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Abstract

Background: RNA-binding proteins (RBPs) play vital roles in many processes in the cell. Different RBPs bind RNA
with different sequence and structure specificities. While sequence specificities for a large set of 205 RBPs have
been reported through the RNAcompete compendium, structure specificities are known for only a small fraction.
The main limitation lies in the design of the RNAcompete technology, which tests RBP binding against
unstructured RNA probes, making it difficult to infer structural preferences from these data. We recently developed
RCK, an algorithm to infer sequence and structural binding models from RNAcompete data. The set of binding
models enables, for the first time, a large-scale assessment of RNA structure in the RBPome.

Results: We re-validate and uncover the role of RNA structure in the RPBome through novel analysis of the largest-
scale dataset to date. First, we show that RNA structure exists in presumably unstructured RNA probes and that its
variability is correlated with RNA-binding. Second, we examine the structural binding preferences of RBPs and
discover an overall preference to bind RNA loops. Third, we significantly improve protein-binding prediction using
RNA structure, both in vitro and in vivo. Lastly, we demonstrate that RNA structural binding preferences can be
inferred for new proteins from solely their amino acid content.

Conclusions: By counter-intuitively demonstrating through our analysis that we can predict both the RNA structure
of and RBP binding to these putatively unstructured RNAs, we transform a compendium of RNA-binding proteins
into a valuable resource for structure-based binding models. We uncover the important role RNA structure plays in
protein-RNA interaction for hundreds of RNA-binding proteins.
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Background
Protein–RNA interactions play vital roles in many processes
in the living cell. These effect of a wide variety of cellular
processes, including RNA replication, repair, recombination
and post-transcriptional regulation [1]. More than 1500
genes in the human genome are thought to code for RNA-
binding proteins (RBPs), making this set of human proteins
one of the largest in the human proteome [2]. Most RBPs
bind RNA through both sequence and structure. Thus, the
ability to use RBP sequence- and structure-specific binding
preferences would improve predictions of their role and
function throughout the transcriptome.

Various high-throughput experimental techniques have
been developed to measure protein-RNA binding. The
CLIP-seq protocol and its variants measure protein-RNA
binding in vivo, but they all suffer from noise and techno-
logical biases [3, 4]. In vitro methods, such as RNAcompete
[5], provide a cleaner signal for the interactions without the
confounding factors. Indeed, several methods have been
developed to infer structural information from these data
[6–8], but none were applied to the most comprehensive
dataset of protein-RNA binding measurements, mainly due
to the fact that the RNA probes were designed to be un-
structured [9]. Just recently, we developed an algorithm,
RCK, to infer sequence and structural binding preferences
from this seemingly unstructured data [10]. While we gener-
ated binding models for the largest dataset to date, we did
not analyze it for the role of RNA structure in the RBPome.
It remained unclear how much structural information actu-
ally existed in the data, and how much downstream analysis
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of protein-RNA interactions would benefit from it. A previ-
ous study answered some of these questions, but was limited
to a much smaller dataset of merely 30 proteins [11].
Here, we show, for the first time on a large scale, that

RNA structural variability exists in unstructured RNA
probes, and that it can be used to significantly improve the
accuracy of binding predictions in various analyses. First, we
show, via different approaches, that structure variability ex-
ists in the data, and that it correlates with protein binding.
Then, we newly apply our recently-developed method RCK
to catalog binding preferences of RNA-binding proteins on a
large-scale. Third, we demonstrate how RNA-binding struc-
tural preferences learned in vitro improves binding predic-
tion, both in vitro and in vivo. Lastly, we demonstrate that
using RNA structure improves machine-learning methods
for inferring RNA-binding preferences based solely on amino
acid sequence. Taken together, these results further highlight
the important role RNA structure plays in the RBPome.

