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Background: Sequencing-based large screening of RNA-protein and RNA-RNA interactions has enabled the mechanistic
study of post-transcriptional RNA processing and sorting, including exosome-mediated RNA secretion. The downstream
analysis of RNA binding sites has encouraged the investigation of novel sequence motifs, which resulted in exceptional
new challenges for identifying motifs from very short sequences (e.g., small non-coding RNAs or truncated messenger
RNAs), where conventional methods tend to be ineffective. To address these challenges, we propose a novel motif-finding

method and validate it on a wide range of RNA applications.

Results: We first perform motif analysis on microRNAs and longer RNA fragments from various cellular and
exosomal sources, and then validate our prediction through literature search and experimental test. For
example, a 4 bp-long motif, GUUG, was detected to be responsible for microRNA loading in exosomes involved in
human colon cancer (SW620). Additional performance comparisons in various case studies have shown that this new
approach outperforms several existing state-of-the-art methods in detecting motifs with exceptional high coverage

and explicitness.

Conclusions: In this work, we have demonstrated the promising performance of a new motif discovery approach that
is particularly effective in current RNA applications. Important discoveries resulting from this work include the
identification of possible RNA-loading motifs in a variety of exosomes, as well as novel insights in sequence
features of RNA cargos, i.e, short non-coding RNAs and messenger RNAs may share similar loading
mechanism into exosomes. This method has been implemented and deployed as a new webserver named MDS?
which is accessible at http://sbbi-panda.unl.edu/MDS2/, along with a standalone package available for download at

https://github.com/sbbi/MDS2.
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Background

Motif finding has been a long-standing problem in DNA
sequence analysis where numerous tools have been devel-
oped to identify cis-regulatory elements and to unravel
mechanisms of gene expression regulation [1]. Those con-
ventional algorithms were designed to identify statistically
significantly overrepresented sequence patterns based on
two major resources: (1) the promoter regions of co-
expressed genes, which are normally over 1000 nt long;
(2) targeted binding regions (less than 300 nt in length) of
the known transcription factor (TF), which typically
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captured by sequencing technology such as Chromatin
Immunoprecipitation Sequencing (ChIP-Seq) [2, 3]. Up to
now;, similar discovery of regulatory binding sites has been
dramatically revolutionized by recent emergence of other
new technologies. For example, RNA Immunoprecipita-
tion Sequencing (RIP-Seq) is designed to explore the
protein binding sites on RNA; Photoactivatable
Ribonucleoside-Enhanced Crosslinking and Immunopre-
cipitation (PAR-CLIP) reveals binding sites of proteins,
e.g, Human Argonaute (AGO) proteins, on messenger
RNAs (mRNAs) [4—6]; and the crosslinking, ligation, and
sequencing of hybrids (CLASH) method is designed to
capture microRNA (miRNA)-mRNA interactions [7, 8].
To investigate the (post-)transcriptional regulation from
different mechanistic perspectives, each of those sequen-
cing analyses has warranted the revisit of motif finding
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that remains to be challenging due to the intensive com-
putation and high-order of complexity on pattern search,
as well as some new difficulties. For instance, different
regulatory mechanisms imply different types of motifs.
The TF-binding DNA motif is usually longer than 10 bps
according to the annotated TF binding motifs from EN-
CODE project [9] and JASPAR database [10]. On the
other hands, the binding sites in protein-RNA interaction
can be as short as 3-5 bps [11-13], e.g, AGO protein
binds to a mature miRNA sequence within less than 4pb
long sites, typically at position 8—11 of miRNA [11]. Fur-
thermore, miRNA-mRNA interaction sites in human can
be discontinuous, showing separate complementary re-
gions [8, 14]. Given such differences, some conven-
tional motif finding methods (such as MEME and
COSMO [15, 16]) may not be appropriate since they
were not originally designed to detect short and dis-
continuous motifs based on possibly large sets of
short RNA sequences such as miRNAs and mRNA
fragments.

Very recently, exosome-mediated intercellular com-
munication has drawn substantially increased research
attention. As important mediators, exosomes transfer
various types of cargos from donor cells to recipient
cells, including miRNAs, truncated mRNAs, and other
non-coding RNAs [17-22]. Accumulating evidence has
shown the association between exosome-delivered miR-
NAs and developments of complex diseases such as
obesity [23, 24] and cancers [25-29]. Despite the rapidly
growing knowledge on exosomal RNAs' function in
acceptor cell, the process of packaging RNAs into exo-
somes is still largely unknown. Ohshimaa et al. found
that let-7, a miRNA family with relatively high abun-
dance in six types of cancer cell, is only detectable in
extracellular exosomes of gastric cancer cell (AZ-P7a)
but not others [30], which indicates cell-specific pack-
aging mechanisms may favor some RNAs against the
others. Similar observations confirmed that the content
of RNA cargos in exosome is not random and the RNA
loading process is highly selective [31-36]. To investi-
gate signals that possibly guide miRNA loading, many
studies have attempted to identify sequence motifs
among exosomal miRNAs using de novo motif finding
approaches [12, 13, 37]. For example, Villarroya-Beltri et
al. predicted two motifs that might be associated with
the heterogeneous nuclear ribonucleoprotein A2B1
(hnRNPA2B1)-mediated miRNA loading [12] based on
30 exosomal miRNAs using COSMO [16]. Similarly,
Cha et al. found three distinct 10 bp-long motifs when
using MEME [15] on exosomal miRNAs from three
batches of colon cancer cells, where each motif is
present only in less than 50% of the sequences [37].
Santangelo et al. detected one 6 bp-long motif pattern,
[GAU][GUA][GAU][CAG][UA][GC], using Improbizer
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[38] on 103 exosomal miRNA sequences in murine
hepatocyte 3A cells, however only GGCU is validated
through cell transfection experiment [13].

