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Abstract

Background: Comprehensive understanding of intratumor heterogeneity requires identification of molecular
markers, which are capable of differentiating different subpopulations and which also have clinical significance. One
important tool that has been addressing this issue is single cell RNA-Sequencing (scRNASeq) that allows the
quantification of expression profiles of transcripts in individual cells in a population of cancer cells. Using the
expression profiles from scRNASeq, current studies conduct analysis to group cells into different subpopulations
using clustering algorithms. In this study, we explore scRNASeq cancer data from a different perspective. We focus
on scRNASeq data originating from cancer cells pertaining to a particular cancer type, where the cell type or the
subpopulation to which each cell belongs is known. We investigate if the “cell type” of a cancer cell can be
predicted based on the expression profiles of a small set of transcripts.

Results: We outline a predictive analytics pipeline to accurately predict 6 breast cancer cell types using single cell
gene expression profiles. Instead of building predictive models using the complete human transcripts, the pipeline
first eliminates predictors with low expression and low variance. A multinomial penalized logistic regression further
reduces the size of the predictors to only 308, out of which 34 are long non-coding RNAs. Tuning of predictive
models shows support vector machines and neural networks as the most accurate models achieving close to 98%
prediction accuracies. We also find that mixture of protein coding genes and long non-coding RNAs are better
predictors compared to when the two sets of transcripts are treated separately. A signature risk score originating
from 65 protein coding genes and 5 INcRNA predictors is associated with prognostic survival of TCGA breast cancer
patients. This association was maintained when the risk scores were generated using 65 PCGs and 5 INncRNA
separately. We further show that predictors restricted to a particular cell type serve as better prognostic markers for

the respective patient subtype.

Conclusion: Our results show that in general, the breast cancer cell type predictors are also associated with patient

survivability and hence have clinical significance.
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Background

A malignant group of tumor cells is comprised of dis-
tinct subpopulations. This clonal diversity is an import-
ant feature of many human tumors [1-3] and it is
necessary for the evolution of the cancer cells into differ-
ent subpopulations, which differ in their genetic
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characteristics [4—6]. This underlying difference is exhib-
ited in external behaviors pertaining to invasion, metas-
tasis, and the resistance to drug treatment. Therefore, it
possesses a significant challenge in designing effective
treatment strategies.

Single cell sequencing is emerging as one of the most
important technology to understand tumor heterogen-
eity at the resolution of single cells [7, 8]. Single-cell
DNA sequencing methods allow us to understand the
diversity of copy number alterations, resolve clonal sub-
structure and genetic lineages, identify rare mutations,
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characterize subpopulations of cancer cells etc. For
example, a large number of rare subclonal (< 1%) muta-
tions that may play an important role in tumor evolution
and therapy resistance were identified in breast cancer
[9]. Single-cell exome sequencing has been successfully
applied to study clonal substructure in a muscle-invasive
bladder cancer [10] and a colon cancer [11]. On the
other hand, single cell RNA-Sequencing (scRNASeq)
allows quantification of expression profiles of transcripts
in individual cells in a population of cancer cells. Using
the expression profiles, cells can be grouped into differ-
ent subpopulations using clustering algorithms. For
example, scRNASeq identified three distinct gene signa-
tures in circulating tumor cells associated with metasta-
sis [12]. In another study, scRNASeq was used to study
the spread of single circulating tumor cells and circulat-
ing tumor cell clusters in metastatic breast cancer
patients and mouse models [13].

One essential component to gain a comprehensive
understanding of intratumor heterogeneity is identifica-
tion of molecular markers, which can accurately differ-
entiate different subpopulations of tumor cells and their
clinical significance in cancer patients. To address this
issue, we explore scRNASeq cancer data from a different
perspective. We focus on scRNASeq data originating
from cancer cells pertaining to a particular cancer type,
where the cell type or the subpopulation to which each
cell belongs is known. We investigate if the “cell type” of
a cancer cell can be predicted based on the expression
profiles of a small set of transcripts and if the set of
these transcripts are associated with cancer patient sur-
vival rate. Since most of the publicly available data use
few numbers of cells, we focused on a breast cancer
study that used an ample number of cells originating
from 6 different cell types. Here, we outline a predictive
analytics pipeline to accurately predict the 6 breast can-
cer cell types using single cell gene expression profiles.
Instead of building predictive models using the entire
annotated human transcripts, the pipeline first reduces
the number of predictors by filtering transcripts with
low expression and low variance. Applying a multi-
nomial penalized logistic regression process, the number
of predictors is further reduced to 308 transcripts, out of
which 34 were long non-coding RNAs. Tuning of pre-
dictive models on the reduced data set with these 308
predictors shows support vector machines and neural
networks as the most accurate models achieving close to
98% prediction accuracies. Our study indicates that the
cell type of a breast cancer cell can be expressed as
dependent variable of expression profiles of a small set
of transcripts. We also find that this mixture of protein
coding genes and long non-coding RNAs are better pre-
dictors compared to when the two sets of transcripts are
treated separately. From the 308 predictors, a signature
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risk score using 68 protein coding genes and 5 IncRNAs
predictors is associated with prognostic survival of
TCGA breast cancer patients. This association was
maintained when the risk scores were generated using
68 protein coding genes and 5 IncRNAs separately. We
further show that predictors restricted to a particular
cell type serve as better prognostic markers for the
respective patient subtype. This shows that in general, the
breast cancer cell type predictors are also associated with
patient survivability and hence have clinical significance.

