct isolates possess multiple copies of highly conserved
small 7.5-kb plasmids containing both non-coding RNA
of which the function is unknown, and 8 open reading
frames (ORFs), designated pgpl to pgp8 [12, 13]. The
plasmid of Ct has been shown to encode genes essential
for infection and transmission, consistent with the rare
occurrence of plasmid-deficient clinical isolates [14—16].
The essential role of the plasmid in virulence and
inflammatory responses was further demonstrated using
animal models, where plasmid-deficient Ct strains or
those with mutated plasmids were found to exhibit
reduced pathology and decreased inflammatory
responses [17-23]. All plasmid-borne genes are tran-
scribed and at least one protein (pgp3) is known to be
expressed. Putative functions have been assigned to
some of the plasmid genes, based on homology to
known proteins [13, 24—26], with pgpl exhibiting hom-
ology to a DnaB like helicase, pgp5 to a partitioning pro-
tein which may regulate expression of a set of
chromosomal genes, and pgp7 and - 8 identified as inte-
grase/recombinase homologues. In contrast, pgp2, and
pgp6 genes are unique to the chlamydia genus. The
product of pgp3 is secreted into the host cell cytosol and
is the most studied plasmid gene, both as a serological
marker for past infection and as virulence factor, as it
was demonstrated to play an important role in the in-
duction of inflammatory responses [21, 27, 28]. Finally,
pgp4 is a transcriptional regulator of pgp3 and of some
chromosomal genes that are likely to be important for
chlamydial virulence [25]. The pgp7 gene is not essential
for plasmid maintenance as it was found to be inter-
rupted in naturally occurring Ct strains resulting in the
emergence and rapid spread of a new Ct variant [29].
This new variant originated in Sweden in 2006 and had
a 377 bp deletion in the pgp7 gene that prevented detec-
tion of infections using plasmid based PCR diagnostics
targeting this gene [13, 29]. The potential of spread and
emergence of new strains due to genetic variation indi-
cates the need for more comprehensive studies to better
understand the Ct genetic population structure.

Although it is clear that the plasmid plays an important
role in the pathogenesis of Ct infection, limited data is avail-
able on its genetic diversity and whether distinct plasmid
types are associated with different tissue tropisms and path-
ologies. This study set out to characterise the population
structure of Ct in association with the plasmid using WGS
data from 157 isolates available in the Chlamydiales
pubMLST database (http://pubMLST.org/chlamydiales/). A
better understanding of genetic diversity across the Ct
genome in association with plasmid content may elucidate
Ct epidemiology, ultimately reducing the burden of infection.
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Methods

Ct isolate collections and WGS methods

Whole-genome sequence (WGS) data from 157 Ct isolates
were analysed (Additional file 1: Table S1). WGS data were
obtained from published isolate collections for which
plasmid sequence data were also available [9, 26, 30-32].
Short reads were obtained from the European Nucleotide
Archive (ENA) and assembled de novo using VELVET in
combination with VELVETOPTIMISER as previously
described [33]. The resulting contigs were uploaded to the
Bacterial Isolate Genome Sequence (BIGSdb) genomics
platform hosted on www.pubMLST.org/chlamydiales.

The Chlamydiales pubMLST platform consists of two
types of database: i) a sequence definition database that
contains sequences of known alleles for loci as well as
allelic profiles for specific schemes such as MLST; and, ii)
an isolate database that contains isolate provenance and
other metadata along with nucleotide sequences
associated with that isolate [34]. Sequence definitions have
been established for 902 protein-encoding genes,
annotated with the CHLAM prefix, and the majority of
these have been organised into schemes dependent on
function (Additional file 2: Table S2). Chromosomal genes
were defined using the annotated genome from Ct strain
D/UW-3/CX (accession number NC_000117, [35]).

The BIGSdb software includes ‘autotagger’ and
“autodefiner” tools which scan deposited WGS against
defined loci identifying alleles >98% sequence identity.
This process runs in the background and automatically
updates isolate records with specific allele numbers,
marking regions on assembled contigs for any of the
defined loci. Loci with sequence identity <98% are
manually checked and curated.

