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Abstract

Background: Epigenetic regulators are frequently mutated or aberrantly expressed in a variety of cancers, leading
to altered transcription states that result in changes in cell identity, behavior, and response to therapy.

Results: To define alterations in epigenetic landscapes in breast cancers, we profiled the distributions of 8 key histone
modifications by ChIP-Seq, as well as primary (GRO-seq) and steady state (RNA-Seq) transcriptomes, across 13 distinct
cell lines that represent 5 molecular subtypes of breast cancer and immortalized human mammary epithelial cells.

Discussion: Using combinatorial patterns of distinct histone modification signals, we defined subtype-specific
chromatin signatures to nominate potential biomarkers. This approach identified AFAP1-AST as a triple negative breast
cancer-specific gene associated with cell proliferation and epithelial-mesenchymal-transition. In addition, our chromatin
mapping data in basal TNBC cell lines are consistent with gene expression patterns in TCGA that indicate decreased
activity of the androgen receptor pathway but increased activity of the vitamin D biosynthesis pathway.

Conclusions: Together, these datasets provide a comprehensive resource for histone modification profiles that define
epigenetic landscapes and reveal key chromatin signatures in breast cancer cell line subtypes with potential to identify

novel and actionable targets for treatment.
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Background

Chromatin remodeling factors and histone modifying
enzymes are frequently mutated or aberrantly expressed in
a wide variety of cancers, leading to altered transcription
states that change cell identity, behavior, and response to
therapy. In recent years, large efforts have systematically
profiled epigenomes in various tissue types and diseases,
including the ENCODE project [1-3] and the Roadmap
Epigenomics consortium [4]. Despite these important
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resources, how epigenetic profiles contribute to subtype
heterogeneity in specific types of cancer is far from clear.
Breast cancers are classified into at least 5 distinct
molecular subtypes characterized by hormonal responses
(e.g. estrogen and progesterone receptor status), growth
factor expression (e.g. Her2/neu status), and specific gene
expression profiles. The Lonestar Oncology Network for
EpigeneticS Therapy And Research (LONESTAR) consor-
tium was created to define epigenetic factors associated
with molecular changes in specific subtypes of breast
cancer. We reasoned that definition of subtype specific
histone modification profiles, together with definition of
primary and steady state transcriptional differences, may
allow identification of new targets for development of pre-
cision therapies. Therefore, we profiled distributions of 8
key histone modifications by ChIP-Seq as well as primary
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(GRO-seq) and steady state (RNA-Seq) transcriptomes
across 13 distinct cell lines that represent immortalized
human mammary epithelial cells (hereafter referred to as
normal immortalized or immortalized cells) and 5 mo-
lecular subtypes of breast cancer (Fig. 1a). These datasets
provide a unique resource for breast cancer researchers,
and reveal new insights into breast cancer biology. High-
lights of our findings include:

e Definition of common and unique features of
chromatin landscapes of all 5 breast cancer subtypes

e Demonstration that histone modifications associated
with either enhancers or with active transcription
states can discriminate between subtypes

e Identification of epigenetic landscapes that define
genes and pathways specifically activated or
repressed in TNBC

Results

We systematically profiled histone modification patterns
and gene expression programs in a set of well character-
ized cell lines that represent 5 major breast cancer sub-
types, including two ER positive subtypes, Luminal-A and
Luminal-B, the HER2 positive subtype, and two triple-
negative subtypes, TNBC-Claudin Low, and TNBC-Basal,
as well as two normal immortalized breast cell lines as
controls (Fig. 1a; color codes indicated for each cell line
will be used throughout the paper). For each cell line, we
profiled 8 major histone modifications by ChIP-seq (Fig. 1a
and Additional file 1: Figure S1), chosen for their known
roles in transcriptional activation or repression. The whole
dataset includes 234 ChIP-seq samples that contain a total
of 12.8 billion sequencing reads (54.7 M reads per sam-
ple), with ~ 154 fold coverage of the human genome. All
ChIP-seq experiments were performed in duplicate with
good sequencing quality (Additional file 2: Table S1) and
reproducibility between replicates (Additional file 3: Table
S2). The ChIP-seq signals of these histone modifications
show typical occupancy profiles at different genomic re-
gions (e.g. promoter, enhancer, genebody, and heterochro-
matin; Additional file 1: Figure S1A-C), as well as whole
genome scale distributions (Additional file 1: Figure S1D). In
addition, to characterize the transcriptome profiles associ-
ated with the histone modifications, we also performed
GRO-seq and RNA-seq for all of the cells lines in duplicate.