More similar exosomal RNA analyses started to reveal
common problems using existing motif finding methods
as they tend to identify less-explicit motif patterns and
overlook the possible short motifs among short sequence
source (miRNAs: ~ 22 bps; partial mRNAs: ~ 100 bps).
Since the number of input sequences is very limited, e.g.,
often less than one hundred exosomal RNAs reported in
one cellular source, it may not be sufficient for EM-
based methods to optimize the model and detect the
best motifs through parameter tuning. On the other
hands, many tools (e.g., BEEML-PBM [39], RAP [40],
Inimotif [41] and AutoSeed [42]) were developed specif-
ically for short motif prediction on protein binding
microarray and (HT-)SELEX data. Since these data nor-
mally contain a large number of short sequences (over
100,000 sequence in length of 20 bp ~ 60 bp), there is an
advantage of using purified sufficient input information
(short and abundant). Usually these tools utilize 8-mers
as seed to search for highly repetitive short motifs
among the input sequences. Moreover, requirement of
high-quality negative data by some tools, e.g., DREME
[43], a modified version of MEME, could also be prob-
lematic. Due to our incomplete understanding of the
heterogeneity of exosomal content [44] and the technical
limits of detection [45], it is impractical to define a qual-
ity negative exosomal miRNA set. The significance
evaluation solely depending on one positive dataset by
DREME and MEME could lead to high-level false motif
prediction. In addition, a few graph-based motif finding
methods, such as MotifCut [46] and MotifClick [47],
attempted to group similar k-mers to form meaningful
motifs utilizing graph-based algorithms (e.g., to find the
maximum-density subgraph and merge the maximum
cliques). However, they usually overlook the significance
evaluation of k-mers in order to optimize the computa-
tional process.

In this study, we propose a new method for Motif
Discovery based on Short Nucleotide Sequences (MDS?)
to overcome the aforementioned challenges. MDS? is
designed to conduct an unbiased search for statistically
significant short motif candidates of any length among
given sequences. Meanwhile, MDS?> optimizes the final
motif pattern by balancing the sequence coverage and
false detection.

Methods

Data acquisition

In this work, nucleotide sequences were collected from
various well-established public databases and literature
(Table 1). For example, a total of 1891 unique extracellu-
lar miRNAs were collected from 35 types of human and
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Table 1 Detailed statistics of the datasets in this study
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Category Content Source Number of cell ~ Number of unique  Reference
lines sequences
Extracellular miRNAs Sequences of annotated extracellular miRNAs ExoCarta 22 1392 [48]
. . a
from multiple cell lines of human and mouse Evpedia N 663 [49]

Vesiclepedia 19 833 [50]
Villarroya-Beltri 1 30 [12]
et al.
Santangelo et al. 1 103 [13]

miRNA-MmRNA binding Sequences of hsa-miR-92a-3p binding sits CLASH 1 1064 [8]

sites detected by CLASH on the target mMRNAs

AGO2-mRNA binding sites  Sequences of AGO2 binding sites on mRNAs Erhard et al. 1 545 [52]

detected by PAR-CLIP

“Note that extracellular miRNA databases have overlapped entries, which results in a total of 1891 unique miRNAs

mouse cell lines and 9 types of body fluids [48—50]. An
independent set of 133 literature-reported exosomal
miRNAs [12, 13] are included for validation. In addition
to miRNAs, other types of small RNA were collected
from recently-released sequencing data, including 1064
mRNA binding sites of hsa-miR-92a-3p from CLASH
data [51] and 545 AGO2 binding sites on mRNAs from
PAR-CLIP data [52].

Construction of a di-mer graph representing input
sequences

For each group of RNA sequences, a directed di-mer graph
was built to represent all given sequences. Each node repre-
sents a di-nucleotide and each directed edge connects two
overlapping di-nucleotides. Therefore, a sequence, e.g.,
UUAAGA, will be represented by a path connecting all
consecutive nodes, (UU)=>(UA)>(AA)=>(AG)>(GA). Each
node or edge has its coverage information, including the
count and the index of sequences that contain the corre-
sponding node or edge. To narrow down the search for
possible motifs, edges were removed from the graph if the
coverage is less than 10% of the input sequences.

Here, a sampling process was performed to generate two
sets of background sequences that facilitate the significance
evaluation of each di-mer and future k-mer (k > 3). One
control is generated with randomly selected sequences
from reference genome or RefSeq depending on the type
of input nucleotide sequence (DNA or RNA), and the
other contains all annotated miRNA sequences in the cor-
responding species (when miRNA sequences used as the
input data). The procedures are summarized as follows.