OmpA, which encodes the major outer membrane protein,
was annotated in WGS data as CHLAMO0681. Nucleotide
sequence data from CHLAMO0681 was extracted from all
WGS. Bionumerics software (version 7.5, Applied Maths,
Sint-Martens-Latem, Belgium) was used to import all
extracted ompA sequences to a local offline reference
database of ompA sequences that had been described in
previous Ct studies [10]. Based on sequence similarity of the
ompA variable domains 1 and 2, ompA genovars were
assigned to all isolates. Genovars A-C were considered to be
ocular isolates, genovars D-K, urogenital isolates and genovar
L, LGV isolates. Genovar B is known to cause both
urogenital and ocular infections.

Phylogenetic analyses

Relationships among isolates were established using the
Genome Comparator tool implemented within the
Chlamydiales pubMLST database [34]. Genome
Comparator compares groups of shared genes among
isolates with any number of loci predefined in the
Chlamydiales database or a reference genome. For
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each locus, allele sequences, designated by integers,
are compared and used to generate a distance matrix
that is based on the number of variable loci across
the genome generating a wgMLST profile. Genome
Comparator output provides lists of loci that are: i)
identical, 1ii) variable, iii) missing, or incomplete
between data sets, rapidly resolving bacterial population
structures and relationships, and identifying loci that
belong to the core of a particular data set [33].

Using the Genome Comparator tool, all chromosomal
genes identified in the automated annotation process
were compared. The set of 888 genes shared between
95% of all Ct isolates was referred to as the ‘core
genome’. Varying the stringency of the core genome
threshold did not have a significant impact on the results
in this study, as a threshold of 90% resulted in a core
genome of 889 genes while a threshold of 97.5% resulted
in a core genome of 886 genes. Genome Comparator
was used to compare the core genome among all isolates
and to generate a distance matrix based on the number
of variable loci. In addition, this was used to compare
previously identified plasmid genes among all isolates.
The generated distance matrix for the core genome and
plasmid genes were further analysed using the NeighborNet
algorithm in SplitsTree version 4.14, to investigate the
phylogenetic clustering of Ct isolates according to both their
core genome and plasmid loci [36]. Maximum Likelihood
phylogenetic trees were also generated from concatenated
aligned nucleotide sequence data derived from both core
genome and plasmid loci using PhyML [37] and, the
HKY85 model with 100 bootstraps. In addition, to each
isolate a unique ID, the corresponding ompA genovar and
the plasmid sequence type (pST) were linked to each isolate.
ClonalFrameML [38] was also used with default parameters
to take into account recombination events.

Ct plasmid

Sequences from the plasmid belonging to Ct strain D/
SotonD6 were retrieved from plasmid pSotonD6
(HE603231) and designated as CHLAMO895 through to
CHLAMO0902 encoding the genes pgpl to pgp8. Using
BrLasT, all WGS sequence data deposited in pubMLST
were annotated for these loci as described previously
[34, 39, 40].

The eight Ct plasmid genes were grouped into a plasmid
MLST typing scheme and plasmid sequence types (pSTs)
were assigned based on identified allele variants for
isolates with sequence data on all eight plasmid genes.

The number of polymorphic sites per plasmid gene, was
assessed using the locus explorer tool in the database
(http://pubMLST.org/chlamydiales/). Molecular Evolution-
ary Genetics Analysis software, version 6 (MEGA 6;
http://www.megasoftware.net) was used to align all
sequences based on codons in order to calculate
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average pairwise diversity between isolates [41]. For
each gene, p-distance values estimated, both on the
nucleotide and amino acid level, with pairwise
deletion option selected and standard error (SE)
determined with 1000 bootstrap replications. Using
MEGA 6, average numbers of synonymous substitutions per
synonymous site (dS) and non-synonymous substitutions
per non-synonymous site (dN) were calculated by using the
overall mean Kumar model [42, 43]. For dN/dS>1
the Z-test of positive selection was applied and values
of P<0.05 were considered significant. To set a
context for the Ct biological clock, dN/dS ratios were
also determined for seven housekeeping genes
included in the Chlamydiales MLST scheme [11] and
compared these to the dN/dS ratios observed for the
plasmid genes.

Results

Ct core genome analyses

Ct WGS data available in the Chlamydiales pubMLST
database, were filtered to identify those which included
complete plasmid sequence data, resulting in 157
isolates. Isolates dated from 1959 to 2011 and were from
diverse geographical locations (Additional file 1: Table S1).