Results
Breast cancer single cell transcriptome data
To the best of our knowledge, we found seven major
studies that used single cell RNA-Seq studies pertaining
to cancer. These studies were based on Glioblastoma
[14], Melanoma [12], Pancreatic cancer [15], cancer cell
lines [16], and breast cancer [13, 17]. However, we
focused only on one scRNASeq data on breast cancer
cells because this study used ample number of cells, the
raw data was publicly available, and cell type information
for predictive analytics was also available. The data per-
taining to this study was obtained from NCBI GEO site
with accession number GSE75688. The scRNASeq
breast cancer data had 401 cells and originated from 6
different cell types populations: 15% estrogen receptor
positive (ER+), 7% double positive (ER + HER2+), 12%
BCO3LN (lymph node metastasized double positive),
29% human epidermal growth factor receptor 2 positive
(HER2+), 29% triple-negative breast cancer (TNBC), and
8% BCO7LN (lymph node metastasized triple-negative).
The predictive analysis pipeline used in this paper is
summarized in Fig. 1 and is divided into two sections.
The first part of the analysis is feature filtering and
feature selection to reduce the number of gene predic-
tors to be used in building predictive models. The
second part of the analysis involves tuning various pre-
dictive models for accurate prediction of cell type of
breast cancer cells.

Feature selection process retains 308 predictors

The original data contained the expression profiles of
approximately about 50,000 genes (including protein-
coding and long noncoding RNAs). Since, we are inter-
ested in finding a smaller set of transcripts which can be
used as cell type predictors, it is not feasible nor
appropriate to use all these genes as predictors. First, the
genes which had low expression across all cells
(maximum expression <2 FPKM or fragments per kilo-
base of exon per million reads mapped) or the genes
which didn’t have significantly high variance across the
cell types (anova test, p-value >=0.01) were removed.
These steps reduced the number of genes in breast
cancer data set to 5592 genes. This reduced data set was
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processed through feature selection process using a
multinomial penalized LASSO logistic regression
technique (Methods). Tuning this model was done by
varying the regularization parameter (lambda) and it
yielded an optimal classification result with classification
error of 13% for lambda = 0.006898 (Fig. 2a). The feature
selection process embedded in LASSO tuning selected
308 predictor genes in the optimal model, out of which
34 were long noncoding RNAs. This reduced data set
containing these 308 predictors was used for subsequent
analysis.

Tuning predictive models

Since there was imbalance in the distribution of number
of cells across the 6 cell types, we used the SMOTE
algorithm [18] to achieve balance across the 6 groups.
After this, the data set with 308 predictors was split into
training (80%) and test (20%) sets. To make sure that
there was no bias in the split for a particular cell type;
population from each cell type contributed 80% to
training and 20% to test set. Using 10-fold cross
validation resampling technique, the following models
were tuned by varying the respective model tuning
parameters: K-nearest neighbor, decision trees, support
vector machines, ensemble models (random forest and
boosted trees), neural networks, and Naive Bayes. After
tuning, neural networks and support vector machines
gave the best accuracies on the training and test sets
(Fig. 2d). Neural network (NN) and support vector

machines (SVM) showed the best predictive ability of
the breast cancer cell types. NN achieved accuracies of
98.41% +/-2.5% and 99% accuracies on training and
testing data, respectively and SVM achieved accuracies
of 98.66% +/-1.55% and 99% accuracy on training and
testing data, respectively (Fig. 2d). These two models
were followed by Random forest, and boosted trees. K-
nearest neighbors, decision trees, and Naive Bayes
performed the worst (Fig. 2d).