Given an input size s, a new set of s sequences will be
randomly generated by slicing fragments with matched
length of each input sequence, from randomly selected
RefSeq sequence or genome region (and miRNA se-
quences if applicable). The sampled sequences were then
randomly shuffled. This sampling process was repeated
for 10° times to generate 10° individual sampled control
sets (Fig. 1). Next, for each di-mer, the background cover-
ages are calculated in every sampled set, represented by a
vector Cyy ={CL, C2, ..., CI2"%}. The statistical signifi-
cance was evaluated by comparing input coverage Ci,p
to the background C,, and the raw p-value was computed
by positioning C;,,,; on the background distribution Ci,;.
The raw p-value was calculated for each di-mer as follows:

-
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n >C;
p—Value _ (Cset = Cmput) (1)

N total sampled sets

where the denominator denotes the total number of
equal-size sampled datasets (N), which is 10° in this
study; and the numerator represents the number of sam-
pled dataset (1) that has a higher coverage (Cs) of the
corresponding k-mer than the coverage in the input
dataset, Cy;ppz.

Based on the large-scale sampling, we were able to es-
timate the background distribution of a certain di-mer’s
coverage in the similar datasets (with the same sequence
length and counts) as the input data. Thus, if the cover-
age of the di-mer in the input data lies in the top 5% on
the background distribution, we can conclude the di-
mer is significantly overpresented in the input data. The
Bonferroni multiple test correction was applied to all
raw p-values based on the number of di-mers assessed.
Then, the di-mers with an adjusted p-value less than
0.05 were considered to be statistically significant. For
miRNA tasks, the p-value from RNA background was
the primary indicator on the significance evaluation
while the miRNA background p-value was only used as
an additional reference.

Subsequently, k-mers (k > 3) can be obtained by
searching for possible connecting paths. For example,
the 3-mers were selected by finding all 3-node-paths in
the di-mer graph. Moreover, since the edge index con-
tains the input sequence ids, the index intersections of
any two edges was obtained to decide the coverage of
corresponding 3-nodes-paths. If the coverage of a 3-mer
is less than 10% of total sequences, the 3-mer was fil-
tered out. The adjusted p-value of each k-mer was calcu-
lated following the aforementioned procedure (Fig. 1).
Only k-mers that present more than 10% of input
sequences and with statistical significance (adjusted p-
value < 0.05) were maintained for further analysis. Since
underrepresented edges have been removed when the
di-mer graph was built, the computational time of
current search for longer fragments was reasonably
controlled.

Motif detection

Next, a similarity graph (undirected and unweighted)
was constructed (Fig. 2a) by connecting any two significant
k-mers when they share at least (k-2) conserved positions,
e.g, (AACG and AATT) and (ACGT and ATGG). A Motif
Recognition Algorithm (MRA) was designed and imple-
mented to identify motif patterns after merging similar
k-mers in the similarity graph (Fig. 2b). Following the
principles of the backpack problem, MRA performs the
search for subsets of k-mers that compose optimal motifs
with the highest efficacy (coverage) and different levels of

Page 4 of 17

explicitness (information content (IC)). It includes two sub
functions: Update Range and Search. The Update Range
function defines an initial range of IC and invokes the
Search function to select a subset of k-mers that composes
a candidate motif with highest coverage for each updated
IC range. Here, IC calculation is based on Relative Entropy
[53], as described in (2):

1000) = 3> Plea) log( ) )

where M denotes a candidate motif produced by a set of
k-mers; Z is the set of four nucleotides {A, U, C, G};
P(z;) is the occurrence probability of a nucleotide z; on
the position k of the selected k-mer. The denominator
0.25 represents the random probability of a nucleotide
occurring on a position. Thus, the relative entropy indi-
cates a candidate’s information gain with respect to a
random pattern with the same length.

Theoretically, the initial range of IC, range,c , should be
[0k, 0.61k], where the extrema represent — the worst and
best explicitness — motifs with random nucleotides on each
position (IC =0) and motifs with conserved nucleotides on
each position (IC=0.61 k), respectively. However, we in-
creased the lower bound to 0.125k (a cutoff extracted based
on our heuristic analysis of the IC distribution for all col-
lected k-mers) in order to reduce the computation load.
Interactively, MRA changes the range of IC according to
each newly-identified motif and ensure all possible candidate
motifs can be assessed. Similar to k-mer detection, the sig-
nificance evaluation was performed by comparing the cover-
ages of the candidate motif in the input dataset and the
background dataset. While the raw p-value of the motif can-
didate was calculated as described in (1), a filtering process
was applied to exclude insignificant ones based on Bonfer-
roni multiple test correction (adjusted p-value < 0.05).

Furthermore, to avoid high redundancy among motifs,
motif similarities were evaluated. Here, TOMTOM [54]
was utilized to find the optimal alignment between two
motifs. The similarity is calculated by averaging the lin-
ear Pearson correlation coefficients (PCC) [55] of each
position between two aligned position weight matrices
(PWMs) according to the optimal offset:

Z(X -X) (¥:-Y)

zeZ (3)

R R

Where X and Y denote the same column in two
aligned position weight matrices (PWMs) of motifs, and
X and Yare the mean values of each column. Z is a set
of four nucleotides, {A, U, C, G}.