Chromatin states

Previous studies by the NIH Roadmap Epigenetics
consortium [4] defined chromatin states at characteristic
loci using a Hidden-Markov-Model (HMM) based ap-
proach [5] by classifying the combinatorial patterns of 5
core histone modifications, including H3K4me3,
H3K4mel, H3K27me3 and H3K9me3, and H3K36me3.
Following this approach, we used the same 5 histone
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marks to define a 13-chromatin-state model from all 13
cell lines (Fig. 1b). This model was selected by examin-
ing the reproducibility of these 13 chromatin states on
models trained on individual cell lines (Additional file 4:
Figure S2A). According to the genomic distributions and
histone modification enrichment patterns, these 13 chro-
matin states were annotated as active promoters (PrAct)
and promoter flanking regions (PrFlk), active enhancers
in intergenic regions (EhAct) and genic regions (EhGen),
active transcription units (TxAct) and their flanking re-
gions (TxFlk), strong (RepPC) and weak (WkLREP) repres-
sive polycomb domains, poised bivalent promoters (PrBiv)
and bivalent enhancers (EhBiv), repeats/ZNF gene clusters
(RpZNF), heterochromatin (Htchr), and quiescent/low
signal regions (QsLow) (Fig. 1b). Together these 13 chro-
matin states represent the combinatorial histone modifica-
tion patterns and define the whole genome chromatin
state landscapes across the breast cancer cell lines. Com-
bined with individual histone modification occupancy pro-
files, these chromatin state landscapes provide an
integrated view of key epigenetic marks across all breast
cancer cell lines and subtypes, as illustrated for a region
on chromosome 19 (Fig. 1c).

In addition to the 5 core histone marks, we also profiled
H3K27ac, H3K9ac and H3K79me2 distribution patterns
across all cell lines. To validate the 13-chromatin-state
model, an extended model was constructed using all 8
marks, in which the chromatin was classified into 15 states
(Additional file 5: Figure S3). As expected, H3K9ac profiles
coincide with those of H3K4me3, and H3K27ac is highly
correlated with H3K4mel. Therefore, most chromatin states
identified by the model built from analysis of 5 core histone
modifications (Fig. 1b) were rebuilt in this expanded model
(Additional file 5: Figure S3). Therefore, the 13-chromatin-
state model was used in the following analyses.

Genes associated with different chromatin states show
distinct transcriptional activities. For example, signifi-
cantly higher expression levels were observed for loci
enriched for chromatin states associated with active pro-
moters (PrAct) and gene bodies (TxAct), as expected
(Additional file 4: Figure S2B). The variability of each
chromatin state was evaluated by their consistency at
particular loci across all cell lines (Additional file 4:
Figure S2C). We found that enhancer associated chroma-
tin states, including intergenic enhancers (EhAct), gene
body enhancers (EhGen) and bivalent enhancers (EhBiv),
as well as repressive Polycomb domains (RepPC), display
the most variability across different cell lines and subtypes,
followed by chromatin states associated with active pro-
moters (PrAct) and active transcription units (TxAct).

Subtype specific signatures
We next determined whether specific chromatin state
patterns were unique to one or several breast cancer
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Fig. 1 (See legend on next page.)
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Fig. 1 Cells and histone modifications collected in LONESTAR project. a Summary of cell lines and histone marks. b Thirteen chromatin states
were defined using 5 key histone modifications, the left panel describes the chromatin state annotations and color scheme, the central panel
describes the emission coefficients in ChromHMM model, the right panel describes the relative enrichment of coverage in whole genome and in
different genomic regions. ¢ Integrated view of whole genome chromatin state landscapes in breast cancer cells and corresponding individual

histone modification profiles in MCF7 cells for a region on chromosome 19

subtypes. Through these analyses we identified common
chromatin state patterns that distinguish individual sub-
types from the other subtypes or from normal immortal-
ized cells (Fig. 2a). The two normal immortalized cell
lines, 76NF2V and MCF10A, displayed significantly dis-
tinct chromatin state distributions from all the breast
cancer cell lines. The clustering structure further re-
vealed hierarchical relationships among breast cancer
subtypes. For example, a clear separation was observed
between the hormone responsive subtypes (including
Luminal A/B and HER2+) and triple negative subtypes
(Claudin low and Basal). Luminal A and B subtypes were
more closely related to each other than to normal im-
mortal cells or to TNBC subtypes, while the epigenetic
landscape in the Her2+ subtype cell lines was intermedi-
ate to that in the Luminal and TNBC subtypes. Within
TNBC cells, the two basal TNBC cell lines, MB468 and
HCC1937 clustered together, as did the two claudin low
TNBC cell lines, MB231 and MB436. These subtype spe-
cific chromatin states were further confirmed by exam-
ining individual histone modification signals in different
genomic regions, including promoters, enhancers and
gene bodies (Additional file 6: Figure S4), and these data
again showed clear subtype specificity in terms of
characteristic histone modification patterns, with good
reproducibility between replicates.