A total of 31 allelic ompA variants corresponded to 13
genovars: A, 9.6% (n=15 isolates); B, 3.2% (n=5); C,
1.9% (n=3); D, 8.9% (n=14); E, 26.8% (n=42); F, 8.9%
(n=14); G, 83% (m=13); H, 2.5% (n=4); I, 4.5% (n=7);
J, 1.9% (n=3); K, 9.6% (n=15); L1, 3.8% (n=6), and
L2b, 10.2% (n = 16).

A total of 888 out of 902 loci (98.4%) were found to be
shared among 95% of the 157 isolates and represented the
Ct core genome (cgMLST). Based on the diversity, a
distance matrix was calculated from which a NeighborNet
tree was generated (Fig. 1, Additional file 3: Table S3). Four
phylogenetically distinct clusters were observed, consistent
with previous studies [9]. These included: Cluster I,
comprising the ocular genovars A, B and C; Cluster II, the
clinically more prevalent urogenital genovars D, E and F;
Cluster III, the LGV genovars L1 and L2b and, Cluster 1V,
the rarer urogenital genovars B, D, G, H, I, ] and K. WGS
from two trachoma isolates (708 and 840, both genovar C),
however, clustered with urogenital Ct strains in Cluster II
(Fig. 1) consistent with horizontal gene transfer. Identical
clusters were identified from the maximum likelihood
phylogenetic analysis (Additional file 4: Figure S1).

The number of alleles present for each core gene varied
from 1 to 44 (Additional file 5: Table S4). CHAMO061 (fliA)
encoding a Sigma-28/WhiG family protein had the lowest
number of allelic variants (# = 1), while the highest number
of alleles (n = 44) was observed for CHLAMO0147 encoding a
hypothetical protein associated with the type III secretion
system (T3SS) [44]. Overall, the most diverse genes were
ompA (CHLAMO681), the polymorphic outer membrane
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Fig. 1 NeighborNet tree showing the core genome clustering of 157 Chlamydia trachomatis isolates. Coloured halos indicate the distinct clusters,
isolates are indicated by the Chlamydiales pubMLST ID numbers, plasmid sequence type (pST) and ompA genovar. Isolates shown in red (in cluster II)
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proteins (CHLAMO0412, CHLAMO0413, CHLAMO0414,
CHLAMO812, CHLAMO0869, CHLAMO0870, CHLAMO0871,
CHLAMO0872, and CHLAMO0874), 11 genes associated with
the T3SS and 4 genes located in the plasticity zone
(CHLAMO153, CHLAMO154, CHLAMO157 and
CHLAMO166) in accordance to what was described previously
[44, 45]. The plasticity zone (CHLAMO0152-CHLAMO0177) is a
region in the Ct genome which has undergone genetic
reorganization to a greater extent than the rest of the
chromosome and encodes enzymes required for the biosyn-
thesis of tryptophan [46]. The more conserved genes were
found to be hypothetical proteins, RNA associated genes, genes
involved in DNA replication and nucleotide excision repair.
The remaining 14 genes not included in the core
genome were considered to be accessory genes. Of these,
8 comprised the plasmid genes pgpl to pgp8 that were
considered accessory to assess the association between

the core genome and plasmid types. Although, in this
dataset, all 8 plasmid genes were present, plasmids are
commonly considered to be accessory since 6.5% of Ct
isolates have been described to lack plasmids [47]. The
remaining 6: CHLAMO0165, CHLAMO0166, CHLAMO0167,
CHLAMO0173, and CHLAMO174 encoded hypothetical
proteins, while CHLAMO0456 encoded the translocated
actin recruiting phosphoprotein (tarp), a T3SS effector in
Chlamydia [45]. The tarp geme has previously been
reported as highly variable correlating with ocular,
urogenital and LGV disease phenotypes [44, 45, 48].
Among isolates included in this study, tarp alleles were
present in 93/157 isolates (59.2%) with a total of 36 unique
allelic variants (Additional file 6: Table S6). Analysis of
tarp allelic variation revealed that 28/36 (77.8%) of
variants were associated with disease phenotype (ocular,
urogenital or LGV). For the remaining 8, alleles 25, 33
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and 36 were found in WGS data from ocular, urogenital
and LGV isolates, alleles 20, 22 and 44 were shared
between both ocular and urogenital isolates, allele 1 was
found in urogenital and LGV isolates while allele 13 was
associated with an ocular and LGV isolate. Overall, the
majority of tarp alleles were specific to isolates belonging
to a particular disease phenotype, although some tarp
alleles were also exchanged between isolates belonging to
different disease phenotypes.