PCC(X,Y)
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b  Algorithm 1 Motif Recognition Algorithm

Output: M, a set of motif candidates
1: function MRA(G. range;cy)

5: Vsel = {v}

19: return M U Miepe U Myigie
20: end function

38: function UPDATE_RANGE(M. range;c,)
39: next!C = min(IC(M))

13: end function

Input: K-mer similarity graph, G(V. E): Information content range, rangejc,

2 M, Myegi. Myigne = 0
3 for cach v € V do
1: vpis = {v}  # a set of K-mers that have been visited

# a set of K-mers that have been selected as part of the motif candidate

6: Vava = NEIG(vgt. G) — vpis  # The neighbor nodes of vy in G excluding vyis

7 my = SEARCH (1. Vpis. Vava. G.range e, ) # Motif candidate that v chose as the first node
8: if is.Significant(m,) then # Check the p-value of the motif candidate in background
9: M M Um,.

10: end if

11: end for

12: range;Cy - TANGEICK e = UPDATE_RANGE(M. rangec, )

13: if [rangeicy . ;.| > 0.05 then

14: Mepe = MRA(G., range ICK tefe)

15: end if

16: if |rangercy | > 0.05 then

17: M,ight MRA(G, range ICK.right)

18: end if

21
22: function SEARCH (vger. vyis. Vava. G.range;c,, )
23: if Vava 0 OR IC(vy) ¢ rangejc, then
24 return PPN(v,) # Return the motif construct from v,

else

o' = a randomly picked node in vgpe

27: # Compare two potential motifs excluding and including v*
28: My = SEARCH (vget. Vyis UV, Vapa — V', G, range 1Cx)
29: My = SEARCH (v50 UV, vyis U, 04p0a UNEIG (05, G) — V. G, rangc 1Cx)
30: if Coverage(my,) > Coverage(m_,y) AND IC(m,) € rangejc, then
31: return my
32 else
33: return m_
34 end if
35: end if
36: end function
37

% minimum IC value in M
[lower Bound(range e, ). neatIC)

10: rangeiCy oz
11: rangeiCy o next!C, upper Bound(rangejc,,))
120 retUrn rangeicy .. TANYCICK i

Fig. 2 a Schematic workflow for motif detection based on a k-mer graph. b Description of the MRA (Motif Recognition Algorithm)

A weighted motif-similarity graph was therefore con-
structed and Louvain community detection method [56]
in the igraph-python package [57] was applied for com-
munity detection among motif candidates. For each
motif cluster, the candidate with the highest coverage
(or most significant adjusted p-value if coverages are
tied) was reported as the final motif pattern.

Detection of co-occurring motifs
In case one motif may include two separate complemen-
tary regions, we designed a post-analysis to evaluate the

co-occurrence of two discontinuous short motifs. The
statistical significance of motif X and Y co-occur on j se-
quences can be calculated as follows [58]:

_(2) (%) w

TR

p-value = Z P (5)
me{j,j+1,....N}
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Table 2 Parameter settings for performance comparison among eight motif finding methods

Motif finding tools Motif search size range E-value or p-value threshold Background model Reference
MDS? k=2 0.05 Large-scale sampling

MEME 2<k<50 0.05 0-order Markov Model [15]
DREME - 0.05 K di-nucleotide shuffled input sequences [43]
COSMO 2<k<8 - 0-order Markov Model [16]
Improbizer 3<k<20 - 0-order Markov Model [38]
MERCI - 0.05 K di-nucleotide shuffled input sequences [60]
DMINDA 2.0 k=6 0.05 - [61]
MotifClick k=4 - - [47]
where N denotes the total number of sequences in

the input dataset; Nx and Ny are the respective cov- 2 Z Z p(x,y) log W)

erages of motif X and Y. In the Eq. 5, the p-value of NMI — xeX yeY ®)p(y) 6)
two motifs co-occurring on j sequences is the sum of —Zp(x) log(p(x))—zp(y) log(p(y))

probabilities that two motifs co-occurring on more
than J sequences. After the Bonferroni multiple test
correction, when the adjusted p-value of two co-
occurring motifs less than 0.05, it shows the observa-
tion of co-occurring motifs on j sequences is statisti-
cally significant. Meanwhile, for all possible co-
occurring pairs, statistical significance was also
assessed by adjusted p-values though random sam-
pling. In addition, the Normalized Mutual Informa-
tion (NMI) [59] was obtained to measure how
frequently two motifs present at the same time.

xeX yeY

where x and y denote the appearance (0 or 1) of two
motifs X and Y, respectively. In our study, a pair of mo-
tifs were considered as the possible co-occurring motifs
if they had over 0.8 normalized mutual information and
met both significance criteria.

Cell culture, transfection, and RT- qPCR
An internal transfection experiment was performed to
validate the predicted motif in SW620 cell. The protocol
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was as follows: 0.25 x 10° human colorectal adenocarcin-
oma cell (SW620, American Type Culture Collection
CCL-227) were grown in the Leibovitz’s L-15 medium
supplemented with 10% FBS (Corning) and Penicillin-
Streptomycin (ThermoFisher) for 24 h. Then the cells
were washed Leibovitz’s L-15 medium supplemented
with 10% Exosome-depleted FBS Media Supplement
Heat Inactivated (SBI) and culture for total 48 h. 3 mL
medium was collected every 24 h and stored at 4C°. At
48 h, the cells were washed with PBS and the miRNA
was extracted by miRNeasy mini kit (Qiagen).