Active transcription-associated states, including both
TxAct and TxFlk, made up the majority (47%) of
chromatin states that were common between cell lines
within the same subtype. Enhancer states (41%),
including EhAct, EhGen and EhBiv, closely followed
(Fig. 2b). The dynamic nature of enhancer associated
chromatin states in breast cancer subtypes are further
characterized by the enhancer RNA (eRNA) signals de-
fined in the GRO-seq profiles (Additional file 7: Table
S5), as will be presented in a separate paper from the
LONESTAR consortium.

Since active transcription chromatin states, including
both TxAct and TxFIk, represent genes with the highest
expression levels (Additional file 4: Figure S2B), we first
confirmed the strong prediction power of H3K36me3 on
gene expression (Additional file 8: Figure S5), then exam-
ined H3K36me3 profiles (Fig. 2c) to more quantitatively
characterize differential chromatin states associated with
subtype specific patterns. We analyzed specific active and
repressive transcription chromatin states for individual
subtypes as well between subtype groups. As expected,

estrogen signaling and ERK/MAPK pathways were
identified as active in both ER-positive Luminal-A and
Luminal-B subtypes (Fig. 2c). Several upstream regulators
as defined by Ingenuity Pathway Analysis, including
VPS36, HSP90B1, BCAR1, ASH2L and PDC6DIP, were
also identified as active specifically in these cells. In
contrast, several micro RNAs, including mir-103, mir-
141-3p, mir130 and mir-22, and HAVCR1 were identified
as negative upstream regulators (Additional file 9: Table
S4, Additional file 10: Table S7, Additional file 11: Table
S8, Additional file 12: Table S9) in ER positive cells. These
analyses also identified some distinct regulators in
Luminal A and Luminal B subtypes. For example, the
arginine methyltransferase PRMT6 and the Hippo
signaling associated genes ITCH and TEAD were identi-
fied as significant regulators of Luminal-A specific genes
enriched in H3K36me3, while for Luminal-B cells,
HOXB3, ESRP1 and WASL were identified as the most
significant common upstream regulators for genes
enriched in H3K4me3 (Additional file 12: Table S9).

For the HER2 positive subtype, a set of genes involved
with choline degradation was identified among the genes
depleted with the H3K36me3 signature. Choline has been
identified as a breast cancer biomarker, and a recent study
suggested distinct choline regulation in xenograft models
of different breast cancer subtypes [6, 7]. Our results con-
firm this subtype specificity and further suggest specific
dysregulation of choline metabolism in HER2 positive
breast cancers. In addition, we validated that Choline
dehydrogenase (CHDH) has significant lower expres-
sion in HER2 positive breast cancers in TCGA pa-
tient samples (Additional file 13: Figure S6). On the
other hand, several WD-40 repeat containing genes, in-
cluding CORO2A, TBL1X, TBL1XR1 were identified as
common regulators of genes with an active signature in
HER?2 positive cells. As TBL1X and TBL1XR1 are compo-
nents of the NCoR repressor complex, activity of these
genes suggest that NCoR functions may be disrupted in
these cells.

The basal-like and claudin-low TNBC subtypes
display distinct H3K36me3 patterns (Fig. 2c). Interest-
ingly, androgen receptor (AR) pathway genes were
identified as active specifically in claudin-low cells.
Consistent with this finding, we observed several AR
pathway regulators are expressed at significantly lower
levels in TCGA basal subtype patients compared with
other subtype breast cancer patients, including AR,
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CREB3L1, CREB3L4, EGF, PDGFB, PDGFRB, PIK3R1,
PTEN, RB1, ZEB1 (Additional file 13: Figure S6). Many
of these genes are also well known tumor suppressor
genes. Genes involved in 1,25-dihydroxyvitamin D3
biosynthesis were identified as active specifically in basal
cells, consistent with up regulation of vitamin D
24-Hydrolase CYP24A1 in TCGA basal subtype patients
(Additional file 13: Figure S6), and the top regulators
identified included factors involved in cell-cycle regulation
and signaling pathways of apoptosis and immune re-
sponses, including THAP1, ZBTB49, CASP3 and PAWR
(Additional file 12: Table S9).