Tuning predictive models with long non-coding RNAs and
protein-coding genes as predictors

We noticed that the original 50,000 predictors were
not all protein coding genes; some of them were long
non-coding RNAs. To compare the predictive power
of long noncoding RNAs and protein coding genes,
we generated two different data sets from the original
data set that contained 50,000 genes. One set con-
sisted only long noncoding RNAs (IncRNA-set) and
the second set consisted only protein coding genes
(pcg-set). We applied the same feature selection pro-
cedure followed by penalized LASSO regression
tuning step on these two data sets separately. With
the pcg-set, LASSO tuning process yielded a classifi-
cation error of 13% with lambda=0.00721 with an
optimal set of 322 protein-coding genes predictors
(Fig. 2b). With the IncRNA-set, classification error of
21% with lambda=0.00721 with an optimal 264
IncRNA predictors was achieved (Fig. 2c).
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Fig. 2 Feature selection and model tuning results. Panels (a), (b), and (c) show the results of applying the LASSO regression process by using
both protein-coding genes, protein-coding genes only, and long non-coding RNAs only, respectively. The x-axis is the tuning parameter in log-
scale and the y-axis is the 10-fold cross-validated misclassification error. The black vertical line indicates the optimal model with the lowest
misclassification error, the blue vertical line indicates a lesser complex model with misclassification error within one standard error of the optimal
model. The number indicated next to the black vertical line is the number of predictors selected by the optimal LASSO regression model. Panels
(d), (e), and f show the prediction accuracy results of 7 predictive models (SYM: support vector machines, RF: random forest, NN: neural network,
NB: Naive Bayes, KNN: k-nearest neighbor, DT: decision trees, BT: boosted trees) using the reduced set of predictors from panel (a), (b), and (c),
respectively. The prediction accuracies for training and testing sets are indicated

Model tuning using only the 322 protein-coding gene
predictors yielded accuracies of 97.94% +/-1.71% and
97.95% +/-1.68% accuracies on the training sets by NN
and SVM, respectively and 96.30% and 95.37% accuracies
on the testing sets by NN and SVM, respectively (Fig. 2e).
This shows that the predictive power of protein-coding
genes is slightly lower compared to predictive ability of the
mixture of IncRNAs and protein coding genes. However,
tuning models using only 264 IncRNA predictors yielded
much lower predictive accuracies (87.52% +/-3.29% for
NN and 80.78% +/-18.40% for SVM for training sets)
(Fig. 2f). These results indicate that when considered separ-
ately, IncRNAs and Protein-coding genes are weaker pre-
dictors for breast cancer cell types. However, the right
mixture of protein-coding genes and IncRNAs act serve as
accurate predictors for breast cancer cell types. Therefore,
we focus on the original 308 predictors for further analysis.

Clustering predictors
Next, we investigated the expression patterns of the 308
predictors (34 IncRNAs +274 PCGs) across the 6

different cell types by performing HOPACH clustering
using cosine dissimilarity as the distance metric. This
yielded 8 optimal clusters (Fig. 3a). Interestingly 6
clusters showed a restricted expression pattern to one
single cell type (Fig. 3a). Clusters A, B, C, F, G and H are
restricted to ER+, BCO3LN, ER+ HER2+, TNBC,
BCO7LN, HER2+ cell type, respectively (Fig. 3a). Cluster
D is restricted to ER+ and HER2+ cells, while cluster E
is restricted to BCO3LN and BCO7LN cells (Fig. 3a).
These results show that expression of the majority of the
predictors is restricted to a single breast cancer cell type.

Gene ontology analysis for the predictors in each clus-
ter revealed enrichment of unique GO terms with no
overlap between the clusters. For example, ER+
restricted cluster A predictors were enriched in
Endoplasmic reticulum membrane, HER2+ restricted
predictors in cluster H were associated with ERBB2
signaling pathway, lymph node metastasized double
positive BCO3LN restricted predictors in cluster B were
enriched in DNA repair, and B cell activation, triple
negative TNBC restricted predictors (cluster F) were
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Fig. 3 Clustering results of expression profiles of predictors. Panel (a) shows a heat map representing the clustered expression profiles of 308
predictors used in Fig. 2a. The cluster ID are indicated against the heat map. Panel (b) shows the gene ontology analysis of predictor genes
belonging to the clusters in panel (a). Example genes belonging to the clusters are also shown

particularly enriched in Notch signaling pathway, predic-
tors restricted to ER + HER2+ (cluster C) were enriched
in stress response, CTP binding, and response to
unfolded protein (Fig. 3b).

We found that some known breast cancer markers
were included in our 308-predictor set. For example,
CYP2A6, which is known to be directly induced by
estrogen in an ER-dependent manner [19], is one of
the predictors and its expression is restricted to ER+
cell type (Fig. 3b). ERBB2 gene, an important marker
for HER2+ cancer patients, is also included in our
predictor set and its expression is restricted to HER2
+ breast cancer cell type (Fig. 3b). Androgen receptor
(AR) is known to be a tumor suppressor in ER+
breast cancer type [20] is one of the predictor belong-
ing to cluster G (Fig. 3b) and is not expressed in ER+
cells (Fig. 3a and b) but expressed in BCO7LN
(metastasized triple negative TNBC cells). This is
reminiscent of the previous study that indicates some
association of AR with prognosis of triple negative
(TNBC) breast cancer patients [21]. Hsp90 proteins
overexpression has been proposed to have some role
in making breast cancer cells become resistant to
various stress stimuli [22] . We found that several
Hsp90 proteins (for example Hsp90ABI, Hsp90AAl
etc.) were also included in the predictor set and were
highly expressed in double positive ER + HER2+ cells
(Fig. 3a and b). Note that the 308 predictors can dis-
criminate the 6-different breast cancer cell types.
Hence, it is possible that known key markers for a

particular breast cancer cell type may not be overall
good candidate for differentiating between the 6 can-
cer cell types. For example, the gene ER, which is an
important marker for ER+ cells, was absent in the set
of 308 predictors.