The exosomes were extracted using ExoQuick-TC
(SBI). Cell culture medium with exosome-depleted
EBS was collected for every 24 h. After removing the
cell debris by centrifuge at 3000xg for 15 min,
ExioQuick-TC were added into the medium with a
5:1 ratio and keep at 4C° for overnight. Next day, we
centrifuged the mixture at 1500xg for 30 min at 4C°
and re-suspended the pallet with 50 pL PBS with Pro-
tease Inhibitor Cocktail Set I (Millipore). mirVana
mimic and customized mirVana mimic were pur-
chased from Thermo Fisher Scientific. Then all
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mimics were transfected into SW620 with Lipofecta-
mine RNAIMAX (Life Technologies).

Intracellular and exosomal total RNA (5 ng) was re-
verse transcribed with the Universal cDNA Synthesis
Kit II (Exiqon) according to the manufacturer’s proto-
col. Diluted (1:40) c¢DNA samples were used for
qPCR in a total volume of 10 pL using the ExiLENT
SYBR® Green master mix and miRNA-specific primers
(Exigon). Relative amounts of intracellular and exoso-
mal miRNAs were obtained using the 272“* method.
The UniSp6 RNA was used as the spike-in control
and the small RNA U6 and SNORD44 were used for
normalization of miRNA relative quantities in both
cellular and exosomal preparations. RT-qPCR was
performed with CFX Connect (Bio-Rad).

Performance comparison

Using two exosomal miRNA datasets from Villarroya-
Beltri et al. [12] and Santangelo et al. [13], a perform-
ance comparison was conducted on motif prediction
among MDS? and other methods, including MEME [15],
DREME [43], COSMO [16], Improbizer [38], MERCI

“ Villarroya-Beltri et al. Santangelo et al.

background

Sorting proteins hnRNPA2B1 SYNCRIP
Methods COSMO Improbizer
1.0
Literature © CU
Literature Proposed Motif(s) AM 1S O 00 IO A AC
Reported :
Motifs .
Information Content 1.42 1.48 1712
Raw p-value 8.0E-05 3.6E-01 2.5E-06
Experiment Yalldated GGAG GGCU
Motif
=2.0 =2.0
MDS? Predicted Top Motif _ o
(k=4) HBo n B o 'S
oO.O == oO.0O =
Coverage 100% among 30 86% among 103
2
MI.)S. Information Content 1.64 1.34
Prediction
Adj. p-value with RNA as 5.7E-06 9.8E-06
background
Adj. p-value with miRNA as 3.7E-05 1.2E-03

Fig. 4 Prediction validation using reported motifs of exosomal miRNA in literature
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[60], DMINDA 2.0 [61] and MotifClick [47]. The experi-
ment settings for each tool are shown in Table 2.

Results

The schematic flowchart in Fig. 3 showcases the com-
putational procedure of the proposed method. This
pipeline includes three major steps: 1) initialization
that converts the input sequences to a di-mer graph;
2) motif candidate detection that firstly searches for
significant k-mers on the initial di-mer graph and
then identify possible motif candidates based the k-
mer similarity graph; 3) motif summarization that
performs graph clustering to find the most represen-
tative candidate as the final motif.

Page 8 of 17

Motifs responsible for loading exosomal miRNAs

To demonstrate the use and performance of the pro-
posed method, we first re-analyzed the literature-
reported exosomal miRNAs, e.g., 30 human miRNA
sequences  associated ~ with  loading  protein
hnRNPA2B1 in peripheral blood mononuclear cell
[12] (Material and Methods). By using MDS? seven
motifs (3-5 bp long) were predicted (the full predic-
tion result is shown in Figure S1, Additional file 1)
where 3 motifs (two 3-mer motifs and one 4-mer
motif) achieved the full coverage among given se-
quences. In another data including 103 mouse miRNA
sequences from murine hepatocyte 3A cell [13], MDS?
identified 5 motifs (two 3-mer motifs and three 4-mer

MDS2 =
MEME ¢
DREME No motif predicted
30 exosomal 2.6
":;':::::d" COSMO 1.0
E Y -
with GGAG ggsiw
hnRNPA2B1 — 3
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MERCI ‘03 7
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miRNAs that =.0 E
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with GGCU 98; <=QC%==
SYNCRIP o E
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al.) S:SZ: ==UJ<
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Fig. 5 Performance comparisons on exosomal miRNA motif prediction
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motifs are shown in Figure S2, Additional file 1) with
the coverage from 70.9% to 98.1%.

First, we compared the predicted motifs by MDS?> with
the experimental validated ones from the original studies
and summarized the results in Fig. 4. Through multiple se-
quence alignment and motif finding using COSMO [16],
Villarroya-Beltri et al. predicted two motifs associated with
hnRNPA2B1 loading (Column 2) and successfully validated
a 4-mer, GGAG, on regulating the expressions of two test
miRNAs (miR-17 and miR-601) in exosomes. Using the
same data, MDS? predicted three motifs (shown in Figure
S1, Additional file 1), among which the top-ranked motif
[AGU]G[AG]G (adjusted p-values: 5.6E-06 (RNA) and
3.7E-05 (miRNA)) covers the above validated GGAG (ad-
justed p-value: 5.8E-07 (RNA) and 5.4E-06 (miRNA)). This
top-ranked motif is not only appearing in all input exoso-
mal miRNA sequences, but also has a high IC that 50% of
positions are conserved. Moreover, MDS? also successfully
identified a 3-mer motif [AUG]G[GA] (adjusted p-value:
1.3E-04 (RNA) and 2.6E-04 (miRNA)) that contains an-
other RNA-binding motif of hnRNPA2B1, AGG (adjusted
p-value: 4.5E-06 (RNA) and 1.0E-05 (miRNA)), that is re-
cently reported through a study of the crystal structure of
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protein-RNA complex [62]. In the case of murine
hepatocyte 3A cell (Column 3 in Fig. 4), Santangelo
et al. found that a 4-mer motif, GGCU, is responsible
for loading intercellular miRNAs into exosome [13]
through motif analysis using Improbizer [38]. Similar
to the pervious results, the top-rank prediction from
MDS? [AG]G[ACU][UG] (adjusted p-value: 9.8E-06
(RNA) and 1.2E-03 (miRNA)), covers the validated
motif GGCU (adjusted p-value: 7.9E-06 (RNA) and
5.9E-04 (miRNA)) (Fig. 4).