Results
Structural variability in unstructured RNA probes
We first sought to test how much structure variability exists
in unstructured RNA probes, which are the basis of the lar-
gest compendium of protein RNA-binding measurements
[9]. Unstructured RNA probes were defined as those that
are not likely to reside in low free energy conformations.
But still, as expected, structural variability could exist. To
gauge the putative structural variability, we calculated two
RNA structure measures: (i) the likelihood of each probe to
be ‘unstructured’; and (ii) the probability of each nucleotide
to be base-paired. Since we are interested in RNA-binding
proteins, which are assumed to bind contiguous k-mers [6],
we measured the standard deviation of the average base-
pairing probability of 5-mers. We applied these tests to the
set of RNAcompete probes in comparison to a set of
uniformly generated random probes of the same length.

Our results newly confirm on a large scale that unstruc-
tured probes are far from being unstructured. While the
probes tend to have lower base-pairing probabilities than
random probes, there exists significant structural variabil-
ity in them. Indeed, more than 75% of unstructured
probes have a non-zero probability of residing in a low-
energy conformation, implying that some structure exists,
albeit with smaller probability (Additional file 1: Fig. S1A).
In terms of single-nucleotide base-pairing probabilities,
unstructured probe probabilities are skewed towards zero
more than random probes, but more than 90% of nucleo-
tides have probability greater than 0 of base-pairing, span-
ning the range up to 1 (Additional file 1: Fig. S1B). This
finding implies that unstructured probes likely contain
many paired nucleotides. Moreover, when inspecting the
average base-pairing probability of 5-mers, the standard
deviation is centered at 0.16 (as compared to 0.23 for ran-
dom probes), giving us a rough estimate for the expected
base-pairing probability range of each k-mer (Fig. 1a).
To demonstrate that this variability is correlated with

protein-binding affinity, we focused on the binding affinity of
the well-studied HuR protein. The HuR protein is known to
preferably bind uridine-stretches in unpaired RNA structural
context [5]. Thus, we measured the average base-pairing
probability of all UUUUU’s in RNAcompete probes, and
compared their probability with the probes’ experimentally-
measured binding affinity (Fig. 1b). The correlation is signifi-
cantly negative, r =− 0.102 (p-value = 8.88·10− 22). Correlation
of UUUUU base-pairing probabilities for random probes,
using the same binding affinities, was r = 0.012 (p-value =
0.29). These results show that variability at RNA structure
binding sites is correlated with experimental binding affin-
ities, and can potentially aid in learning RNA sequence and
structure binding preferences of RBPs. We note that the cor-
relation might be so slight due to the low base-pairing prob-
ability and structural variability in the RNAcompete probes.

Fig. 1 Structural variability exists in unstructured RNA probes and correlates with protein RNA-binding. a) Distribution of standard deviation of average
5-mer base-pairing probabilities. While in random probes there is more variability, unstructured probes are still quite variable. b) Correlation of probes
containing UUUUU HuR-binding intensities and UUUUU’s average base-pairing probabilities. The negative correlation shows that HuR prefers to bind
unpaired regions

Orenstein et al. BMC Genomics  (2018) 19:154 Page 2 of 8



RNA structural binding preferences for a compendia of
RNA-binding proteins
We newly measured the distribution of structural prefer-
ences for a large compendium of RNA-binding proteins
(RBPs) [9]. Thanks to the structural variability that exists in
unstructured probes, we were recently able to develop soft-
ware to infer RBP preferences from high-throughput data
(i.e., RCK) [10]. It is commonly believed that almost all
RBPs bind single-stranded RNA, but real evidence existed
for only a few proteins [11]. Our structure-based binding
models offer a novel way to analyze overall structural pref-
erences in the RBP compendium.
Here, we perform what we believe to be the first rigorous

test of the assumption that many RBPs prefer to bind un-
paired regions [11, 12]. For each protein, we calculated the
log ratio of the binding score to the consensus sequence in
an unpaired, relative to a paired, structural context. Our re-
sults indicate that almost all proteins in this dataset prefer
to bind unpaired regions (Fig. 2a), a finding that supports
the previous assumption that the majority of RBPs prefer to
bind unpaired regions, as this dataset represents a wide

variety of RBPs, and that RBPs which bind double-stranded
RNA are an exception. The few proteins that prefer a
paired context according to our binding models may either
bind in a double-stranded context or result from errors in
the model inference due to experimental noise.
While RBPs prefer to bind unpaired regions as a whole,

