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Abstract

Background: The integration of DNA methylation and copy number alteration data promises to provide valuable
insight into the underlying molecular mechanisms responsible for cancer initiation and progression. However, the
generation and processing of these datasets are costly and time-consuming if carried out separately. The Illumina
Infinium HumanMethylation450 BeadChip, initially designed for the evaluation of DNA methylation levels, allows
copy number variant calling using bioinformatics tools.

Results: A substantial amount of Infinium HumanMethylation450 data across various cancer types has been
accumulated in recent years and is a valuable resource for large-scale data analysis. Here we present MethCNA, a
comprehensive database for genomic and epigenomic data integration in human cancer. In the current release,
MethCNA contains about 10,000 tumor samples representing 37 cancer types. All raw array data were collected
from The Cancer Genome Atlas and NCBI Gene Expression Omnibus database and analyzed using a pipeline that
integrated multiple computational resources and tools. The normalized copy number aberration data and DNA
methylation alterations were obtained. We provide a user-friendly web-interface for data mining and visualization.

Conclusions: The Illumina Infinium HumanMethylation450 BeadChip enables the interrogation and integration of
both genomic and epigenomic data from exactly the same DNA specimen, and thus can aid in distinguishing
driver from passenger mutations in cancer. We expect MethCNA will enable researchers to explore DNA
methylation and copy number alteration patterns, identify key oncogenic drivers in cancer, and assist in the
development of targeted therapies. MethCNA is publicly available online at http://cgma.scu.edu.cn/MethCNA.

Keywords: Copy number aberration, DNA methylation, Data integration, Cancer, Infinium HumanMethylation450
BeadChip, Genomic data, Epigenomic data

Background
Genomic instability is a hallmark of malignant tumors,
causing DNA copy number changes in most cancer
types [1, 2]. These copy number aberrations (CNAs) are
important influential factors for altered gene expression
levels in cancer [3]. Genomic alterations may confer
growth advantage of cancer cells and are usually associated
with poor prognosis. Recurrent CNA occurs in multiple
tumor samples across the same genomic region and plays

crucial roles in tumorigenesis [4]. The characterization of
CNAs in various cancer types has lead to identification of a
large number of genes that contribute to cancer initiation
and progression [5–7].
In addition to copy number aberrations, DNA methy-

lation is an important regulator of gene transcription,
and is one of the most studied epigenetic modifications
[8]. The methylated cytosines are almost exclusively
located in CpG dinucleotide sequences [9]. CpGs are
uniformly distributed across the genome, and some of
them are concentrated in short regions named CpG
islands. Methylation in CpG islands within gene
promoters usually leads to gene silencing. Association of
altered DNA methylation patterns of the promoter CpG
islands with the expression profile of cancer genes has
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been found in many tumor types [10–12]. Aberrant
hypomethylation may induce genome instability and
overexpression of oncogenes, while hypermethylation in
promoter regions of tumor suppressor genes may
perturb cell cycle regulation, apoptosis and DNA repair,
and result in malignant cellular transformation [13].
Therefore, DNA methylation status may serve as an epi-
genetic biomarker for cancer diagnosis and prognosis,
and has been studied extensively in human cancer.
The integration of different ‘omics’ data types is an

increasingly important approach for understanding the
fundamental mechanisms of cancer development.
Genomic and epigenomic alterations are key regulators of
gene expression, and may act in concert to drive tumori-
genesis and promote progression towards a malignant
phenotype [14]. Genes that are both amplified and hypo-
methylated or deleted and hypermethylated are likely to
play a key role in cancer development. DNA methylation
and copy number alteration data from the same tumor
specimen may facilitate to elucidate the synergistic mecha-
nisms for the inactivation of tumor suppressor genes or
the activation of oncogenic pathways [6, 15]. Copy num-
ber aberration profiles and DNA methylation patterns can
be measured genome-wide with microarrays. Although at
present arrays offer the most cost-effective solutions for
producing genomic and epigenomic data, the costs re-
mains a major concern for the large-scale assessment of
multiple datasets. Moreover, the computational burden
and storage requirements are increased substantially if
these data are generated on separate array platforms.
The Illumina Infinium HumanMethylation450 Bead-