Performance comparison with other motif finding
methods on exosomal miRNAs

Using these two validated datasets, we conducted a per-
formance comparison on motif prediction with other
methods. The parameter setting for each method shown
in Table 2 and the prediction results are shown in the
Fig. 5 (only includes the top-ranked predicted motif of
each tool).

It is highly encouraging that MDS® can successfully
identify real exosomal motifs and report them as the
top-ranked prediction (Fig. 5). Moreover, predicted mo-
tifs from MDS?> usually possess higher coverage and IC
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than other tools. In contrast, other existing tools tend to
predict motifs that are more general and have more
complex composition. For example, the COSMO-
predicted motifs had no conserved position and pro-
duced low IC. Although some motifs from COSMO,
Improbizer and MERCI can cover 100% of input se-
quences, the patterns contain too many variations that
failed to provide any useful information for the further
experiment validation. In addition, after conducting the
same analysis (search motif from 3 bp to 50 bp) using
MEME [15], we found MEME predicted a 10-bp and 8-
bp long motifs for two datasets (Fig. 5), which are
impractically long for the exosomal miRNA. In both
datasets, DREME failed to detect any motifs. The graph-
based approach, MotifClick, predicted two 4-mers as the
final motifs, which obviously lack representativeness
since only about 20% of input sequences contain the
predicted motifs.

Overall, we demonstrated that MDS? is efficient to de-
tect motifs with a balanced coverage and explicitness,
suitable for the motif detection among short sequences.
Especially, MDS? provides very reliable motif prediction
when the negative information is limited, which benefits
from the unbiased k-mer evaluation based on the large-
scale sampling.
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Assessment of motif detection sensitivity in different
input sets

It is notable that exosomal content reported by different
studies could be heterogeneous, even on the same cell
type, which is partially caused by the technical variations
across different detection methodologies. Here we assess
the robustness of MDS? using two different datasets on
human colon cancer cell (SW620). By re-analyzed the
expression profiles of exosomal miRNAs in SW620 [30]
(GEO accession number: GSE21350), we detect 112
miRNAs that have consistent expressions in all cell sam-
ples and exosome samples, respectively, (Table S1, Add-
itional file 1) in contrast to the 39 exosomal miRNAs
reported in EVpedia database.

MDS? predicted a total of eight motifs on two datasets
(Figures S3 and S4, Additional file 1). To assess the
consistency between two predictions, we mixed all pre-
dicted motifs, calculated the similarity, and applied motif
clustering. We found those motifs fell into two clusters
(Fig. 6b). As expected, the motifs from two SW620
datasets were congregated into the same group, which
is distinct from the motifs reported in Villarroya-Beltri
et al. study. This observation indicates the predicted
motifs from two datasets under SW620 are highly
similar.

582mut

Ratio Exo/Cell (2-2ACt

N

[any

6 3

based on three plasmid transfection concentrations

hsa-miR-582-5p UUACAGUUGUUCAACCAGUUACU
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Fig. 7 Experimental validation on the predicted motif “GUUG" in SW620 cell line. a Sequences of wild-type exosomal miRNA hsa-miR-582-5p and
its mutated version, 582mut, that does not contain the motif (b) Intercellular and exosomal levels of hsa-miR-582-5p and 582mut using RT-gPCR
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Moreover, to test if MDS>-predicted motifs are truly
responsible for exosomal miRNA loading in SW620 cell,
we focused on the significant 4-mer motif, [CGU][UA][-
GUIG, (coverage: 86%, adjusted p-values: 1.7E-07 (RNA)
and 7.2E-02 (miRNA)) from our top-ranked prediction
to validate experimentally. To ensure a successful valid-
ation, we decided to choose a miRNA that has detect-
able expressions in both SW620 cell and its exosomes so
that we can assess the motif effect on exosomal miRNA
loading by examining the abundance change through
transfection analysis. MiR-582-5p is therefore selected
and the associated 4-mer in the sequence is GUUG.
Note that GUUC alone has a coverage of 14 out of 112
in the original dataset (adjusted p-values: 7.2E-03 (RNA)
and 2.4E-02 (miRNA)). Both wildtype sequence and mu-
tated sequence (without GUUG) were transfected into
SW620 cell at three difference levels of concentration: 6,
3 and 1.5 (10> pmole/uL). The cellular and exosomal
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expressions of both sequences were assessed using RT-
qPCR. In Fig. 7b, it is clear that across three concentration
levels, the Exo/Cell ratio of miR-582-5p is significantly
higher than the mutated sequences 582mut, which indi-
cates that the motif GUUG are associated with loading
more miRNAs into exosomes.