some prefer to bind either loop or external regions; both re-
gions are unpaired, yet loop regions are surrounded by a stem
of paired nucleotides. To examine the preference of RBPs to
bind loop or external regions, we measured the ratio of bind-
ing to loop regions as compared to external regions. Our re-
sults show that proteins vary in binding preference, and
many do not demonstrate a strong preference (i.e., log ratio
ranging from − 1 to 1); however, overall more proteins in this
dataset prefer to bind loop regions than external regions (Fig.
2b). We observe no domain-specific preference for paired or
unpaired contexts, nor for external or loop regions. This find-
ing is likely due to the fact that the definition of these do-
mains is broad: in the two largest domains, RNA recognition
motif (RRM) and hnRNP K-homology (KH), the proteins
within each domain share little sequence similarity [9].

Fig. 2 Analysis of RNA structural binding preferences for a large compendium of RBPs. a) Distribution of paired to unpaired binding preference log ratios
for 205 RBPs shows almost all proteins in this dataset prefer to bind unpaired regions. b) Distribution of loop to external binding preference log ratios for
205 RBPs reveals more proteins in this dataset prefer to bind loop regions, and many may bind both. c) RNA structural binding preference improves in
vitro binding prediction. Correlation results over 488 paired experiments uncovers that RNA structure plays a significant role in protein-RNA interactions. d)
RNA structural binding preference improves in vivo binding prediction. AUC results of 96 paired eCLIP and RNAcompete experiments over 21 joint
proteins demonstrate that RNA structural binding preferences learned from in vitro data correlate well with protein-RNA interactions measured in vivo
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Improved predictive accuracy of in vitro and in vivo
binding through RNA structure
We gauged the contribution of RNA structural prefer-
ences in binding prediction. We employed a comprehen-
sive dataset of both in vitro and in vivo data. For in vitro
prediction, we used 244 RNAcompete paired experiments,
where we trained a model based on one half of a pair and
tested on the other half of the same pair, resulting in 488
predictions [9]. Predictions were evaluated using Pearson
correlation between predicted and measured probe inten-
sities (as in [13]). For in vivo prediction, we used the avail-
able eCLIP data that covers 73 proteins, out of which 21
have a corresponding RNAcompete experiment [14]. We
trained a model on a complete RNAcompete dataset and
tested it on each eCLIP experiment on the same protein,
resulting in 96 pairs of RNAcompete and eCLIP experi-
ments. Predictions were evaluated using AUC (area under
the ROC curve), where negative sequences were extracted
from nearby regions. We repeated these tests with ran-
domized structure probabilities to validate the significance
of the addition of structure scores.
We found that adding structure preferences to the bind-

ing models significantly improves prediction performance,
both in vitro and in vivo. In terms of in vitro binding, the
improvement is across the board: for every single dataset,
the performance improved by adding structure to the model
(Fig. 2c). The improvement was striking, from an average
Pearson correlation of 0.31 for sequence-only mode, to 0.46
when using sequence and structure (p-value = 5.85·10− 82,
Wilcoxon rank-sum test). When we assigned random struc-
ture probabilities, this improvement disappeared (p-value =
1) (Additional file 2: Figure S2A). In vivo the improvement
was more modest: from average AUC of 0.597 to 0.614 (p-
value = 1.78·10− 5) (Fig. 2d), and similarly assigning random
structure probabilities abolished this improvement (p-value
= 0.829) (Additional file 2: Figure S2B). We can see several
reasons for the dichotomy between in vitro and in vivo. The
in vivo dataset is smaller— only 94 pairs compared to 488,
covering only 21 proteins compared to 205. The in vivo ex-
periments are known to be more noisy and prone to
technological artifacts. The in vivo environment contains
many confounding factors, such as competing and coopera-
tive proteins and RNA degradation and expression. These
are not part of the binding model, and thus may decrease
prediction accuracy. Lastly, RNA secondary structure is less
accurate for long sequences in vivo than for short sequences
and in vitro [15]. Still, in some cases the addition of RNA
structure increases AUC values from lower to higher than
0.5, showing that in extreme cases a protein may only bind
in a specific structural context.
We specifically focus on two RBPs, HRNPK and PUM2,