Repressive chromatin states

Next we examined subtype specific repressive chromatin
states, including polycomb domains (RepPC and WkRep),
repeats/ZNF gene clusters (RpZNF) and heterochromatin
(Htchr) (Figs. 1b and 2d). These repressive states are
characterized by enriched H3K27me3 or H3K9me3
modification in the chromatin state models. H3K27me3
signals also define both bivalent domains in promoters
(PrBiv) and enhancers (EhBiv), which are known for their
poised activities during cell development as well as cancer
progression. Genes associated with these repressive chro-
matin states show overall low expression levels in breast
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cancer cells (Additional file 4: Figure S2C). Similar to our
analyses of active transcription states, we identified breast
cancer subtype specific patterns for repressive chromatin
states (Additional file 14: Table S6). Distinct H3K27me3
signal patterns were observed, revealing subtype specificity
similar to that in active chromatin states (Fig. 2d). The
non-malignant, immortal cells had the greatest number of
enriched/depleted repressive chromatin states relative to
the breast cancer cell lines, which suggests that repressive
states might serve as a pan breast cancer signature.
Further functional analysis on associated gene sets did not
reveal significantly enriched regulatory pathways, in
contrast to the results for the active chromatin states.
However, we observed one striking enrichment in the
cluster of NOD-like signaling receptor genes, which
display significantly increased H3K27me3 occupancy in all
breast cancer cell lines but not in the normal immortal-
ized cells (Additional file 15: Figure S7). NOD-like signal-
ing receptors are involved in inflammation and immune
responses, and have been described as master regulators
in cancer development [8]. Our results are consistent with
decreased expression of the NOD-like signaling receptor,
NLRP3, in all subtypes of breast cancer relative to normal
controls in the TCGA datasets (Additional file 13: Figure
S6). The enrichment of repressive chromatin states on
NOD-like gene family members in all breast cancer cells
illustrates the regulatory potential for epigenetic silencing
of cancer suppressive genes and also provides a potential
marker for a pan breast cancer signature.

TNBC specific chromatin signature

Close inspection of these chromatin states signatures also
identified individual genes that displayed highly specific
patterns across the breast cancer subtypes. For example,
both active promoter and transcription signatures (Fig. 3a)
and RNA-Seq (Fig. 3b) identified Actin Filament Associ-
ated Protein Antisense RNA 1 (AFAP1-AS1), an anti-
sense long non-coding RNA (IncRNA), as a TNBC specific
gene, marked by multiple active histone modifications,
such as H3K4me3 and H3K79me2. Exclusive expression
of AFAP-AS] is in triple negative breast cancer cells was
further confirmed by RT-qPCR (Fig. 3c).

Interestingly, although AFAP1-AS1 has not been
linked to TNBC previously, it has been reported to be
highly expressed and to predict poor prognosis in vari-
ous types of cancers, including Barrett’s esophagus and
esophageal adenocarcinoma [9, 10], pancreatic ductal
adenocarcinoma [11], lung cancer [12, 13], nasopharyn-
geal carcinoma [14], hepatocellular carcinoma [15, 16],
and colorectal cancer [17]. In Barrett’s esophagus adeno-
carcinoma, AFAP1-AS1 promoter DNA is largely hypo-
methylated, resulting in higher expression relative to
matched normal tissues [9]. Interestingly, the protein
coding counter part of AFAP1-AS1, AFAPI, is not a
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regulatory target for AFAP1-AS1 [9]. No direct targets for
AFAP1-AS1 have been identified, but expression of the
epithelial marker E-cadherin is repressed upon ectopic ex-
pression of AFAP1-AS1 whereas mesenchymal markers
Vimentin, N-cadherin, Slug, Snail expression levels are el-
evated [11]. AFAP1-AS], then, may promote proliferation,
migration, or invasion of cancer cells by facilitating
epithelial-mesenchymal transition (EMT). Consistent with
these previous findings, our data indicate that AFAP1 does
not show any subtype specificity in terms of histone modi-
fication occupancy and transcription levels (Fig. 3a, b),
further indicating that AFAP1-AS1 does not directly regu-
late AFAP1 expression.

To determine if AFAP1-AS1 affects the growth or
aggressiveness of TNBC cells, we depleted AFAP1-AS1
expression using two siRNAs targeting different regions
of AFAP1-AS1 in two TNBC cell lines, MDA-MB-231
and HCC1937 (Fig. 3d, e). Limited knock down of
AFAP1-AS1 (~25-50%), was sufficient to decrease pro-
liferation (Fig. 3g, h) and inhibit colony formation
(Fig. 3i, j) of both MDA-MB-231 cells and HCC1937 cells.
The functions of AFAP1-AS1 are not yet clear, but the
identification AFAP1-ASI as a TNBC specific gene through
analysis of subtype specific chromatin states illustrates the
power of our approach in identifying novel molecular tar-
gets for future development of TNBC therapies.