Chip (450 k) is based on similar biochemical reaction
principle and technology as the single nucleotide
polymorphism (SNP) arrays, and is able to robustly
detect CNAs as a no-cost byproduct of methylation
studies [16, 17]. A variety of bioinformatics tools have
been developed for copy number calling from the 450 k
methylation array. The detection of copy number and
methylation alterations in a single experiment is particu-
larly important when considering the potential effects of
tumor heterogeneity on cancer development [17]. The
subtle areas of a tumor may be genetically and epigeneti-
cally different, and thus confer a different phenotypic trait,
such as differing metastatic potential. In recent years, a
growing number of studies have generated genome-wide
DNA methylation profiles of thousands of cancer samples
using Infinium HumanMethylation450 platform, including
The Cancer Genome Atlas (TCGA) project, which
represents one of the largest efforts to systematically
characterize the molecular profiles of cancers [18]. These
data are valuable resources for meta-analysis and may
provide insight into molecular mechanisms underlying
tumorigenesis. However, the processing and integration of
these datasets are laborious and time-consuming.

Here we present MethCNA, a comprehensive database
for the integrated analysis of DNA methylation and copy
number alterations in human cancer. Currently, the
database contains about 10,000 publicly available tumor
samples interrogated by Infinium HumanMethylation450
BeadChip. The raw array data were collected from TCGA
and NCBI Gene Expression Omnibus (GEO) database
[19] and processed through a pipeline that integrates
several widely used Illumina Infinium 450 k array analysis
tools. We developed a user-friendly web-interface and
online tools for data access, analysis and visualization.
‘Omics’ data integration and exploration hold great prom-
ise for the identification of novel cancer genes, and will
enable the development and selection of optimal therapies
targeting driver aberrations. MethCNA is designed to
meet the growing interest in integrating ‘omics’ data, and
is a resource for large-scale integration analysis of
genomic and epigenomic data in human cancer.

Construction and content
Data source for MethCNA
MethCNA includes genome-wide copy number alterations
and DNA methylation profiles, which were simultaneously
interrogated by the Illumina Infinium HumanMethyla-
tion450 BeadChip. Over 10,000 publicly available tumor
samples were collected from TCGA and GEO database.
Our data selection criteria are that (1) the tumor
samples must be assayed by Illumina Infinium
HumanMethylation450 BeadChip; (2) the raw signal
intensity data (.IDAT) files must be downloadable for
re-analysis and (3) the tumor type matched tissue-
specific normal samples are available as a reference
for data analysis. In the current release of MethCNA,
we collected 28 and 30 data series from TCGA and
GEO, respectively. These data series consist of 9964
tumor samples across 37 cancer types. Cancers were
defined by their histological types and sites of origin.
To provide standardized information on cancer types,
International Classification of Diseases for Oncology,
3rd Edition (ICD-O-3) morphology and topography
terms and codes were assigned to each tumor sample
(Additional file 1: Table S1 and Additional file 2:
Table S2). For five tumor types in TCGA (Brain
Lower Grade Glioma [LGG], Acute Myeloid Leukemia
[LAML], Lymphoid Neoplasm Diffuse Large B-cell
Lymphoma [DLBC], Mesothelioma [MESO], Testicular
Germ Cell Tumors [TGCT]), the normal samples
could not be obtained, and thus are not included in
our database. Detailed statistics of cancer types and
samples are shown in Table 1.

Data processing pipeline
To reanalyze the raw array data, we downloaded signal
intensity data (.IDAT) files from public microarray
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repositories. The data processing pipeline integrates a col-
lection of widely used R packages, including minfi [20],
limma [21], ChAMP [22] and CopyNumber450kCancer
[23]. A schematic overview of the data processing pipeline