Analysis of p-distance values across the core genome re-
vealed that the following were the most divers core genome
loci: DNA-binding protein CHLAMO0046 (/ictB, p-distance
=0451), ribulose-phosphate 3-epimerase CHLAMO0121
(araD, p-distance = 0.500), rRNA methylase CHLAMO0133
(p-distance = 0.063), the plasticity zone genes: CHLAMO155
(p-distance = 0.011), CHLAMO157 (p-distance = 0.099),
CHLAMO171 (p-distance = 0.064) and hypothetical protein
CHLAMO0326 (p-distance = 0.039) (Table 1).

Ct plasmid analyses

The gene pgp4 (CHLAMO0900) was the most conserved
plasmid gene with 3 alleles containing only 2 polymorphic
sites (Table 2). In contrast, pgp6 (CHLAM902) was the most
diverse, with 17 allelic variants, followed by: pgp2 with 14,
pgp3 and pgpl with 12, pgp5 and pgp7 with 13 and pgp8
with 11 unique allelic variants. In addition, all plasmid genes
had between 15 and 23 polymorphic sites except for pgp4.
Further analysis revealed that pgp3 (CHLAMO0899), which
has also been described as a virulence-associated gene [21,
27, 28], was the most polymorphic (p-distance = 0.008; SE +
0.002 and amino acid level 0.016; SE + 0.004). Although the
majority of the ORFs in the plasmid are known to be non-
coding, in order to identify any putative associations with
lineages or understand where such associations stemmed
from, we sought to investigate whether selection pressure
was evident in any of these ORFs. Therefore, the ratio be-
tween the rate of non-synonymous (dN) and synonymous
(dS) substitutions per (non-) synonymous nucleotide site
was determined. This ranged from 0.083 (pgp8) to 2.00
(pgp5) indicating that plasmid genes were not subject to
strong positive selection. Gene pgp5 which is suggested to

Table 1 Genomic diversity for 888 core loci of 157 Chlamydia
trachomatis isolates

Loci® p-distance
CHLAMO046 0451
CHLAMO121 0.500
CHLAMO133 0.063
CHALMO155 0011
CHALMO157 0.099
CHLAMO171 0.064
CHLAMO0326 0.039

“The remaining 881 loci had a p-distance< 0.01
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regulate the expression of some chromosomal genes,
showed a dN/dS =2. We subsequently tested the null hy-
pothesis of no selection (HO: dN = dS) versus the positive
selection hypothesis (H1: dN>dS) using the Z-test: Z
= (dN - dS)/V(Var(dS) + Var(dN)), but this value was not
statistically significant and therefore did not indicate positive
selection. The dN/dS ratios from the plasmid genes (0.083
to 2.00) were similar to those observed for theseven house-
keeping genes included in the Chlamydiales MLST scheme
(gatA, oppA, WfIX, gidA, enoA, hemN, and fumC) highlight-
ing the sequence conservation seen in the plasmid genes.
Ratios from these housekeeping genes ranged from 0.167
(fumC) to 1.500 (oppA_3). Gene oppA_3 showed a dN/dS =
1.500, but this value was not statistically significant on the
Z-test and therefore did not indicate positive selection
(Table 3).

A total of 47 unique pSTs were randomly assigned (Add-
itional file 3: Table S3, Fig. 1 and Additional file 4: Figure
S1). Sequence comparison of plasmid genes identified six
phylogenetic clusters numbered 1 to 6 (Fig. 2 and
Additional file 7: Figure S2). These clusters were associ-
ated with core genome clusters; all isolates of plasmid
cluster 2, 4, and 6 fell into core genome clusters II, III
and IV, respectively (Fig. 3 and Additional file 8:
Figure S3). All isolates except three (564, 570, and
614), of plasmid cluster 1 grouped with those from
core genome cluster I. The three exceptions grouped
with isolates of core genome cluster IV, suggesting
horizontal plasmid transfer. In addition, plasmid clus-
ters 3 and 6 formed sub-branches in core genome
cluster IV. Overall, each core genome cluster had one
dominating pST (Figs. 1 and 4, Additional file 3: Table
S3). Potential recombination events were further
assessed using ClonalFrameML, which results indicat-
ing that this was restricted to isolates within clusters
with recombination apparent to four particular re-
gions to the genome (Additional file 9: Figure S4).

