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Abstract

Background: Understanding variation in genome structure is essential to understand phenotypic differences within
populations and the evolutionary history of species. A promising form of this structural variation is copy number
variation (CNV). CNVs can be generated by different recombination mechanisms, such as non-allelic homologous
recombination, that rely on specific characteristics of the genome architecture. These structural variants can therefore
be more abundant at particular genes ultimately leading to variation in phenotypes under selection. Detailed
characterization of CNVs therefore can reveal evolutionary footprints of selection and provide insight in their
contribution to phenotypic variation in wild populations.

Results: Here we use genotypic data from a long-term population of great tits (Parus major), a widely studied
passerine bird in ecology and evolution, to detect CNVs and identify genomic features prevailing within these regions.
We used allele intensities and frequencies from high-density SNP array data from 2,175 birds. We detected 41,029
CNVs concatenated into 8,008 distinct CNV regions (CNVRs). We successfully validated 93.75% of the CNVs tested by
qPCR, which were sampled at different frequencies and sizes. A mother-daughter family structure allowed for the
evaluation of the inheritance of a number of these CNVs. Thereby, only CNVs with 40 probes or more display
segregation in accordance with Mendelian inheritance, suggesting a high rate of false negative calls for smaller CNVs.
As CNVRs are a coarse-grained map of CNV loci, we also inferred the frequency of coincident CNV start and end
breakpoints. We observed frequency-dependent enrichment of these breakpoints at homologous regions, CpG sites
and AT-rich intervals. A gene ontology enrichment analyses showed that CNVs are enriched in genes underpinning
neural, cardiac and ion transport pathways.

Conclusion: Great tit CNVs are present in almost half of the genes and prominent at repetitive-homologous and
regulatory regions. Although overlapping genes under selection, the high number of false negatives make neutrality
or association tests on CNVs detected here difficult. Therefore, CNVs should be further addressed in the light of their
false negative rate and architecture to improve the comprehension of their association with phenotypes and
evolutionary history.
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Background
Genetic variants in the genome have been selected over
the course of evolution based on their adaptive value
under changing environmental conditions but are also
affected by random drift [1]. These variants range from
single nucleotide changes to complex rearrangements in
structure [2], which modulate gene expression [3–5] lead-
ing to ample phenotypic variation in wild populations
[6–8]. Structural variants show different degrees of com-
plexity, and include copy number variations (CNVs),
inversions, insertions, translocations, fissions and fusions
[9, 10]. A better understanding of these structural vari-
ants is essential for detecting important genomic features
under selection and their association with phenotypes.
In fact, CNVs are known to be major mutations that
encompasses more nucleotides than single nucleotide
polymorphisms (SNPs) [11] and underlie differences
within populations and between closely related species
such as human and chimpanzee [12].
Although complex rearrangements in the genome

which involves combined events like inversions and
translocations can be technically challenging and costly
to fully characterize [13], CNVs are more easily assessed
and be an indication of complex variants [14]. Moreover,
CNVs are the raw material for gene family expansion and
diversification [15], which ultimately lead to repetitive
regions that have an important role in evolutionary break-
points [16]. CNVs are usually defined as genomic intervals
larger than 1 kilobase (kb) containing deletions or dupli-
cations, which can be studied using widely available SNP
arrays [17]. Despite their limited resolution, these SNP
arrays are cost effective for studies in large populations
[18] and CNVs can be uncovered by signal variability and
heterozygosity level in overlapping SNP probes [17].
Species-specific SNP arrays have been used extensively

to study CNVs and their association with phenotypes
and evolutionary history, in domestic animals [19, 20],
humans [12, 21] and natural populations [22]. In mam-
mals, CNVs has been associated with production traits
[23] and pathogen resistance [24]. Deletions or duplica-
tions of genes underpinning inflammatory response and
cell proliferation are involved in the phenotypic differen-
tiation of humans and chimpanzees [12]. An interesting
example of phenotypic variation as a result of CNV is
the pea-comb phenotype in chicken which is caused by a
CNV in intron 1 of SRY-Box 5 (SOX5, [25]). Interestingly,
the number of repeats quantitatively affects this pheno-
type when in heterozygous state [26]. Although CNVs
are increasingly recognized as source of phenotypic varia-
tion, other aspects of CNVs as their inheritance, genomic
distribution and rate of false positive or negatives lacks
further investigation in large populations.
CNVs usually follow a Mendelian inheritance pattern