is shown in Fig. 1. For all these packages, we used the de-
fault settings of the tools. The data files were processed at
a per data series level. For each data series, the raw array
files were run through the pipeline in batch mode, which
integrates several analysis steps from preprocessing (e.g.
normalization and batch effect analysis) to basic analysis
(e.g. copy number aberrations calling and detection of dif-
ferentially methylated regions) as well as tool for cancer-
specific analysis (e.g. baseline correction for accurate copy
number calling). The Bioconductor package minfi was
used to perform quality control and generate normalized
beta values [20]. The Subset-quantile within array
normalization (SWAN) [24] and Beta-Mixture Quantile
(BMIQ) [25] normalization methods were employed. The
differentially methylated probes and regions were identi-
fied by limma package [21]. Benjamini-Hochberg method
was used for p-value adjustment. For detecting copy
number alterations from the Illumina 450 k array plat-
form, we employed the R package ChAMP, which infers
copy number changes using intensity of individual and
surrounding probes [22]. We used the Beta-value method
for differential methylation analysis, since the Beta-value
has an intuitive biological interpretation [26]. However,
for data series that less than 30 samples, we employed M-
value method for the analysis, because in the limit of small
sample size, M-values allow more reliable identification of
true positives [27]. In order to optimize CNA calling, we
integrated the CopyNumber450kCancer R package into
the pipeline for baseline estimation and correction using
the maximum density peak estimation (MDPE) method
[23]. For TCGA datasets, we performed batch effect re-
duction by ComBat [28] method in the sva R package
[29]. We mainly focused on two covariates, namely tissue
source sites (TSS), which may introduce bias during sam-
ple preparation, and Slides, which may cause bias in data
generation process. We treated Slide as batch variable and
TSS as covariate. For cases that TSS are confounded with
Slide, we only used Slide as batch variable for the correc-
tion. This correction was applied to both beta values and
signal intensities, which were used for differentially meth-
ylated regions calling and copy number alterations calling,
respectively. Batch correction was followed by manual in-
spection of quality control plots generated by ChAMP to
evaluate the correction performance.
For TCGA datasets, the tumor type abbreviations were

assigned as data series IDs, and the TCGA barcodes
were extracted from the annotations file and used as
sample IDs. A full list of sample and series IDs, can-
cer types and related publications is maintained on
the MethCNA website. These information can also be
found in Additional file 1: Table S1 and Additional
file 2: Table S2. For gene level analysis, the standard
gene names and locations were downloaded from the
UCSC Genome Browser FTP server [30]. All genome

Table 1 Summary of array data contained in MethCNA

Cancer type TCGA GEO

Sample Series Sample Series

Acute myeloid leukemia 0 0 88 3

Adrenocortical carcinoma 80 1 0 0

Atypical teratoid rhabdoid tumor 0 0 150 1

Bladder urothelial carcinoma 419 1 0 0

Breast invasive carcinoma 796 1 316 3

Cervical cancer 309 1 0 0

Cholangiocarcinoma 36 1 0 0

Colon adenocarcinoma 316 1 104 2

Diffuse intrinsic pontine glioma 0 0 25 1

Esophageal carcinoma 186 1 0 0

Glioblastoma multiforme 153 1 72 1

Head and neck squamous cell
carcinoma

530 1 0 0

Kidney Chromophobe 65 1 0 0

Kidney renal clear cell carcinoma 325 1 46 1

Kidney renal papillary cell carcinoma 276 1 0 0

Liver hepatocellular carcinoma 380 1 0 0

Lung adenocarcinoma 475 1 164 1

Lung squamous cell carcinoma 370 1 0 0

Medulloblastoma 0 0 119 2

Neuroblastoma 0 0 32 1

Oligodendroglioma 0 0 46 1

Ovarian adenocarcinoma 10 1 345 3

Pancreatic adenocarcinoma 185 1 167 1

Pheochromocytoma and
Paraganglioma

184 1 0 0

Prostate adenocarcinoma 503 1 20 3

Rectum adenocarcinoma 99 1 6 1

Sarcoma 265 1 0 0

Schwannoma 0 0 40 1

Skin cutaneous melanoma 473 1 160 2

Small cell lung carcinoma 0 0 11 1

Squamous cell skin carcinoma 0 0 7 1

Stomach adenocarcinoma 396 1 0 0

Thymoma 124 1 0 0

Thyroid carcinoma 515 1 0 0

Uterine carcinosarcoma 57 1 0 0

Uterine corpus endometrial carcinoma 439 1 0 0

Uveal melanoma 80 1 0 0

Total 8046 28 1918 30
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coordinates were based on human genome assembly
NCBI Build 37/hg19. Since cancer-related DNA methyla-
tion studies concentrate on different biologically relevant
genome regions, we provide several gene and CpG island
regions for data analysis, including promoter, transcrip-
tional start site (TSS), untranslated region (UTR), exon,
gene body, CpG island, shore and shelf. The genomic
annotations of these functional regions were obtained
from the UCSC Genome Browser [30].