Survival analysis of TCGA cancer patients using cell type
predictors

Next, we checked if the predictor genes have prognostic
power in stratifying breast cancer patient risk and likeli-
hood of survival. First, we ranked the predictors used in
the neural network model using a model-independent
metric (Methods) using the CARET package [23]. We
gathered clinical data for 816 breast cancer patients from
the cancer genome atlas project (TCGA). We found that
70% of the patients had alteration in at least of one of
top 100 ranked predictors, however 82% of the patients
had alteration in at least of one of the 308 predictors.
Further separating the patients based on type of alter-
ation, we found 75% (614 out of 816) patients had amp-
lification or deletion, while 27% (221 out of 816) of the
patients had mutation in at least one of the top 100
ranked predictors. We divided the patients into two
groups depending on whether the patient had or no
alterations in at least one of the 308 predictors. Overall
survival Kaplan-Meir estimate analysis, with overall sur-
vival or event-free survival (“days to last follow up” for
alive patients and “days to death” for deceased patients
in the clinical data file) as the dependent variable was
used to analyze the clinical data. Patients with alteration
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had significantly less likelihood of survival compared to
the patients without alteration (Fig. 4, p-value = 0.0068).
There was also a significant difference between the two
groups of patients by using the top 100 predictors (Fig. 4,
p-value = 0.015), 50 predictors (Fig. 4, p-value =0.013).
However, no significant difference (p-value =0.15) was
observed in the number of months of surviving when
the patients were stratified using the top 25 predictors
(Fig. 4, p-value =0.15). These results suggest that the
presence of alteration in top breast cancer cell type pre-
dictors can be an indicator for likelihood of survival in
breast invasive carcinoma patients.

Next, we checked if the expression signature of the
predictors could be used for survival prognosis of TCGA
breast cancer patients. The TCGA breast cancer patients
were partitioned into training (80%) and testing (20%)
data sets. Using the training data set, we identified indi-
vidual cell type predictors with a prognostic power for
the TCGA breast cancer patients. The log2-transformed
normalized expression value of each predictor in the
training set was analyzed using a univariate Cox propor-
tional hazard regression model to assess its association
with patient’s survival. We found 73 predictors (68 PCGs
and 5 IncRNAs), each of which had a significant prog-
nostic power (Fig. 5, p-value < 0.05). These 73 predictors
were selected and their expressions were analyzed
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together using a multivariate Cox proportional hazard
regression model. After the model was fitted, each
patient was assigned a risk score as the weighted sum of
log2 expression values of the selected 73 predictors (the
weights were the coefficients obtained from the fitted
multivariate Cox model). Based on the risk score, the
patients in the training data set were divided into two
groups - high risk (top one-half of signature risk score,
n =254 with 37 events), and low risk (bottom one-half
of signature risk score, n =445 with 22 events) patients.
The Kaplan-Meier analysis showed a moderately signifi-
cant difference in patients’ survival between the high-
risk group and the low-risk group (Fig. 5, p-value
=0.043). To validate the prognostic power of this set of
73 predictors, the patients in the testing data set were
assigned a risk score using the same coefficients in the
multivariate Cox model trained using the training data
set. The patients in the testing set were divided into 161
low (with 17 events) and 191 high-risk (with 42 events)
patients using the same risk cutoff used in the training
set. Consistent with the training set, there was signifi-
cant difference between the low-risk and high-risk
patients in the testing data set (Fig. 5, p-value =0.013).
In addition, the 73 predictors’ signature was further
applied to the entire TCGA breast cancer dataset. As in
the training and testing dataset, the signature could also

1.0 All predictors Top |1 O(igrgéiisctors
p-value=0.006 p-value=o.
0.8 .y
2 )
£ 06 I
< }
> e
7 0.4 T ‘
0.2
0.0
0 50 100 150 200 250 300 0O 50 100 150 200 250 300
Months Survival Months Survival
1.0 Top 50 predictors Top 25 predictors
p-value=0.013 p-value=0.15
0.8
o \
06 5
: * W
%) T
904 bW 4 ‘
l
0.2
0.0
0 50 100 150 200 250 300 O 50 100 150 200 250 300
Months Survival Months Survival
B Cases with alterations
B Cases without alterations
Fig. 4 Survival curve analysis of TCGA breast cancer patients based on cancer cell type predictors. The patients were divided into two groups.
One group had genetic alteration (focal amplification or deletion or mutation) in at least of one of all the predictors. The other group had none.
Similarly, patients were stratified using based on the top 100, 50 ranked predictors and top 25 ranked predictors. Survival curve analysis was done
using Cox hazard regression model. The statistical difference between the two groups of patients are indicated by the p-value
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difference between the two groups of patients are indicated by the p-value

classify the entire patient dataset into a high-risk group
(n =445 with 79 events) and a low-risk group (n =376
with 39 events) with significantly difference in likelihood
of survival (Fig. 5, p-value = 0.0106).