Analysis of the allelic variation in each single plasmid gene
(pgp1 to pgp8) with respect to the observed plasmid clusters
revealed that exchange of alleles between plasmid clusters
was limited. Plasmid clusters possessed specific pgpl, 2, 3,
and 5 alleles that were unique to each cluster (Fig. 4,
Additional file 10: Table S5). For example, plasmids in clus-
ter 1 contained pgp! alleles 3 and 17 which were not found
in any of the other plasmid clusters, while cluster 3 had
pepl alleles 9 and 10. The allelic variation of pgp6, 7 and 8
was specific for the clinically most prevalent urogenital clus-
ter (cluster 2), one cluster containing some of the less fre-
quently occurring genital genovars (cluster 3) and the LGV
cluster (cluster 4), but exchange of allelic variants was ob-
served among clusters 1, 5 and 6. Finally, the allelic variation
of the pgp4 gene was only specific for the LGV cluster (clus-
ter 4) and a urogenital cluster containing the less frequently
occurring genovar K isolates (cluster 5), but exchange of



Page 6 of 13

Versteeg et al. BMC Genomics (2018) 19:130

uond3ds aAnisod Jo 1591-7 ay3 Aq Juediyiubis Ajjeonsiels Jou sem cdbd 1oy paurelqo | < SP/NP JO anjeA syl
(TLZE093H "ON ueguaD) ulens Inog/3 3yY1 Jo piwsed ay) Jo aduanbas a3 0} dAieja) sied dseq ul ybua,
¥S81L-/¥8L ‘i1 “ABOJOIqOIDIN “£661 “|e 19 sewoy] 01 Buipiodde uoneubissp s440,

€800 1000 1000 ¥000 ¢l00 1000 1000 8¢¥0 9/¥'0 1000 Y000 €L i22% 3l L €66 (¢440) gdbd
00C0 1000 ¢000 +000 0L00 <000 9000 6££0 SLZ1 1000 5000 zccl €Sy 194 €l 8l6 (1440) «dbd
0050 1000 €000 €000 9000 €000 9000 8¥90 Sly'L 1000 ¥000 0¢0'L €00 0¢ Ll v/ (8440) 9dbd
000C <000 #000 1000 ¢000 €000 8000 ¢/80 LLLl'c 1000 €000 ¥€60 0cLe Gl €l S6/ (/440) sdbd
000l 1000 1000 1000 1000 ¢000 000 6€C0 evc0 1000 1000 ¢9C0 €9¢€0 4 € 60€  (9440) vdbd
000l ¢000 £000 €000 £000 000 9100 ccl'L Ll C000 8000 88Y'L €eLr9 € cl S6/ (S440) €dbd
LLLI'0 1000 1000 €000 6000 ¢000 €000 €550 0L 1000 7000 Scl'L ory 0¢ 7l S90L  (#440) cdbd
98¢0 1000 ¢000 ¢000 £000 ¢000 Y000 ¢890 09l 1000 Y000 <COv'l 5961 8l cl 95eL (€440) 1dbd
SSP/NP - [3S] NP UeS  [3S] Spuesy  [3S] @duelsip-d  [3S] SedUSISYIP JO ON  [IS] ddueIsip-d  [3S] SedUBISYIp JO 'ON  salis dlydiowAjod 'ON  S9f9le 'ON  4(dq) LpbuST L(FHO) BuD

suonN1AsSaNs
SNOWAUOUAS pue -UON ‘9dueISIp-d

pIDY OujwY

9pNoaPNN

(so1e21/d21 000 | = densi00q ‘uonajep asimiled) dueISI UBSIA [[BISAQ

$31e|0S| SPWOoyDeI] BIPAWE|YD /G| WOl PIALSP S2uab piuse|d 2yl JO aduUelleA Dlj3jje pue sisAjeue wisiydiowA|od Z ajqeL