Motifs associated with longer RNAs

In addition to the short miRNAs, we utilized the follow-
ing case studies to demonstrate the performance of
MDS? on longer input sequence.

Test example 1: Motifs on exosomal mRNAs

Based on an in-house data of 290 bovine-milk exosomal
mRNAs, which includes mostly fragments with length
range of 50~ 171 bps, MDS? detected 22 motifs of different
lengths (3-7 bps, full list shown in Figure S5, Additional file
1). Figure 8a shows the top predictions of 3-5 bps. For

-

a
Predicted

Motif (k=3) Coverage IC

Type
RNA

miR
(37 sequences) 5 '° 33 121 19602
.
RNA et
(290 sequences) © ' ° ] 284 151  7.4E-03

Predicted

Motif (k=a) C°Ver*8°

Type
RNA

miRNA ] A
(37 sequences) “ 10( 31 134 6.3E-03

285
18 1.81 1.6E-02
286 154  8.8E-03

RNA

(290 sequences) 5 ' 285 151  2.3E-03
278 1.71 2.4E-05

Predicted

Motif (k=5) “°Verage

Type
RNA

1.3E-03

miRNA

(37 sequences) 2'° cals 12 242 2.7E-05
i
g ( 7 271 6.0E-04
3‘°ngx G 283 174 9.1E-06
2857 =
Brdcaly 283 170 1.3E-05
(290 sequences) A
Brod x[i 281 171 7.1E-04
ggiOVAY
1
ﬂ""lg(:;ﬁ(cs 279 1.68  5.7E-05

Adj. P-value

Adj. P-value

Adj. P-value

Fig. 8 Exosomal miRNAs and mRNAs share similar motifs in bovine milk's exosomes. a Motif prediction on exosomal miRNAs and mRNAs (K= 3, 4, 5);
b Motif clustering among the predicted motifs from exosomal miRNAs and mRNAs datasets (K= 3, 4, 5)

miRNA

1.0E+00

3.3E-19

miRNA

1.2€-03

2.9E-01

6.8E-02

1.1€-27

4.4€-24

2.5€-27

miRNA

1.4E-02

9.0E-05

5.7€-03

2.3E-41

2.5E-32

2.7e-34

[ et smorg 30 cxcmoms et o kit

Cluster 1

Motifs among 37 exosomal miRNAS in cow's milk

LAE-38 [ iy 290 cxomst s i com' ik

Custer 2

Ouster 3




Gao et al. BMC Genomics (2018) 19:146

example, the most promising 4-mer motif, [CA]JUG[GUA]
(adjusted p-value in RNA background: 2.4E-05), has a 96%
coverage (278 out of 290) among the input sequences and
the best 5-mer motif, [CA][CAU][UA]G[GA] (adjusted p-
value in RNA background: 9.1E-06), covers 283 out 290
sequences.

Of particular interest is that, when compared the
mRNA motifs with those predicted from 37 bovine-
exosome miRNAs in the same analysis (listed in Figure
S6, Additional file 1), we found miRNA motifs are
mostly 3-5 bp long while mRNA motifs can be up to
7 bps long. Similar to the assessment for the exosomal
miRNA motifs in SW620 cell, we mixed the predicted
motifs from Villarroya-Beltri et al. study with the pre-
dicted motifs in cow’s milk exosomal RNAs. As shown
in Fig.8b, at the size of 3, 4 and 5, respectively, the mo-
tifs of the exosomal RNAs in cow’s milk were highly
merged into the same clusters while the motifs from
Villarroya-Beltri et al. study always form their own clus-
ter. This indicates a high level of similarity among those
motifs from cow’s milk exosomal RNAs and also implies
that short miRNAs and mRNA fragments may share the
common sorting mechanism into exosome, regardless of

the length or type of the RNA.

Test example 2: Motifs on miRNA-mRNA binding sites
Similarly, MDS? can detect the regulatory motif of a
miRNA on their mRNA targets. For illustration, we used
1064 binding sites of hsa-miR-92a-3p, a miRNA with the
most targets in CLASH data [8]. Based on the different
base-pairing patterns, those binding sites were categorized
into 5 different classes according to the folding class defin-
ition proposed in [8].
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It is well-studied that human miRNA-mRNA inter-
action does not require consecutive base-pairing at their
binding sites (Separate biding regions shown in Fig. 9). As
described in the Method, a post-analysis was integrated in
MDS? to evaluate the pair-wise co-occurrence among mo-
tifs and to identify joint motifs. Here, we performed joint
motif detection on each class.

Figure 9 shows that the identified motifs are highly
consistent with interaction pattern in each class. For
instance, the distance range between sub-motifs are
3-6 bps in class II and 3-10 bps in class III, respect-
ively. On the contrary, classes I and V don’t have sig-
nificant joint motifs, as reflected in their patterns.
Moreover, the high-level of mutual information of the
predicted motifs in classes II-IV also suggested the sig-
nificant association between two sub-motifs. In general,
our observation is concordant with the binding patterns
stated in [8], e.g., class III involves base-pairing outside
of seed region while the fairly-distributed pairing was
dominating in class V.