NAAG60/ZNF597 imprinting

Our analyses also identified loci that are specifically
silenced in TNBC cells. One striking example is located at
the bi-directional promoter of NAA60/ZNF597, which
displays a complete loss of active promoter marks in both
TNBC subtypes (Additional file 16: Figure S8). ZNF597 is
further validated to have lower expression in TCGA basal
patients compared with other breast cancer subtype
patients (Additional file 13: Figure S6). NAA60 is a
histone acetyltransferase that mediates several acetylation
events in H4, including H4K20ac, H4K79ac and
H4K91ac. The long isoform of NAA60 is subject to
allele specific imprinting, while in contrasts, the
shorter isoforms are bi-allelically expressed. The
complete reduction of H3K4me3 at the long isoform
promoter is consistent with bi-allelic silencing of the
longer isoform. These results highlight the power of
chromatin states signatures to not only predict tran-
scriptional status but also to infer other potential
epigenetic patterns, such as DNA methylation states.

Discussion

The LONESTAR consortium data provide a comprehensive
resource for histone modification profiles and transcription
states across a novel collection of breast cancer cell lines
that represent the 5 molecular subtypes of breast cancer.
Integrated analyses of these data defined chromatin state
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landscapes across human breast cancer cell lines and identi-
fied subtype specific epigenetic signatures for major breast
cancer subtypes. These epigenetic signatures revealed
functional gene sets for each of the five breast cancer
subtypes. Our results are consistent with previous breast
cancer profiling studies, but also provide unique insights,
such as discovery of AFAP1-AS1 (Fig. 3) and NAA60
(Additional file 16: Figure S8) as potential TNBC subtype
specific genes. The chromatin state landscapes defined here
in breast cancer cells also demonstrate the complexity of
interactions between covalent histone modifications.

Conclusions

Ultimately, these data may provide new clues to the
etiology of the different breast cancer subtypes and new
avenues for therapy development. We hope these data
resources as well as our analyses will be broadly used in
the breast cancer research community for mechanistic
studies, biomarker discovery and precision therapy.

Methods

Experimental procedures

Cell cultures

All cell lines used for the Lonestar Consortium were pur-
chased from ATCC (http://www.ncbi.nlm.nih.gov/pubmed/
23722650):

Cell line ATCC ID.

76NF2V REF.

MCF10A CRL-10317.

MCF7 HTB-22.

ZR751 CRL-1500.

MB361 HTB-27.

UACC812 CRL-1897.

SKBR3 HTB-30.

AU565 CRL-2351.

HCC1954 CRL-2338.

MB231 CRM-HTB-26.

MB436 HTB-130.

MB468 HTB-132.

HCC1937 CRL-2336.

Cells were grown and cared for in the laboratory of
Khandan Keyomarsi at the MD Anderson Cancer Cen-
ter to ensure reproducibility and equity among all the
labs in the consortium. RNA, protein isolates, chroma-
tin extracts and nuclei preparations were performed in
the cell culture core lab and distributed to the different
member labs of the consortium for downstream experi-
mentation. The two immortalized breast epithelial cell
lines, MCF-10A and 76 N-F2V, were grown in D-
Media and all other cell lines were grown in alpha
media. All cells were grown in cell culture incubators at
370C with 6.5% CO2. For D-media, the following com-
ponents are added to an equal mixture of alpha-MEM
and Ham’s F12 base media; 0.1 M HEPES, 2 mM L-
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glutamine, 1% FBS, 0.035 mg/ml of Bovine Pituitary Ex-
tract, 0.01 mM Ascorbic Acid, 2 nM p-estradiol,
2.5 ng/ml Sodium Selenite, 10 nM Triiodothryonine,
Ethanolamine, 1 pg/ml Insulin, 1 ng/ml Hydrocorti-
sone, 0.1 mM Phosphoethanolamine, 0.01 mg/ml
Transferrin, 12.5 ng/ml Epidermal Growth Factor, 1%
Penn/Strep. For alpha media the following components
are added to a-MEM base media; 0.1 M HEPES, 10%
Fetal Calf Serum, 1% non-essential amino acids, 2 mM
L-glutamine, 1% Sodium Pyruvate, 1 pg/ml insulin,
1 ng/ml Hydrocortisone, 12.5 ng/ml Epidermal Growth
Factor, 1% Penn/Strep.

Small interfering RNA transfection

When cells reached 60% confluence, two siRNAs targeting
AFAP1-AS1 (ThermoFisher Scientific, Cat. # 4390771,
n262319 and n262320) and a control siRNA were trans-
fected separately using Lipofectamine® 2000 (Life Technolo-
gies Cat. # 11668019) following manufacturer’s instructions.
Six to eight hours after transfection, the medium was chan-
ged to normal culture medium as described above.