Page 7 of 13

Versteeg et al. BMC Genomics (2018) 19:130

uond3|as aasod Jo 1531-Z 9yl Aq Juedyiubls Ajjeonsiels Jou sem € yddo 1oy paulelgo | < SP/NP JO dnjeA ay|,
(717€093H "ON YueguaD) utens nog/3 3y: Jo piwse|d 3y} Jo 33usnbas ay3 01 aAne[Rs sijed aseq ul ybuaT,
aseqelep |STNGNd ay) Ul pajelouue duab ay) 01 $43431 NV THD,

00S'L LOO0 €000 1000 ¢000 ¢000 9000 ¢8l'L 71ee 1000 €000 €5¢€'L eor'y 0¢ cl LSSL (E6L0WYTHD) £ vddo
000'L 1000 ¢000 1000 ¢000 ¢000 S000 9¢80 851°C 1000 000 6S0°L oeee 0¢ 9l el (6£E0NYTHD) XHY
000'L 1000 1000 1000 1000 1000 ¢000 0950 0880 0000 1000 €€90 8CL L 8 /el OvLOWYTHD) Nway
000 1000 ¢000 ¢000 G000 <¢000 000 +10°L ¢59¢C 1000 €000 9/5°1 €E6'S 44 Gl £e8l (86¥0WYTHD) wPIb
0050 0000 1000 L1000 ¢000 1000 1000 0S¥0 €050 0000 1000 9890 Yor'L 0l Ll 74t (E000WY THD) vipb
/910 0000 1000 ¢000 9000 0000 L1000 LLLO 85¢0 1000 000 9¢l'l or0'e 0c¢ A ceel (SS8OWVTHD) Dwny
0050 1000 L1000 000 ¢000 1000 ¢000 #SS50 /980 1000 1000 G160 Y81 A S S/Cl (£8SOWVTHD) oua
sol|le (da)
SP/NP [3S] Np uesyy  [3S] Spuesyy  [3S] oduelsip-d  [IS] SedUIRYIp JO ON  [IS] Dduelsip-d  [3S] SoOUISYIP JO 'ON  sdMs diydiowikjod “oN ‘ON EWCB EED)
SUOIINIASANS

SNOWAUOUAS pue -UON :2duelsip-d

pIdY oujwy

9pRo3PNN

(sa1ed11dal 000 | = delis100q ‘uonajep asimiled) aduelSIq UBS| |[BI9AO

dWBYDS SN SaleIpAwriyD) a3 Ul 1uasald sauab buidasyasnoy UsASS JO $91e|0S| sIpwoyapil bipAwpjy) /S| Buowe sdueleA dj3jje pue sisAjeue wsiydiowA|od € ajqel



Versteeg et al. BMC Genomics (2018) 19:130

Page 8 of 13

Fig. 2 NeighborNet tree showing clustering of the plasmid sequence types (pST) generated from plasmid genes pgpT to pgp8 of 157 Chlamydia

trachomatis isolates. Coloured halos indicate the distinct clusters, isolates are indicated by the Chlamydiales pubMLST ID numbers, pST and ompA
genovar. Isolates shown in red (cluster 1) indicate potential plasmid exchange compared to the core genome clusters

A

552|pST4 | A
651|pST4|A
223| pST4 | A
853| pST4 | A
517| pST4|A
548 pST4 | A

595|pSTo0 |B
634| pST103 | A
630| pST100 | A
490 pST36 | A
398|pST33|C  564pST70|G
570|pST74|)  614|pST70|G

645 pST4 | A
224|pST4 | A
639 pST4 | A
653 | pST4 | A
553 | pST4 | A

66]pST1|A Cluster 1

n=20

pgp4 allelic variants was observed among clusters 1, 2, 3
and 6.

Discussion

Advances in sequencing technologies and increasing avail-
ability of WGS data provide unique opportunities for im-
proving our understanding of Ct infection and
epidemiology. Pivotal to this is the ability to rapidly extract
strain information from WGS data including ompA geno-
var, plasmid type and MLST sequence type such that global
surveillance of Ct infections can be achieved. In this study,
a catalogue of genes both core and accessory to the Ct gen-
ome was generated on the web-accessible http://pub-
MLST.org/chlamydiales/ website providing tools for Ct
surveillance in an open database. Data presented here reveal
that Ct core genomes were strongly associated with distinct
Ct plasmid types (Figs. 1, 2, 4 and Additional files 4 and 7:
Figures S1 and S2). Four core genome clusters were appar-
ent following cgMLST analyses consistent with a previous
study [9], however, two recombinant isolates were also

apparent. These were two trachoma isolates with uro-
genital backbones that had been identified previously
by Andersson et al. [30].