Test example 3: Motif of AGO-binding to mRNAs

Erhard’s AGO2-PAR-CLIP data was used, which in-
cludes 12-thousand AGO2-binding sites on human
transcripts in two B cell lines: BCBL1 and DG75 [52].
We chose 545 sequences of 23 ~ 114 bps long that
were consistently and highly expressed across all six
samples.

Using MDS? 12 motifs of 2-5 bps were reported, with
27% to 100% coverage (Fig. 10). As a well-studied RNA
binding protein in human, AGO2 has five known RNA
binding regions that are different in length (2-43 bps).
The predictions show that there are significant motifs
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Fig. 10 Predicted motifs of AGO2 protein binding sites in human
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associated with each of those regions. In contrast, motifs
predicted from MEME was 18 bps long and only cover
~30% of the input sequences while the top-ranked 6-
mer predicted by DREME only covers ~18% of input
sequences.

The MDS? webserver

The MDS? web-server was developed based on the proposed
methods and is currently available at http://sbbi-panda.un-
lLedu/MDS2/. A standalone package of MDS? is also available
for download at the website. In addition, we have compiled
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an online database that included all cell-specific predicted
motifs for a variety of extracellular miRNAs (Fig. 11).

Discussion
Recent advances in high-throughput sequencing tech-
nologies have enabled the mechanistic study of RNA
processing, sorting, and regulation through screening for
RNA-protein and RNA-RNA interaction sites. In this
study, we have clearly demonstrated that motif analysis
on short exosomal miRNAs can be fundamentally im-
portant to understand the mechanisms of miRNA load-
ing and intercellular transfer. However, revisit of motif
finding analysis in these new research topics inevitably
encountered new challenges. For example, existing motif
finding approaches that need well-defined negative data-
sets to evaluate the statistical significance of overrepre-
sented sequences often fail to detect significant short
motifs, according to the literature [12, 13] and our own
test. In the MEME method, the “significance” of a poten-
tial motif is decided by E-value, which is “an estimate of
the number of (equally or more interesting) motifs one
would expect to find by chance if the letters in the input
sequences were shuffled” [15]. However, the shuffled in-
put sequence may not be able to represent an unbiased
background, especially when the input sequences are
few and short, like the exosomal miRNA cases in this
study. Likewise, the background is extremely critical to
DREME since it uses the exact fisher test to define a
“significant” motif. This process can be very misleading
without the high quality negative dataset.

On the other hand, although very little is known about
the binding site between miRNAs and transporter
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proteins, many studies have attempted resolve the struc-
ture of AGO-miRNA to explore the miRNA-binding re-
gions on AGO proteins [63-66]. AGO protein contains
two functional domains that may interact with miRNA:
N-PAZ domain that usually plays the 3'-nucleotide-
binding on miRNAs (around 3 bp long) [46] and MID-
PIWI domain that interact with 11th or 15th nucleotide
on miRNAs [63]. The evidences showed that the func-
tional AGO-binding region on miRNA could be very
short, even shorter than the seed region (position 2-8
on 3’ side of miRNA). Moreover, a recent study reported
that hnRNPA2/B1, the exosomal miRNA sorting protein,
contains two short RNA recognition motifs (AGG and
UAQG) in the crystal structure of protein-RNA complex
[62]. These evidences may indicate that the functional
motifs on miRNA sequences can be as short as 3-4 bp
long.

Note that the design of large-scale sampling introduces
extra computational time which might be the major
bottleneck of this pipeline, although the 2-mer graph de-
sign searching for longer k-mer candidate is more time
efficient compared to the enumeration of all k-mers (Fig.
S7, Additional file 1). Using our webserver, a job of 184
sequence with average length of 65 bps needs two hours
to complete and the significant evaluation of potential
motifs takes about 64.5% of total running time. To over-
come this computational drawback, we have imple-
mented the optional parameters that allow user to apply
more aggressive filtering standard to reduce the number
of redundant k-mers and motif candidates and reduce
the computing cost. While the MDS? webserver is con-
strained for moderate-size tasks (less than 12,000
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Fig. 11 lllustration of MDS? web-server. a A submission page for user sequence input and a database interface to access cell-specific motifs
predicted on a variety of extracellular miRNAs; b an example result page that visualizes predicted motifs along with statistics
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nucleotides per submission), the standalone package is
available for user to use the tool locally. As demon-
strated in this study, it is highly promising and encour-
aging to perform systematic motif analysis using MDS>
to understand the novel biology in extracellular RNA
sorting and trafficking, as well as in other similar RNA
and single-stranded DNA applications.

Conclusions

In this study, we proposed a new method, MDS? specif-
ically to tackle the newly-identified challenges in motif
finding on short nucleotide sequences. MDS? initializes
the motif search from overrepresented di-mers among
given sequences and then expends into longer motifs
through significant path finding in graphs. More import-
antly, MDS? has demonstrated competitive performance
in finding motifs with exceptional high coverage and ex-
plicitness. The predictions were validated through litera-
ture search and internal experimental test. Instead of
gauging the over-representation among input sequences
from a possibly limited collection, it integrates a very
large-scale random sampling to evaluate statistical sig-
nificance of all motif candidates and avoid the construc-
tion of a questionable negative dataset. Moreover, it is
notable that MDS? is a parameter-free algorithm that re-
quires only the input sequences. We expect the method
developed in this study can provide the community a
promising solution on motif discovery on short nucleo-
tide sequences.

Additional file
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