RNA extraction, reverse transcription and quantitative
real-time PCR (qRT-PCR)

Total RNAs were isolated using an RNeasy Mini kit (Qia-
gen, Cat. # 74104), following the manufacturer’s recom-
mended procedure. 1 pg of RNA was reverse-transcribed
to ¢cDNA using a SuperScript VILO cDNA Synthesis kit
(ThermoFisher Scientific, Cat. # 11754050) following the
manufacturer’s procedure. 10 ng of cDNA was used for
one qRT-PCR reaction with three technical replicates.

Cell proliferation assay

MDA-MB-231, HCC1937 cells were transfected with
control siRNA, or siRNA targeting AFAP1-AS1. After
48 h, 15,000 cells were seeded into each well of 12 well
plate with three replicates for each sample and each day
of counting. At indicated day, cell numbers were
counted using hemocytometer.

Colony formation assay

MDA-MB-231, HCC1937 cells were transfected with
control siRNA, or siRNA targeting AFAP1-AS1. After
48 h, 300 cells for each sample were put into single well
of a 6 well plate, with three replicates, and incubated at
37 °C with 5% CO,. 10 to 15 days later, cells were
washed with PBS once and fixed with Fixation buffer
(Acetic acid/methanol, 1:7 v/v) for 5 min. Then cells
were stained with 0.5% crystal violet for 2 h to overnight,
washed, dried, and imaged.

Chromatin immunoprecipitation and library preparation
The following antibodies were used qPCR- and sequencing-
based ChIP assays in the amounts specified:


http://www.ncbi.nlm.nih.gov/pubmed/23722650
http://www.ncbi.nlm.nih.gov/pubmed/23722650
http://www.lifetechnologies.com/order/catalog/product/11668019
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Modification or Factor ~ Amount per IP Company Catalog No
H3K4me1 5ug Abcam ab8895
H3K4me3 5ug Abcam ab8580
H3K9ac, 5 ug EMD Millipore  07-352
H3K9me3 5ug Abcam ab8898
H3K27ac 5ug Abcam ab4729
H3K27me3 5 ug Millipore 07-449
H3K36me3 5ug Abcam ab9050
H3K79me2 5ug Abcam ab359%4
H2BK120ub1 5 ug Millipore 05-1312
H3K23ac 5ug Millipore 07-355
H4K8ac 5ug Millipore 07-328

Cells were grown to ~70-80% confluence, cross-linked
with 1% formaldehyde for 10 min at 37 °C, and quenched
in 125 mM glycine for 5 min at 4 °C. The cells were then
collected and lysed in Farnham Lysis Buffer [5 mM PIPES
pH 8.0, 85 mM KCl, 0.5% NP-40, 1 mM DTT, and 1x
protease inhibitor cocktail (Sigma-Aldrich)]. The crude
nuclear pellet was collected by centrifugation, resus-
pended in lysis buffer (1% SDS, 10 mM EDTA, 50 mM
TriseHCI pH 7.9, 1 mM DTT, and 1x protease inhibitor
cocktail), and incubated on ice for 10 min. The chromatin
was sheared by sonication at 4 °C using a Bioruptor 300 at
the highest setting for fifteen 1-min cycles of 30 s on and
30 s off to generate chromatin fragments of ~ 200-400 bp
in length. The soluble chromatin was diluted 1:10 with
dilution buffer (20 mM TriseHCI, pH 7.9, 0.5% Triton X-
100, 2 mM EDTA, 150 mM NaCl, 1 mM DTT and 1x
protease inhibitor cocktail) and pre-cleared with protein A
agarose beads. Five percent of the material was removed
and saved as input, and the rest of the pre-cleared super-
natant was incubated overnight at 4 °C with the antibody
of interest and a non-specific IgG control antibody.

The following day, the immune complexes were collected
by adding protein A agarose beads and incubating for 2 h
at 4 °C. The immunoprecipitated material was washed once
with low salt wash buffer [20 mM TriseHCI pH 7.9, 2 mM
EDTA, 125 mM NaCl, 0.05% SDS, 1% Triton X-100, and
1x protease inhibitor cocktail], once with high-salt wash
buffer (20 mM TriseHCI pH 7.9, 2 mM EDTA, 500 mM
NaCl, 0.05% SDS, 1% Triton X-100, and 1x protease inhibi-
tor cocktail), once with LiCl wash buffer (10 mM TriseHCI
pH 7.9, 1 mM EDTA, 250 mM LiCl, 1% NP-40, 1% sodium
deoxycholate, and 1x protease inhibitor cocktail), and twice
with Tris-EDTA (TE) containing 1x protease inhibitor
cocktail. The immunoprecipitated material was eluted at
room temperature in elution buffer (100 mM NaHCOs3, 1%
SDS), and the crosslinks were reversed by adding 100 mM
NaCl with incubation at 65 °C overnight. The eluted mater-
ial was then digested with proteinase K and RNase H to
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remove protein and RNA, respectively, and the enriched
genomic DNA was extracted with phenol:chloroform:isoa-
myl alcohol followed by ethanol precipitation. The ChIPed
DNA was dissolved in water and analyzed by qPCR using
the enhancer- or gene-specific primers.