Database architecture and implementation details
The normalized DNA methylation data at both the
probe and gene level, and the called copy number states
(gain, loss or neutral) of the segmentation data were
stored in a MySQL database (version 5.5.49). We devel-
oped a user-friendly web interface for users to query and
visualize the processed array data. The main functions of
MethCNA include search, browse and clustering ana-
lysis. The web server runs on a dedicated Linux machine
with the Apache HTTP server version 2.4.7. The web
application used PHP (version 5.5.9) and HTML to serve
web pages. The client-side interactive user interface was
designed using JavaScript libraries and jQuery plugins,
and the ggplot2 R package [31] and self-written R scripts
were used for data visualization. The website has been
tested to ensure functionality across different operating
systems and browsers, including Internet Explorer,
Safari, Firefox, Opera and Chrome.

Utility and discussion
Data querying
MethCNA contains 58 data series consisting of 9964
tumor samples across 37 cancer types. The ‘Search’ page

provides two options for users to explore data of inter-
est: query by array ID and query by gene. For query by
ID, GEO array accession number or TCGA barcode can
be input directly into the query box to retrieve copy
number and methylation data of the corresponding
array. The entire list of array IDs and related informa-
tion is provided on MethCNA web page. The search
interface offers a set of parameters or thresholds for cus-
tomized data visualization (Fig. 2a). The thresholds for
signal value represent cut-offs from which a segment is
considered a genomic gain or loss. The delta beta values
are used to calculate the percentage methylation differ-
ence between cancer and normal tissue. The positive
and negative values of delta beta correspond to relative
hyper- and hypomethylation, respectively. The empirical
optimal thresholds for the Infinium 450 K platform are
displayed as defaults. A set of colors can be used to in-
tuitively display both types of data in the same figure.
The results page shows CNAs and differentially methyl-
ated positions (DMP) for each chromosome (Fig. 2b).
The interactive visualization interface allows users to
zoom-in to an area of interest by inputting the start and
stop genomic locations (Fig. 2c). This will facilitate to
identify potential genes that are affected by both CNAs
and DNA methylation.
The second option is query by genes, which allows

users access to gene-specific aberration information in
selected datasets (Fig. 3a). Cancer types and data series
can be chosen in the list box. The data series field sup-
ports multiple selections, and the field content changes
dynamically according to the selected cancer type. Gene
names can be input in the text field, and multiple gene
names may be specified separated with a semicolon. The

Data processing Database integration

Data visualization

DMR detection

NCBI GEO

Online analysis tools

CNA calling

Raw array data

Normalization

Batch effects 
correction

TCGA

ChAMP
CopyNumber
450kCancer

Interactive visualization

Data clustering

Baseline correction

Data Querying Data Browsing

Quality control

Limma

Fig. 1 The schematic overview of the data processing pipeline. It consists of three major modules. The raw array data are processed with a series
of bioinformatics tools, and the normalized data are used for visualization and analysis
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standard gene names and symbols can be downloaded
from MethCNA web page. The thresholds for defining
genomic gains and losses are also provided. There are
seven gene regions and four CpG island (CGI) regions
that can be selected for analysis. The gene promoter re-
gion is assigned as default. If genetic and epigenetic vari-
ant data is available for the inquired genes, the results
page shows the differential methylation status of each
gene in selected tumors by boxplot, and the frequency of
genomic gains and losses by histogram (Fig. 3b). The
‘View Detail’ link opens a new page to show detailed
alteration data about the gene of interest in each sample.
For further information of gene annotations, the result
page provides links to the corresponding entries of Gen-
eCards [32] and Catalogue of Somatic Mutations in

Cancer (COSMIC) databases [33]. This feature will allow
researchers to identify promising genetic and epigenetic
biomarkers in human cancer.