We further checked if the 68 PCGs and 5 IncRNAs
(ENSG00000250337, ENSG00000224137, ENSG000
00266088, ENSG00000238121, and ENSG00000260257)
also have prognostic power when applied separately.
Two separate multivariate cox models were generated
with the 65 PCGs and 5 IncRNAs sets on the training
data set. Following similar procedure of assigning risk
scores based on weighted sum of log2 expression values
followed by dividing patients into high and low risk
groups, Kaplan-Meier analysis revealed moderately
significant difference between the two patient groups using
the 5 IncRNAs set (Fig. 5, p-value = 0.045) and 68 PCGs set
(Fig. 5, p-value = 0.048). Their prognostic power was also
validated using the testing data set (Fig. 5, p-value = 0.034
for 5 IncNAs and 68 PCGs set p-value = 0.002).

We further checked if prognosis improves by consider-
ing the 6 sets of predictors (identified in Fig. 3) specific to
6 cell types separately. For this purpose, instead of consid-
ering all the predictors, each of the 6 set of predictors spe-
cific to 6 cell types were analyzed using a multivariate Cox
proportional hazard regression model on the entire TCGA
patients (Additional file 1: Figure S1). Interestingly, all the
six set of predictors significantly (all p-values < 10~ °) sepa-
rated the patients into high risk and low risk patients

(Additional file 1: Figure S1). This indicates that prognosis
improved by considering the 6 sets of predictors specific
to 6 cell types separately and the 6 set of predictors
performed equally as prognostic markers (Additional file 1:
Figure S1).

Cell type specific predictors serve as better prognostic
markers for respective patient subtype

In Fig. 5 and Additional file 1: Figure S1, we showed that
the cell type predictors can serve as prognostic markers
in breast cancer patients irrespective of the cancer sub-
type the patient belongs to. We identified 6 clusters in
Fig. 3, which were specific to different types of breast
cancer cells. We explored if the predictors restricted to a
particular cell type showed better prognostic significance
for the respective breast cancer subtype in TCGA
patients. For this purpose, we only considered predictors
specific to ER+, HER2+, and TNBC types and their
respective TCGA subtypes. The other groups were not
considered because of small number of TCGA cancer
patients. First, we separated the TCGA patients into
three groups: ER+, HER2+ and TNBC patients. Then
the predictors specific to a particular cell type were ana-
lyzed together using a multivariate Cox proportional
hazard regression model only on the TCGA patients
belonging to the subtype representing the cell type of
interest. After the model was fitted, each patient belong-
ing to the subtype representing the cell type of interest



Wang et al. BMIC Genomics (2018) 19:137

was divided into two groups - high risk, and low risk
(bottom one-half of signature risk score) patients.
Survival curve analysis was then performed on the two
groups. To compare the prognostic significance of cell
type specific predictors, patients belonging to other
subtypes were then assigned a risk score using the same
coefficients in the fitted multivariate Cox model. The
above process was done for ER+, HER2+, TNBC specific
predictors. We found that predictors restricted to a par-
ticular cell type showed better prognostic significance
for the respective breast cancer subtype in TCGA pa-
tients (Fig. 6). For example, ER+ predictors separated
the survival rate of ER+ TCGA patients into high risk
and low risk groups with higher significance (Fig. 6, n =
583 with 77 events, p-value =2.92 x 10”7) compared to
HER2+ TCGA patients (Fig. 6, n =110 with 12 events,
p-value = 0.048) and TNBC TCGA patients (Fig. 6, 302
with 58 events, p-value = 0.681). Similarly, HER2+ pre-
dictors separated the survival rate of HER2+ TCGA
patients into high risk and low risk groups with higher
significance (Fig. 6, p-value = 5.65 x 10~ °) compared to
ER+ TCGA patients (Fig. 6, p-value =0.26) and TNBC
TCGA patients (p-value = 0.76). TNBC predictors sepa-
rated the survival rate of TNBC TCGA patients into
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high risk and low risk groups with higher significance
(Fig. 6, p-value =3.1 x10™®) compared to ER+ TCGA
patients (Fig. 6, p-value=0.17) and HER2+ TCGA
patients (Fig. 6, p-value = 0.589). Considering the Hazard
ratios of the prognostic analysis using cell type specific
predictors on the TCGA patients with respective
subtypes, patients with low risk most likely die at a
lower rate compared to high risk patients (Fig. 6, 0.292
for ER+, 1.73 x 10~ ? for HER2+, and 0.143 for TNBC).