ChIP libraries were prepared using a modified Kapa LTP
Library Preparation kit (KAPA Biosystems, cat# KK8232)
for Illumina Platforms. Ten ng of sheared DNA was used
to repair the ends of the damaged fragments using a
proprietary master mix. The resulted blunted fragments
were 3’ A-tailed using a proprietary mixture of enzymes to
allow ligation to the specific NexTflex adaptors from Bioo
Scientific (Bioo Scientific, cat# 514102). Each of the steps
(ie., end repair, 3A tailing, and adaptor ligation) was
followed by column clean up (Qiagen, cat# 28204). After
adapter ligation, DNA enrichment was performed using
Kapa HiFi Hot Start Ready PCR mix, and a cocktail of
primers (1 cycle at 98 °C for 45 s; 4 cycles at 98 °C for 15 s,
60 °C for 30 s, and 72 °C for 30 s; and 1 cycle at 72 °C for
1 min), and purified with AmpureXP beads (Beckman
Coulter, cat# A63881). The quality of the final libraries was
assessed using a 2200 TapeStation (Agilent Technologies).
The libraries were quantified using a Kapa Library Quantifi-
cation Kit (KAPA Biosystems, cat# KK4933) and loaded in
a flow cell for cluster generation using the Illumina ¢cBOT
(lumina) at final concentration of 10 pM.

ChIP-seq data processing

ChIP-seq libraries were sequenced on Hi-seq2500, with
50 bp single-end raw reads. For each cell line, two replicates
were sequenced in the 8 chosen histone modifications
(Fig. 1la). Three additional histone modifications,
H2BK120ub1, H3K23ac and H4K8ac, were also sequenced
for each cell line, with no replicates. ChIP-seq raw reads
were mapped to hgl9 reference genome using bowtie
v1.0,0 [18], with command line options “-v 1 -r —best
—strata -m 1” to allow up to one mismatch per read. To
eliminate the read length variations in different sequencing
batches, all reads were clipped to the first 36 bp. The
mapped reads were complied into whole genome WIG
profile using MACS 1.3.7 [19], with the fragment size set to
the 200 bp and peak calling threshold set at p-value = 1e-8.
To reduce the signal strength variation due to sequencing
depth difference, we subsampled to a maximum of 20
million reads per replicates per sample. The reproducibility
between replicates was evaluated by the Pearson correlation
of peak intensities (Additional file 2: Table S1). Hierarchical
clustering is performed on 2000 peaks randomly sampled
from the union of peak lists called from all ChIP-seq sam-
ples. The max heights of the peak intensity were used and
the values were standardized for each peak across cells in
the clustering. The hierarchical clustering were performed
using MeV 4.8.0 [20].
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RNA-seq data processing

RNA-seq reads were mapped to hgl9 reference genome
and transcriptome using tophat v2.0.10 [21]. The guide
transcriptome annotation GTF file is Ensembl gene
annotation downloaded from genome.ucsc.edu. The reads
count for each Ensembl gene (Additional file 17: Table
S10) was estimated using HTseq v0.6.1p2 [22], with
option “-s no -m intersection-nonempty”. The FPKM
values were calculated by normalizing the read count by
the total reads number in millions and gene length in kilo
base pairs.