Data browsing
MethCNA also provides data browsing interface to allow
researchers to investigate mutation profiles of each
study. The ‘Browse’ page contains all MethCNA data
organized by studies. Clicking on the article title leads to
a page that includes a table with detailed information of
the dataset and genome-wide frequency plots of copy
number alterations across all samples in the study
(Fig. 4a). The frequency plots for each chromosome
provide an intuitive view of regional chromosomal
rearrangement hotspots. The user can also access

DNA methylation & copy number alterations plots

GSM937258

start: 10 end: 30 zoom in

start: 210 end: 230 zoom in

MethCNA: a database for integrating genomic and epigenomic data in cancer

Home Search Browse Cluster Tutorial Contact

Search

Sample ID  GSM937258
 Examples: GSM1194479 (PDAC) ; GSM1588742 (Melanomas) 

 Click here to download a list of all tumor samples.

Visualization options:

Signal value for genomic gains >= 0.15 Color for genomic gains: red

Signal value for genomic losses <= -0.15 Color for genomic losses: blue

Call for hypermethylation, delta beta >= 0.25 Color for hypermethylation: green

Call for hypomethylation, delta beta <= -0.25 Color for hypomethylation: violet

Search Reset

a b

c

Fig. 2 The web interface for query by sample. a A set of parameters and thresholds can be used for customized data visualization. b The result
page displays both copy number aberrations and differentially methylated positions. c Areas of interest can be zoomed in for more detail

Beta value distribution(left panel) and Copy Number status(right panel) among samples

F2RL3

GeneCards

Cosmic

ViewDetail

a bGene
Examples: F2RL3 gene promoter in GSE66836 (Lung adenocarcinoma) ; GPER promoter in GSE60185, GSE66313

and GSE69118 (Breast invasive carcinoma)

Cancer type: Colon adenocarcinoma
Di use intrinsic pontine glioma
Esophageal carcinoma
Glioblastoma multiforme
Head and neck squamous cell carcinoma
Kidney Chromophobe
Kidney renal clear cell carcinoma
Kidney renal papillary cell carcinoma
Liver hepatocellular carcinoma
Lung adenocarcinoma

Series: TCGA_LUAD
GSE66836

Gene symbols:   

(delimit by ";") 

F2RL3 Region: Promoter
TSS1500
TSS200
3'UTR
5'UTR
1stExon
Body
Island
Shore

Click here to get the gene list

Signal value for genomic gains >= 0.15

Signal value for genomic losses <= -0.15 Method to evaluate methylation level: Average

Search Reset

Fig. 3 The web interface for query by gene. a The interface to select cancer type, data series and gene regions. b The differential methylation
status and the frequency of genomic imbalances of a gene are illustrated by boxplot and histogram, respectively
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sample-level data by clicking on the link for each array
ID (Fig. 4b). The result page contains a link to view the
annotations of the differentially methylated regions
(DMR), as well as detailed information about the genes
that overlap with these regions (Fig. 4c). The DMR page
also generates links to UCSC Genome Browser [30] and
COSMIC database [33] for further annotation.

Data clustering
Most tumors display genome-wide abnormal genetic
and epigenetic events, which provide their genomes with
complex mutational patterns. Hierarchical clustering is a
widely used method for large-scale genomic data ana-
lysis. The ‘Cluster’ page of MethCNA provides clustering
of copy number alterations and DNA methylation data
for users to characterize different aberration patterns in
data series. The clustering of CNA and methylation data
will be investigated separately. For CNA data, the users
are able to investigate tumor type specific datasets. The
data series can be chosen in the list box according to
cancer types. In the clustering graph, tumor samples
with similar CNA profiles are grouped together. The re-
gional hotspots can be seen intuitively, and it is particu-
larly helpful when comparing CNA profiles across
multiple datasets. Investigation of these hotspots has
proven to be an effective methodology to identify novel
cancer genes. Furthermore, the identified clusters may
represent distinct cancer subtypes. For DNA methylation
profiles, we developed gene-level clustering analysis. The

user can input a list of gene symbols and specify cancer
type and gene region to run the analysis (Fig. 5a). The
result page will return a clustering diagram to show the
methylation profile of queried genes among the selected
samples (Fig. 5b). The interactive diagram can be
zoomed in for more detailed information. It enables
researchers to investigate the synergistic effect of aber-
rant methylation of multiple genes in tumorigenesis.