Cell type specific predictors serve as prognostic markers
for early stage breast cancers

Providing good prognosis to early stage breast cancer
patients is crucial. Therefore, we further checked if the
cell type specific predictors can also serve as good prog-
nostic markers in early stage breast cancer patients.
First, we validated that the single cells for each type were
not restricted to a single stage, they were taken from dif-
ferent patients at different stages (GSE75688). ER+ cells
were taken from stage I and III, HER2+ cells pertained
to stages II, and I, and TNBC cells came from stages I,
11, and III (GSE75688). We also tested if the cell specific
predictors showed unbiased expression across cells com-
ing from different stages. Using analysis of variance, we
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showed that cell type specific predictors showed no
significant difference in the expression levels across the
stages (Fig. 7; ER+ cells, p-value = 0.624; HER2+ cells, p-
value = 0.46; and TNBC+ cells, p-value =0.131). After
this, predictors specific to a particular cell type were an-
alyzed together using a multivariate Cox proportional
hazard regression model on the stage I TCGA patients.
We didn’t separate the patients to the respective sub-
types because this led to low number of patients in each
group. We found that each cell specific predictors served
as good prognostic markers for early stage breast cancer
patients (Fig. 7, ER+ predictors with p-value 4.2 x 10™°,
HER2+ predictors with p-value 1.1 x 10~°, TNBC pre-
dictors with p-value 9.03 x 10~ %). Our results indicate
that the predictors for breast cancer patients can also
serve as prognostic markers for early stage breast cancer
patients.

Predictors for luminal, basal-like and HER2-enriched
phenotypes and their prognostic power

In our predictive modeling analysis, we considered six
different types of cells and generated a set of predic-
tors which can accurately differentiate the six types.
By following a more recent recommendation of
classifying breast cancer, we categorized the cells into
four groups: Luminal A (ER+), Luminal B (ER+ and
HER2+), HER2-enriched, and Basal-like (TNBC).
Then we followed the same procedure of removing
genes with low expression, followed by removing
genes with low variance across these four groups, and
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regression to select important genes which selected
233 predictors out of which 23 were IncRNAs and
210 protein-coding genes (Additional file 1).

With these selected predictors, we tuned three models
(support vector machines, neural network, and random
forest) for accurate prediction of the four groups. We
found that support vector machines yielded the best pre-
diction accuracy (98.65%) followed by neural network
(98.42% accuracy), and random forest (93.42% accuracy).
To identify group-specific predictors, we further
clustered these 233 predictors to using their expression
profiles of these predictors. This procedure yielded 6
clusters (Fig. 8) consisting of predictors which are
specific to luminal A (cluster 1, and 4), luminal B
(cluster 2), HER2-enriched (cluster 6), and basal-like
(cluster 3). Out of 233 predictors, 153 predictors (66%)
were also found in our original 308 predictors for six
different types of cells indicating common predictors
between the two sets. Nevertheless, our results identify a
set of predictors exist that accurately differentiate be-
tween Luminal A (ER+), Luminal B (ER+ and HER2+),
HER2-enriched, and Basal-like (TNBC) subtypes of
breast cancer.

Discussion

In this study, we have successfully outlined a predictive
analytics pipeline to accurately predict 6 breast cancer
cell types using single cell gene expression profiles. The
histological profiles and pathological examination of
majority of the cells validated the labeled subtype, and

then followed by fitting a multinomial logistic strong correlation between cells derived from the same
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Fig. 8 Clustering predictors for Luminal, Basal-like and HER2-enriched phenotypes. a Heat map representing the clustered expression profiles of
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patient compared to cells from a different patient pro-
vided strong reasons that the designated cell type label
was appropriate (GSE75688). The individual cells
belonging to each type also clustered together
(Additional file 1: Figure S2). We have showed that as a
preprocessing step, a multinomial penalized logistic
regression can be applied to retain only the important
predictors. By using only this set of predictors, non-
linear predictive models such as support vector
machines and neural networks can accurately discrimin-
ate between the different cancer cell types. We also find
that mixture of protein coding genes and long non-
coding RNAs are better predictors compared to when
the two sets of transcripts are treated separately.
Additionally, we also highlight 6 clusters of genes that
accordingly restricted to 6 different breast cancer cell
types and validated the results by demonstrating several
previously established breast cancer markers in each
cluster. A signature risk score originating from 65 pro-
tein coding genes and 5 IncRNA predictors is associated
with prognostic survival of TCGA breast cancer patients.
This association was maintained when the risk scores
were generated using 65 PCGs and 5 IncRNA separately.
Therefore, a subset of the breast cancer cell type predic-
tors is also associated with patient survivability and
hence have clinical significance.