Chromatin state model

For each histone mark and each cell line, the alignment bed
files of two replicates were pooled. The reads were extended
to 200 bp from 5" to 3" or 3" to 5" direction for positive and
negative strands alignments respectively. We used
ChromHMM v1.1.12 [5] to binarize the ChIP-seq signals
with default parameters and build the chromatin state model
at 200 bp resolution (b 200), on all cell line samples for 5
major histone marks: H3K4mel, H3K4me3, H3K9me3,
H3K27me3 and H3K36me3. We trained 11 ChromHMM
models, covering from 10 to 20 total chromatin states, and
decided to choose a 13-states model that best captures the
combinatorial patterns between the histone marks. We also
trained models using all 8 histone marks using same proced-
ure, and the extended model (Additional file 5: Figure S3)
identified 15 chromatin states that largely overlap with the
chromatin states defined by the 5 core histone modification
model, with additional states representing the 5 or 3" end
of active transcription units or broad flanking regions of ac-
tive promoters. (Fig. 1b). Therefore we used the five histone
mark model in our subsequent analyses. We followed the
method used by NIH roadmap epigenetics consortium to
evaluate the robustness of the 13 chromatin-states model
jointly-trained on all cell lines by comparing it with models
independently trained on individual cell lines [4]. The hier-
archical clustering of the emission parameters (Additional
file 18: Table S3) of all trained ChromHMM models indi-
cates that the jointly-trained model on all cell lines can be
reproduced by independently-trained model (Additional file 4:
Figure S2A).

Subtype specific signature identification

We first identify all genomic regions that have same within-
subtype chromatin states and different between-subtype
chromatin states. This is done by detecting have same chro-
matin states in cell lines of the same subtype, and filter out
the regions that have same chromatin states in all subtypes.
The subtype specific chromatin state signature is defined by
the chromatin states that are uniquely present or absent in
the subtype. The pan breast cancer signature is defined by
comparing normal like cells with breast cancer cells, and the
triple negative signature is defined as comparing TNBC-
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basal/claudinLow cells with Luminal/HER2 positive cells.
We further characterized the subtype pattern by their repre-
sentative histone mark signals. We profiled the max
H3K36me3 peak heights within the genebody for TxAct and
TxFlk states, max H3K27me3 peak height within Genebody
for RepPC and WkRep states, max H3K4me3 signals within
1Kbp of TSS for PrAct, PrFlk and PrBiv states, max
H3K4mel peak heights within 1Kbp of EhAct, EhGen and
EhBiv genomic regions, max H3K9me3 peak heights within
Genebody for Htchr states.

Additional files

Additional file 1: Figure S1. Enrichment of histone modification ChIP-seq
signals pooled from all sampled in (A) transcription start sites, (B) gene
bodies, (C) enhancer peaks. (D) Genomic distribution of histone modification
ChiP-seq tags. (E) Hierarchical clustering of histone modification ChIP-seq
peak signals. (PDF 936 kb)

Additional file 2: Table S1. ChIP-seq sample alignment summary.
(XLSX 66 kb)

Additional file 3: Table S2. ChIP-seq sample replicates correlation.
(XLSX 61 kb)

Additional file 4: Figure S2. (A) Clustering of chromatin states model
learned on individual cells showing same enrichment pattern that can
recover the chromatin state jointly learned using all 13 cells. (B) RNA-seq
expression levels for genes associated with different chromatin states. (C)
Cumulative fractions of chromatin state counts versus number of
samples. Larger area under curve indicates more variability across breast
cancer cells. (PDF 1549 kb)

Additional file 5: Figure S3. ChromHMM model of 15 chromtain states
defined by all 8 histone modifications. (PDF 358 kb)

Additional file 6: Figure S4. Unsupervised clustering of histone
modification occupancy in highly variable regions (A, C, E, G, I, K, M, O)
and enriched genomic regions (promoters: B, D, N, enhancers: F, L and
gene bodies: H, J, P),, showing subtype specificity and reproducibility
between replicates. (PDF 2936 kb)

Additional file 7: Table S5. List of genes with subtype specific active
enhancer states. (XLS 212 kb)

Additional file 8: Figure S5. Spearman correlation of H3K36me3
occupancy and gene expression levels in all samples. (PDF 489 kb)

Additional file 9: Table S4. List of genes with subtype specific active
transcription states. (XLS 44 kb)

Additional file 10: Table S7. Subtype gene signatures of active
transcription states and active transcription flanking states. (XLSX 23 kb)

Additional file 11: Table S8. Significant pathways of subtype gene
signatures of active transcription states and active transcription flanking
states. (XLSX 18 kb)

Additional file 12: Table S9 Significant upstream regulators of subtype
gene signatures of active transcription states and active transcription
flanking states. (XLSX 16 kb)

Additional file 13: Figure S6. Subtype expression patterns of TCGA
breast cancer samples. (PDF 359 kb)

Additional file 14: Table S6. List of genes with subtype specific
repressive polycomb domain states. (XLS 10 kb)

Additional file 15: Figure S7. Chromatin state landscape of
depleted H3K27me3 signals at NLRP gene cluster in normal-like
celllines. (PDF 595 kb)

Additional file 16: Figure S8. Chromatin state landscapes of depleted
H3K4me3 signals in the bi-directional promoter of NAA60/ZNF597 in
TNBC subtype celllines. (PDF 328 kb)
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