Ct is known to have a closed conserved pan-genome due
to persistence of these bacteria in isolated niches with lim-
ited access to the global microbial gene pool [49]. In this
dataset, a total of 888 genes were found to be core, with
only 14 accessory genes consistent with the effects of gen-
ome reduction known to have occurred in Ct [50]. All of
the accessory genes encoded hypothetical proteins with the
exception of the plasmid genes and CHLAMO0456, which
encodes tarp. None of the hypothetical genes correlated
with disease phenotype. Subsequent analysis of tarp allelic
variants revealed that the majority of alleles (77.8%) were
associated with distinct disease phenotypes (ocular, uro-
genital, or LGV), although some alleles were also shared be-
tween isolates from different disease phenotypes. The gene
tarp has been suggested to contribute to tissue tropism [44,
45, 48]. However, these results indicate that it is not the sole
gene driving these phenotypes. The most variable gene was
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Fig. 3 NeighborNet tree showing the comparison between core genome and plasmid clustering of 157 Chlamydia trachomatis isolates. Coloured
halos indicate the distinct clusters from Fig. 1, isolates are indicated by the Chlamydiales pubMLST ID numbers, plasmid sequence type (pST) and
ompA genovar. Isolates shown in red indicate potential plasmid exchanges compared to the plasmid clusters in Fig. 2
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CHLAMO0147 encoding a T3SS effector involved in endoso-
mal trafficking by recruiting nutrient-rich endocytic vesicles
via a non-fusogenic pathway to the chlamydial inclusion
[44]. Ct T3SS are activated when Ct attaches to a host cell,
after which T3SS are used to deliver an arsenal of bacterial
gene-encoded effector proteins into the cytosol of the host
cell [44, 48, 51]. The exact molecular mechanisms of T3SS
remains to be elucidated, but it is probable that these genet-
ically diverse T3SS genes function together to favour
specific tissue tropisms [44, 45].

The most conserved gene was fliA encoding sigma-28,
for which the exact function remains to be elucidated. It
has been suggested that expression of sigma-28 occurs in
response to cellular stress, such as nutrient deprivation
within the chlamydial inclusion [52, 53]. Overall, the most
variable core genes were ompA, the polymorphic outer
membrane proteins, genes associated with T3SS and the
plasticity zone, which all have been suggested to contrib-
ute to tissue tropism and disease severity due to their high
polymorphic variation [44, 45]. The more conserved genes
encoded hypothetical proteins for which no known func-
tions have been described, but have been suggested to play
an important role in the complex Ct-host interactions [44,
45]. The highly-conserved nature of these genes suggests
that mutations may have deleterious effects on biological
fitness. Polymorphic genes included /ictB (CHLAMO0046),
araD (CHLAM121), CHLAM133, CHLAMO155, CHLAM
0157, CHLAM172 and CHLAM326. CHLAMO0046 (/ctB)
encodes a DNA-binding protein thought to mediate the
chromatin compaction [54]. This gene is described to vary
among Ct genovars due to internal deletions from a region
of the hctB gene encoding lysine- and alanine-rich penta-
meric repeats [55]. The genes CHLAMO0155, CHLAMO0157
and CHLAMO172 are all part of a 20.3-kb highly
polymorphic genomic region encoding toxin-like genes
known as the plasticity zone [45]. The chlamydia plasticity
zone has also been known to vary among genovars in
accordance with known phylogenetic tissue tropism
(urogenital, ocular and LGV) [44, 45]. The CHLAMO0326
gene encodes a hypothetical protein without a known func-
tion, but this gene has been associated with rectal tropism
of Ct genovar G isolates [56]. Finally, the genes araD
(CHLAMO121) and CHLAMO133 are known to encode a
ribulose-phosphate 3-epimerase and rRNA methylase, but
variation has not been linked to specific Ct strains [57].