It is important to note that the penalized linear logistic
regression process achieved an accuracy of 87%, but it
yielded a set of 308 predictors to use for further analysis.
Exploration with other non-linear models such as sup-
port vector machines and neural networks amplified the
classification accuracy. This indicates that the cell type

of a breast cancer cell can be expressed as dependent
variable of expression profiles of a set of predictors;
however, the relationship is nonlinear. The penalized
logistic linear regression technique for feature selection
process is appropriate for our study because it is compu-
tationally feasible on a data set with thousands of fea-
tures. Other selection techniques such as wrapper
methods are susceptible to over fitting and take a con-
siderable amount of time to run and were not feasible
for such king of data that contains high number of
features. We were not able to find a different independ-
ent single cell sequencing data for breast cancer with
known cell types to further validate our predictive
model. Nevertheless, in our model building approach,
we only used 80% of the entire data to generate the
model. The remaining 20% was not used in the model
building procedure and served as an “independent”
validation set (Fig. 2).

There have been several studies reporting the prognostic
power of protein coding genes in cancer. Recently,
IncRNAs are also emerging as prognostic markers in
different cancer including breast cancer. For the first time,
our study reports IncRNAs which can discriminate
different breast cancer cell types and also have prognostic
potential. In our study, we found that the signature score
of a set of 5 IncRNAs (ENSG00000250337, ENSGO00
000224137, ENSG00000266088, ENSG00000238121, and
ENSG00000260257) can be used for breast cancer prog-
nosis. Signature risk scores of sets of 12 IncRNAs [24], 9
IncRNAs [25], and 4 IncRNAs [26] have been reported by
independent studies to have potential prognostic power in
breast cancer patients. We found that none of the these
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previously reported sets overlap with our set of 5
IncRNAs. This shows that this set of 5 IncRNAs contrib-
ute to the discrimination of different breast cancer cell
type as well have prognostic significance in breast cancer
patients. Specific to breast cancer, there is a study that
explored the oncogenic landscape of IncRNAs in breast
cancer patients [27]. The study confirmed three IncRNAs
which were subtype specific in the RNA-Seq results:
TINCR, LINC00511, and PPPIR26-ASI represented the
HER-2, triple negative and luminal B subtypes, respect-
ively. They also reported that IncRNAs, HOTAIR,
LINCO00115, MCM3AP-ASI, TINCR, PPPIR26-AS1, and
DSCAM-ASI were breast cancer prognosis-associated
IncRNAs. These IncRNAs were absent in our set of pre-
dictors. The major differences between our study and this
study is that we begin our analysis using a single cell
RNA-Seq data, while the study from Xu et al, 2017 uti-
lizes only cancer patient data. This study simply uses stat-
istical methods of differential gene expression analysis to
identify dysregulated IncRNAs in different subtypes of
breast cancer. No machine learning predictive modeling
was used in their approach to check if the dysregulated
IncRNAs can accurately predict the subtype of cancer. In
our approach, we performed analysis of variance (loosely
similar to differentially expressed genes analysis) to lower
the number of predictors followed by an optimal feature
selection technique based on penalized regularized logistic
regression to select a small set of predictors. We also
employed machine learning models and clustering to val-
idate that these genes and IncRNAs are not only good pre-
dictors of breast cancer subtypes but also can be grouped
into subtype specific predictors. This shows that studying
breast cancer using different methods can complement
each other and are necessary in deciphering the under-
lying regulatory layers.

In summary, this study both validates the use of
scRNA-seq to transcriptionally profile an ample number
of cells originating from 6 different breast cancer cell
types and defines 65 protein coding genes and 5
IncRNAs which are significantly related to prognostic
survival of breast cancer patients from TCGA database.
However, this pipeline cannot be applied only once as a
variety of genetic and epigenetic changes has been impli-
cated in the development and treatment of breast can-
cer. Heterogeneity in cancer patients is known to be
dynamic and to evolve unpredictably during disease pro-
gression, which creates a significant challenge for mod-
ern cancer treatments. Several studies revealed
evidences of instability of the hormonal and/or HER2
status during tumor progression, especially between pri-
mary tumor and metastatic tumors. Former studies have
demonstrated that each intrinsic subtype has preferred
chemotherapy regimen. For example, HER2 enriched
type is expected to a sensitive response to anthracycline-
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based chemotherapy regimens, and basal like type is a
response to platinum drugs. Our established predictive
analytic pipeline has the potential to create a paradigm
shift in cancer care to precision treatment where hetero-
geneity is thoroughly characterized prior to and during
treatment. This approach may provide important new
insights into cancer evolution and unveil new avenues
for dissecting the complex activation of signaling
pathways that cause heterogeneous cellular responses
during treatment. Thus, we must reinforce the need for
longitudinal characterizations of tumor transcriptomes
by using our analytic pipeline to predict predominant
breast cancer cell types so as to guide more personalized
clinical care.