Case study
As an illustration of MethCNA functionalities, we ana-
lyzed two glioblastoma (GBM) datasets that were inte-
grated into our database: GSE60274 and TCGA-GBM.
There are 72 and 153 tumor samples in GEO and TCGA
datasets, respectively. In the ‘Browse’ page, clicking on
the series title of GSE60274 opens a result page with
basic information of the dataset. It also contains histo-
grams of each chromosome representing the CNA fre-
quencies. The genome-wide profile of chromosomal
alteration hotspots may point to genomic loci harbouring
cancer related genes. We found that the whole chromo-
some 7 gain and chromosome 10 loss were the most
prevalent genomic imbalances in this dataset (Fig. 6a).
According to recent studies, these alterations are the evo-
lutionary first driver events in the development of primary
GBM [34, 35]. Furthermore, we observed a recurrent focal
deletion of the short arm of chromosome 9 (Fig. 6a). The
peak region of focal deletion on chromosome 9p encom-
passing the tumor suppressor gene CDKN2A, which may

Series

Series ID: GSE65183 PubMedID: 26359985

Title: Methylation changes in pre MAPKi treatment and post MAPKi resistance Melanomas

Status: Public on Sep-15-2015

Samples(Tumor):
GSM1588704, GSM1588705, GSM1588706, 

GSM1588711, GSM1588712, GSM1588713, GSM1588714, GSM1588715, More...

Visualization options:

Signal value for genomic gains >= 0.15 Color for genomic gains: red

Signal value for genomic losses <= -0.15 Color for genomic losses: blue

Replot
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There are totally 1238 DMRs found in chromosome 1
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1
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567082 567483 0.125546172261 0.286962628365 0.161416471004 UCSC

1 RP11-54O7.1 846466 851341 0.580086529255 0.444904357195 -0.135182127357 UCSC

1 RP11-54O7.3 854683 854848 0.947777867317 0.653800487518 -0.293977379799 UCSC

1 SAMD11 863993 866747 0.871127545834 0.573347866535 -0.297779709101 UCSC

1 SAMD11 870950 871115 0.438748240471 0.254177778959 -0.184570476413 UCSC

DNA methylation & copy number alterations plots
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c

Fig. 4 An example of GEO data series browsing. a The copy number gain and loss frequencies for each chromosome across the data series
(only chromosome 1 and 2 are shown here). b Illustration of sample-level data. c The annotations of the differentially methylated regions and the
associated genes
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play a crucial role to promote GBM progression [36, 37].
CDKN2A has been reported as an indicator of poor prog-
nosis and is hypothesized to be a cancer driver gene [38].
The similar CNA frequency profile was observed in the
TCGA-GBM dataset (Additional file 3: Figure S1).
The heatmaps of both datasets can be inspected on

the ‘Cluster’ page. For example, we selected ‘Glioblast-
oma’ and ‘GSE60274’ in the ‘Cancer type’ and ‘Series’ list
box, respectively. The overall CNA profile of the 72
tumor samples in GSE60274 was shown. The high
prevalence of whole chromosome 7 and 10 abnormal-
ities can be clearly seen (Fig. 6b). The distribution of
focal aberrations can also be explored. For the TCGA-
GBM dataset, we got the similar overall pattern of
results (Additional file 4: Figure S2). The specific pattern
of genomic copy number profiles indicates the non-
random occurrence of CNAs, and may provide import-
ant information for understanding the molecular mecha-
nisms involved in tumorigenesis.
We also investigated the synergistic effects of genomic

aberrations and epigenetic changes in GSE60274. In the
‘query by genes’ interface of ‘Search’ page, we searched
for three genes that are implicated in cancer initiation or
progression: EGFR, PTEN and HOXA10. We selected
‘Glioblastoma’ and ‘GSE60274’ in ‘Cancer type’ and
‘Series’ list box, respectively. In the ‘Gene symbols’ text
field, we input the above gene names separated by semi-
colon. For the gene region, we selected ‘Promoter’ in the
drop-down list for analysis. In the results page, box plot
and histogram were generated to present DNA methyla-
tion and copy number status for each gene across
glioblastoma samples. According to the results, EGFR
promoter region was significantly hypomethylated (P <
0.01, two-sided t test) in glioblastoma, as compared with
normal brain specimens (Fig. 6c). Simultaneously, the
copy number of EGFR was increased in most samples