A total of 47 unique pSTs were identified (Fig. 2,
Additional file 3: Table S3) which aggregated into six
distinct plasmid clusters, five of which were compar-
able to those of Harris et al. [9]. The additional clus-
ter consisted solely of genovar K isolates and was
likely the result of Ct strains that had previously not
been sampled. In comparison to the clusters observed
following cgMLST analyses, plasmid analyses showed
that the rarer ompA genovars (genovars B, D, G, H, I,
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J, and K) formed three distinct plasmid clusters.
Moreover, three urogenital isolates with genovars G
and ] were identified that contained plasmids cluster-
ing with ocular isolates (genovars A-C), suggesting that
exchange of plasmids may have occurred between uro-
genital and trachoma isolates. Overall, our findings are in
agreement with previous studies that suggested co-
evolution of Ct plasmids and their chromosome and dem-
onstrated that, although rare, exchange of a plasmid can
occur [9, 12]. In addition, allelic variation in some of the
plasmid genes was specific and distinct for each cluster,
while variation in other genes was mainly specific for the
LGV cluster since the allelic variants of the remaining
clusters were shared. Potential recombination events were
further assessed using ClonalFrameML, which revealed
evidence of recombination within the clusters that was re-
stricted to four particular regions in the genome. Further
examination should reveal the exact genomic location of
these recombination hotspots and their subsequent
contribution to C. trachomatis pathogenesis and evolution
(Additional file 9: Figure S4).

The observed polymorphic variation was in agreement
with previous analyses [9, 13, 58] and comparison to the
polymorphic variation found in seven housekeeping genes
included in the Chlamydiales MLST scheme highlighted the
sequence conservation of the Ct plasmid genes. Although
the plasmid genes were highly conserved, much of the diver-
sity appeared to be restricted to one plasmid gene known to
be associated with chlamydial virulence. This gene, pgp3,
which is associated with increased Ct inflammatory re-
sponses [21, 27, 28], was the most polymorphic gene (p-dis-
tance = 0.008) and is known to be secreted in the host cell
cytosol and its diversity is possibly a result of immune selec-
tion [12, 21, 27, 28]. In contrast, pgp4 which functions as a
transcriptional regulator of pgp3 and some chromosomally
encoded genes, was identified as the most conserved gene.
The high sequence conservation of this gene suggests that
pgp4 is essential for virulence and infection, although previ-
ous studies have demonstrated that pgp4 was dispensable for
growth in vitro [25, 59]. Finally, we observed that exchange
of alleles between plasmid clusters was very limited. Some
alleles were specific to each plasmid cluster, with, in
particular, distinct plasmid alleles among LGV isolates. As Ct
harbours multiple plasmid copies, these results may be useful
to design plasmid assays which can distinguish clinically rele-
vant Ct strain types, for instance to detect the Swedish trun-
cated plasmid variant or to differentiate between LGV/non-
LGV isolates. The latter is of clinical importance since LGV
infections are more invasive and require extended treatment
[9, 12, 60].

A limitation of our study was that it used previ-
ously sequenced and stored isolates, for which limited
epidemiological or geographical data were available.
Since these isolates were originally selected for
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different objectives, the data available could not be
extrapolated to all included isolates. Previous molecu-
lar epidemiological studies on Ct using MLST showed
no association between Ct strain types and symptoms,
anatomical locations, gender or geographical location.
Most strain types were also globally distributed with
similar ompA genovar distributions [10, 61-63]. These
studies therefore suggest that the population structure
of Ct is comparable among different human populations and
that the effect of selection bias would be minimal. However,
MLST is limited by the fact that only a small (but poly-
morphic) fragment of the genome is used for typing, so sam-
ples, that are indistinguishable by MLST type, may still
contain (considerable) genomic diversity in the rest of the
genome. Future studies should therefore include a well-
defined population with known epidemiological and clinical
data to gain a better understanding of Ct epidemiology in re-
lation to the population structure while also analysing the
whol genome in association with MLST.

In conclusion, a strong association between Ct core gen-
ome and plasmid types was observed, consistent with co-
evolution of Ct plasmids and their chromosome. Moreover,
we suggest that, although rare, plasmid exchange may
occur between isolates. Finally, we showed that exchange of
alleles between plasmid clusters was limited. Future
research should apply the gene-by-gene approach to a well-
defined population with known epidemiological and clinical
data, as this will enhance our understanding of chlamydial
transmission and disease.
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