Conclusions

Here, we outline a predictive analytics pipeline to
accurately predict 6 breast cancer cell types using single
cell gene expression profiles. Using machine learning
techniques, we identify 308 predictors, out of which 34
are long non-coding RNAs, of breast cancer cell types.
This set of predictor are able to identify different breast
cancer cell types with 98% prediction accuracies. We
also find that mixture of protein coding genes and long
non-coding RNAs are better predictors compared to
when the two sets of transcripts are treated separately.
We further show that a signature risk score originating
from 65 protein coding genes and 5 IncRNA predictors
is associated with prognostic survival of TCGA breast
cancer patients. This association was maintained when
the risk scores were generated using 65 PCGs and 5
IncRNA separately. We further show that predictors
restricted to a particular cell type serve as better prog-
nostic markers for the respective patient subtype. Our
results show that in general, the breast cancer cell type
predictors are also associated with patient survivability
and hence have clinical significance.

Methods

The analysis pipeline used in this paper is summarized
in Fig. 1 and is divided into two sections. The first part
of the analysis is feature filtering and selection to reduce
the number of gene predictors to be used in building
subsequent predictive models. The second part of the
analysis involves tuning various predictive models on the
reduced data set. The single cell RNA-Seq data was
obtained from NCBI GEO site (GSE75688 for Breast
Cancer). The feature selection and predictive models are
described in the next two subsections.

Feature selection

Genes which had low expression across all samples
(maximum expression <2 FPKM or fragments per kilo-
base of exon per million reads mapped across all the
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samples) were first removed. Then, we performed ana-
lysis of variance (anova) on each of the remaining genes
across the 6 cell types (groups) to test for significant
effect of cell type on the expression. The p-value for each
gene from this analysis and FDR values were then com-
puted from the p-values [28]. The genes with FDR < 0.05
were only retained for further analysis.

A penalized logistic regression model with least abso-
lute shrinkage and selection operator (LASSO) was
trained using glmnet package [29]. Since the data set
had multiclass cases, we used the “multinomial” option
and grouped-lasso penalty on all the coefficients for par-
ticular variables [30]. LASSO retains one feature from a
group of correlated features in the dataset, takes less
computation time, and the feature selection process is
embedded during the model training process. LASSO
model was tuned by varying the value of regularization
parameter lambda. To prevent over fitting, resampling
of training set was done through 10-fold cross validation.
The model with the least misclassification error was
chosen. This optimal model also contained the best set
of genes (or predictors).

Prediction models

The set of genes or predictors selected by the optimal
LASSO model was only retained in the data set for tun-
ing subsequent predictive models. This reduced data set
with fewer predictors was split into training (80%) and
testing (20%) sets. To make sure that there was no bias
in the split for a particular cell type; 80% of cells from
each population contributed to training set and 20% of
cells from each population contributed to testing set.
Using 10-fold cross validation resampling technique, the
following models were tuned by varying the respective
model tuning parameters: K-nearest neighbor, decision
trees, support vector machines, ensemble models (ran-
dom forest and boosted trees), neural networks, and
Naiive Bayes.

Clustering and gene ontology

The clustering was done using the R HOPACH package
[31] setting cosine dissimilarity as the distance metric.
Gene ontology was performed using DAVID (32) by set-
ting the human genome as the background.

Ranking predictors

The ranking of the predictors were done using the
Varlmp function in CARET R package [23]. We used
the model independent option while using the function.
This method performs ROC curve analysis on each pre-
dictor. This area under the curve is used as the measure
of variable importance.
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Statistical analysis

The univariate Cox regression analysis was performed to
examine the relationship between the expression levels
of breast cancer cell type predictors in TCGA breast
cancer patients and the overall survivability from the
training set with an aim to determine which predictors
could potentially be of functional significance in breast
cancer prognosis. Predictors that were significantly re-
lated to patient survival were identified (p-value <0.05)
and then subjected to the multivariate Cox regression
analysis. Each patient in the training set was assigned a
risk score as the weighted sum of log2 expression values
of the selected predictors (the weights were the coeffi-
cients obtained from the fitted multivariate Cox model).
Based on the risk score, the patients in the training data
set were divided into two groups - high risk (top one-
half of signature risk score), and low risk (bottom one-
half of signature risk score) patients. The patients in the
testing data set were assigned a risk score using the
same coefficients in the multivariate Cox model trained
using the training data set. Differences in the overall sur-
vival between the two groups in both the training and
testing sets were estimated and compared by the
Kaplan—Meier method with a two-sided log-rank test.

Additional file

Additional file 1: Figure S1, Figure S2, and Table S1. Prognostic
potential of 6 sets of cell specific predictors in TCGA breast cancer
patients, Cells belonging to the same type cluster together. (XLSX 801 kb)
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