for which structural information contributed most to in
vivo binding prediction accuracy. HNRNPK is an hnRNP
family protein that plays diverse roles in multiple

processes [16]. Ray et al. found that HNRNPK binds the
sequence AGACCAA with highest affinity, but with no
knowledge of its structural preferences [9]. RCK models
inferred from the same RNAcompete data show that
HNRNPK binds GACCA with the highest affinity, prefera-
bly in either loop or external unpaired regions (Fig. 3a).
The increase in binding prediction accuracy in in vitro
data was 0.196 in Pearson correlation, providing evidence
for the importance of RNA structural preference in
HNRNPK binding. The in vivo binding prediction based
on the in vitro model improved the AUC from 0.75 to
0.81; that is, more real binding sites were predicted with
fewer false positive sites with the addition of structural in-
formation (Fig. 3a), demonstrating concordance between
in vitro (RNAcompete) and in vivo (eCLIP) experiments
in terms of RNA-binding structural preferences.
The second protein assessed in the current study, PUM2,

is a sequence-specific RNA-binding protein that acts as a
post-transcriptional repressor [17]. According to our model,
PUM2 prefers to bind UGUAA in a paired context; i.e.,
binds in a double-stranded context (Fig. 3b). Our finding
was further confirmed by an independent method, Graph-
Prot, on an independent dataset derived from a PAR-CLIP
experiment [7]. The improvement in Pearson correlation
on in vitro binding prediction is 0.14. The AUC for in vivo
data improved from 0.52 to 0.57 (Fig. 3b), again demon-
strating agreement between structural preferences mea-
sured in vitro and in vivo.

Learning protein RNA-binding preferences from amino
acid sequence
We explored the ability to predict RNA-binding preferences
from amino acid sequence alone. This capability would en-
able binding prediction for mutated proteins (e.g. from gen-
etic variation) as well as proteins with no experimental
validation. In a recent study, Pelosoph et al. developed Affini-
tyRegression, an algorithm for learning and predicting
amino-acid k-mer associations with DNA and RNA k-mers
[18]. These associations, which are family-specific, enable
novel predictions of binding preferences for a specific protein
from the amino acid content of its binding domain. The
authors applied their method to the RNAcompete compen-
dium and showed that they can predict sequence-binding
preferences.
We sought to improve AffinityRegression’s performance

by including RNA secondary structure in the model. We
augmented the RNA k-mer space with structure-based
probabilities based on five contexts: paired, hairpin loop,
inner loop, multi loop and external. We applied the same
tests as used by AffinityRegression to gauge performance:
Pearson correlation between predicted probe intensities to
the measured ones, and area under the precision-recall
curve (AUPR) for ranking 1% of top probes compared to
(i) 50% of bottom probes, and (ii) 99% of bottom probes.
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We find that by augmenting the original models with
RNA secondary structure, prediction accuracy improves
significantly for the 130 proteins (Fig. 4a): the average
correlation between predicted and real probe intensities
increased from 0.688 to 0.705 by adding secondary
structure (p-value = 6.79·10− 23 Wilcoxon signed-rank

test). Performance also improved significantly when
gauged by AUPR criteria (Fig. 4b): the average AUPR in-
creased from 0.874 and 0.459 to 0.892 and 0.475 for 1%
top probes vs. 50% and 99% bottom probes, respectively
(p-values = 3.29·10− 23, 3.04·10− 17). When RNA structure
probabilities are assigned randomly, we see no significant

Fig. 4 Improved binding prediction from amino acid sequence by utilizing RNA structure. a) When we add RNA structural features to the
sequence k-mer space of AffinityRegression, we predict binding significantly better than using sequence features alone. b) When we add RNA
structural features to the sequence k-mer space of AffinityRegression, we predict the top-bound probes as compared to unbound probes
significantly better than using sequence features alone