(63 out of 72 samples, 87.5%). EGFR is a transmembrane
tyrosine kinase receptor that plays a central role in regu-
lating cell proliferation and differentiation. Overexpres-
sion of EGFR has been reported and implicated in the
pathogenesis of many cancer types [39, 40]. On the con-
trary, the tumor suppressor gene PTEN was inactivated
by hypermethylation (P < 0.001, two-sided t test) and
genomic loss (54 out of 72 samples, 75%) throughout
the dataset (Fig. 6d). The genomic and epigenomic alter-
ations affecting the expression of PTEN may indicate
Knudson’s ‘two-hit’ hypothesis in tumorigenesis [41],
and were reported to be crucial driver events in glioblast-
oma initiation and progression [42, 43]. Interestingly, the
HOXA10 gene was found to be hypermethylated (P < 10–
16, two-sided t test) and showed copy number gain (55
out of 72 samples, 76%) in the dataset (Fig. 6e). It revealed
the theory that gene dosage may contribute to the aber-
rant gene expression, as reported recently by Kurscheid et
al. [44]. Our results demonstrate the utility of MethCNA
in integrating genomic and epigenomic alteration data
and the ability to identify cancer driver genes.

Conclusion
MethCNA is an effort to further our understanding of
the relationship between copy number alterations and
DNA methylation status, both of which are known to be
hallmarks of human cancer. There are several publicly
available resources similar to our database. The cBioPor-
tal [45] is a resource for interactive exploration of multi-
dimensional cancer genomics data sets, including CNA
and DNA methylation data. CNAmet [46] is an R package
for integrative analysis of high-throughput copy number,
DNA methylation and gene expression data. However,
these tools were designed to integrate data derived from
different patients or platforms. The most important
advantage of our database is that the methylation and

Methylation of gene Example: promoters of 15 genes in GSE38240 (Prostate adenocarcinoma)

Cancer type: Liver hepatocellular carcinoma
Lung adenocarcinoma
Lung squamous cell carcinoma
Medulloblastoma
Neuroblastoma
Oligodendroglioma
Ovarian adenocarcinoma
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(delimit by ";")
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TSS1500
TSS200
3'UTR
5'UTR
1stExon
Body
Island
Shore

Method to evaluate methylation level: Average

Submit Reset

a b

Fig. 5 An example of hierarchical clustering of DNA methylation data. a The interface for user to input gene symbols and select cancer type, data
series and gene regions. b The clustering diagram shows the methylation profile of queried genes among the selected samples. The specific
region can be zoomed in for an enlarged view
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copy number data are derived from exactly the same gen-
omic loci. As previous studies have indicated, genetic and
epigenetic alterations may act coordinately to fulfil the
two-hit paradigm at a gene-specific level, leading to cancer
initiation. For example, tumor suppressor genes that
undergo a ‘double hit’, such as heterozygous loss and
hypermethylation, or oncogenes in an amplified region
that are hypomethylated are most likely to be drivers of
tumorigenic processes. Thus, the efficient mining of this
large-scale dataset can provide valuable insight into the
underlying molecular bases of oncogenesis, and facilitate
to distinguish driver from passenger alterations. We
believe that our database is a powerful tool not only for
bioinformaticians but also for experimental researchers.
Concerning the future development of our database, we
plan to control variations in the tumor cell content
between samples. There are several tools developed for

the correction of cell type heterogeneity and control for
false positives in large-scale epigenome data analysis, such
as ReFACTor [47] and MeDeCom [48]. In the next release
of our database, we will utilize these tools to remove
confounding variation and to provide a better framework
for data interpretation.
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