Fig. 3 Structure-based models improve in vivo binding prediction. a) HRHNPK in vivo binding prediction improves AUC from 0.75 to 0.81.
Sequence preferences agree with a previous study, but no structural preferences were previously known. b) PUM2 in vivo binding prediction
improves AUC from 0.52 to 0.59. Sequence and structural preferences agree with previously-published preferences based on PAR-CLIP data
inferred by GraphProt algorithm. Structural contexts letter: S = stem / paired, H = hairpin loop, I = inner loop, M =multi loop, E = external region
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improvement when utilizing RNA structure (p-values =
0.985, 0.571, 0.915, referring to the correlation and AUPR
criteria, respectively) (Additional file 3: Fig. S3).
There are a few reasons for the perhaps small but signifi-

cant improvement. The sequence-only method is based on
RNA 7-mer features. Since RNA structure is predicted from
sequence, and most nucleotide base pairings are local, most
of them are encoded by 7-mer features. Nevertheless, the im-
provement we demonstrate by adding secondary structure is
significant and was observed for 126 out of 130 proteins
tested. Moreover, the RNA probes were designed to be un-
structured, and thus the information that can be extracted
from the structural variability in them may be limited.

Discussion
We have demonstrated the utility of RNA structure
based protein binding models in various applications.
We have shown that both sequence and structure bind-
ing models are accurately inferred from unstructured in
vitro data. These models can further be used to enhance
binding prediction, as we show both in vitro and in vivo.
Moreover, they can improve prediction of binding pref-
erences based on protein amino acid sequence.
In this study we analyzed the largest compendium of

RNA-binding measurements to date, but it has a few
limitations. Our analysis is restricted to binding models
based on in vitro data and protein binding domains (as
opposed to full-length proteins). While our models only
address local RNA structure, and thus may miss more
complex structures of long RNA molecules found in
vivo, we were able to significantly improve in vivo bind-
ing prediction using structural information as opposed
to using sequence scores alone. Detecting binding pref-
erences to large RNA structures is still a major challenge
as computational RNA structure prediction has been
shown to be less accurate for long RNA molecules in
vivo [15]. Still, the improvement in vivo demonstrates
the biological relevance of our findings.
We wish to expand the RBPome prediction by aug-

menting it with new protein-RNA binding models and
more accurate RNA structure predictions using experi-
mental and computational advancements. We plan to
expand our dataset of binding models by developing al-
gorithms to learn RNA structure and sequence prefer-
ences from RNA bind-n-seq, a new technology to
measure protein RNA-binding in vitro [19]. We also
plan to take advantage of the recent machine learning
breakthroughs of deep learning to improve prediction
accuracy. We would like to incorporate in vivo data to
better understand the structural binding preferences of
long RNA molecules. Last, we will use RNA structure-
probing data as a more reliable source of RNA structural
information as compared to computational prediction.

Conclusions
In this work we have taken the first steps in exploring
the role of RNA structure in the RBPome on a large
scale. We have demonstrated the importance of RNA
structure in various applications of protein-RNA interac-
tions. We expect the insights from this study and our re-
source to aid the research community in making
significant advances in understanding the critical roles of
protein-RNA interactions.

Methods
Structural analysis of RNA probes
We measured the structure of two RNA probe sets. One is
the set of 241,357 RNAcompete probes, containing 219,990
unique sequences [9]. The second is a set of randomly gen-
erated 241,357 unique random sequences, all based on a
position-independent uniform distribution of nucleotides.
To measure the probability of a probe being unstructured,
we followed the definition of Ray et al. [9]. We ran RNA-
shapes version 2.1.6 in the following way: “RNAshapes -s -c
70.0 -r -M 30 -t 1 -o 2 “[20]. The reported probability is
one minus the sum of probabilities of structures below −
2.5 kcal/mol threshold. For base-pairing probabilities we
ran RNAplfold: “RNAplfold -u 1 -W 80 -L 40 “[21]. Using
these probabilities, we calculated average probabilities over
all 1024 possible 5-mers, and the standard deviation of
these averages. Finally, we plotted and calculated the correl-
ation of 5-mer UUUUU average base-pairing probabilities
and intensities of probes it appeared in according to the
RNAcompete experiment RNCMPT00032 [9].

Statistical analysis of protein RNA-binding structural
preferences
We explored the overall statistic of structural binding
preferences amongst the set of RNA-binding proteins in
the RNAcompete dataset [9]. We used the set of learned
models from the RCK website [10]. We identified for each
protein the k-mer w and structural context a with the
highest binding score. We calculated the binding scores
for k-mer w in the other structural contexts. The relative
weight of those scores are the structural preferences
assigned to that protein. For Fig. 2a we calculated the log
of the ratio of paired to unpaired scores. For Fig. 2b we
calculated the log of the ratio of loop to external scores.

In vitro and in vivo binding predictions
We tested the benefit of adding structure to the models for
in vitro and in vivo binding prediction. We used the set of
learned models from the RCK website [10]. For in vitro
binding prediction we used the RNAcompete dataset, that
included 244 RNAcompete experiments [9]. For each
experiment we used the model trained on Set A and tested
it on Set B. As in previous studies [10, 13], we performed
clamping of outlier intensities. The performance was
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measured by Pearson correlation of predicted and mea-
sured intensities. For in vivo binding prediction we used
eCLIP experiments [22]. 21 proteins overlapped between
these two datasets and were covered by 36 RNAcompete
experiments and 54 eCLIP experiments. For each eCLIP
experiment, the bound peaks were used as positive se-
quences, and regions 300 nt downstream were used as con-
trols. Structure prediction was performed using RNAplfold
together with 150 nt flanking regions (as in previous studies
[7, 10]), and only the middle 40 nt were used for prediction.
Performance was gauged by area under the ROC curve.
We repeated these tests with random assignment of
structure probabilities to validate the significance of the
improvement. For each position we generated five random
integer numbers (using rand() of C programming
language). We then normalized these numbers to a
distribution by dividing each by their total sum.

Regression of RNA-binding preferences from amino acid
sequence
We used the original code of AffinityRegression with some
modifications [18]. For the RNA feature matrix, we ex-
tended the 7-mer counts by the probability of each 7-mer
being in each of the RNA structural contexts: paired, hair-
pin loop, multi loop, inner loop and external. We modified
the training to be on one half of the set of RNA probes,
while testing on the other half. We repeated this test using
random structure probabilities, as described above.

Additional files

Additional file 1: Figure S1 Structure in unstructured probes. A)
Distribution of probe unstructured probabilities. Random probes are less
likely to be unstructured, but more than 75% of unstructured probes
have smaller-than-one probability of being unstructured. B) Distribution
of nucleotide base-pairing probabilities. In random probes they are more
skewed towards 1, but in unstructured probes they span the entire
probability range of [0,1]. (PNG 52 kb)

Additional file 2: Figure S2 A) RNA structural binding preferences do
not improve in vitro binding prediction when random structure
probabilities are assigned. Correlation results over 488 paired experiments
reveals that RNA structure does not improve binding prediction when
structure probabilities are assigned randomly. B) RNA structural binding
preferences do not improve in vivo binding prediction when random
structure probabilities are assigned. AUC results of 96 paired eCLIP and
RNAcompete experiments over 21 joint proteins demonstrate that RNA
structural binding preferences learned from in vitro data do not correlate
well with protein-RNA interactions measured in vivo when structure
probabilities are assigned randomly. (PNG 85 kb)

Additional file 3: Figure S3 There is no improvement in binding
prediction from amino acid sequence by utilizing RNA structure with
random structure probabilities. A) When we add RNA structural features
to the sequence k-mer space of AffinityRegression, but assign structure
probabilities randomly, we do no predict binding any better than using
sequence features alone. B) When we add RNA structural features to the
sequence k-mer space of AffinityRegression, but assign structure
probabilities randomly, we do not predict the top-bound probes as
compared to unbound probes any better than using sequence features
alone. (PNG 68 kb)

Abbreviations
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RBP: RNA-binding protein; RRM: RNA recognition motif
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