[27], but also de novo mutations have been shown to be

functionally relevant and to be associated with a number
of diseases [28]. Structural rearrangements, like CNVs,
result from a number of distinct recombination mech-
anisms (for a review see [29]). Such mechanisms like
non-allelic homologous recombination or break induced
replication prevails at regions in the genome exhibiting
specific architecture like segmental duplications and com-
mon fragile sites, respectively. Moreover, structural muta-
bility is associated with hypomethylation [30, 31] and CpG
islands and transcription start and end sites have been
shown to be associated with high recombination rates in
birds [32].
We identified and studied CNVs in a natural popula-

tion of great tits (Parus major). The great tit is a widely
studied passerine bird species in ecology that, in the past
decades, has provided important insights into speciation
[33], phenology [34–36], behavior [37, 38] and microevo-
lution [39]. After completion of the great tit genome
sequence [40], a customized high density 650k SNP array
was developed enabling more detailed genomic stud-
ies in this species. We present a CNV analysis in the
great tit genome using intensities and allele frequencies
from this SNP array. We annotated functional features,
accessed mother-daughter inheritance and characterized
the genomic architecture underlying different molecular
mechanisms, which in turn are known to give rise to dif-
ferent CNV classes. Our study lays the foundations for
future studies on complex genetic variants in this popula-
tion, to better understand genetic variation under global
warming and association with shifting seasonal pheno-
types.

Results
CNV identification, frequency assignment and inheritance
We performed a CNV analysis in great tit genomes
using a high density SNP array intensities and allele fre-
quencies from 2,077 females and 98 males. After quality
control, 41,029 CNVs were identified which were subse-
quently merged into 8,008 distinct CNV regions (CNVRs,
[Additional file 1]).
The CNVRs cover 28.09% (259.50 millions of base

pairs - Mb) of the great tit autosomes. The relative cov-
erage by CNVRs for the different chromosomes ranged
from 20.18% for chromosome 14 to 89.30% for chromo-
some 25LG2. The absolute genomic length overlapped by
CNVRs varied from 0.36 Mb for chromosome LGE22 to
40.06 Mb for chromosome 2. The CNVRs had variable
sizes ranging from 1.01 kb to 2.83 Mb with a mean size of
32.40 kb. The number of birds with CNVs mapped onto
a given CNVR ranged from 1 (0.04%) to 623 (28.63%)
of the 2,175 birds analyzed. We found 263 CNVRs to
occur in more than 1% of the population (≥ 21 birds)
and denote them as ‘91polymorphic CNVRs’ as previously
suggested [41].
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To investigate CNV inheritance, we used a mother-
daughter structure available for 381mothers and their 625
daughters in this population. We found 460 CNV calls
that overlap at least 1 base pair (bp) in the same state
(gain or loss) between a mother and at least one of her
respective daughters, representing only 6.83% of all 6,733
CNVs identified in the mothers. Thereafter, we classified
all CNVs in mothers depending on the number of probes
by CNV and found a positive correlation between probe
number and inheritance ratio (Pearson’s correlation coef-
ficient = 0.62 and p-value ≈ 1.68e−7). Considering an
expectedMendelian inheritance of 50% (all sires in normal
state), only CNVs supported by 40 probes or more reach
this Mendelian expectancy (for most of the probe groups,
Fig. 1a). Also, CNVs within polymorphic CNVRs showed
higher inheritance ratios (367 out of 3,035, 12.09%) but
comparable positive correlation with probe number (Pear-
son’s correlation coefficient = 0.60 and p-value ≈ 4.254e-
06, Fig. 1b).
Breakpoint variability of overlapping CNVs can unravel

molecular mechanisms in their formation and inheritance
patterns, which in turn rely on specific patterns in genome

architecture [29]. However, there is an unavoidable tech-
nical bias in genomic breakpoints of CNVs based on SNP
probe intensities [11, 42], making it challenging to esti-
mate the frequency of CNV loci. To avoid coarse-grained
CNVR breakpoints, which can harbor several CNVs with
distinct breakpoints, we tried to improve our descrip-
tion of the breakpoint variability using the number of
CNVs sharing the same start or end positions (Fig. 2).
We extended each of these breakpoints by 5 kb up and
downstream to establish genomic windows of 10 kb (CNV
breakpoint windows). This resulted in 45,372 breakpoint
windows identified in 1 to 355 birds. The total of these
windows represents 254.14 Mb of the genome, which
the large majority (224.38 Mb) reflects rare events (frequency
= 1, CNV breakpoint windows and their corresponding
frequencies can be found at [Additional file 2]).

Copy number inference by quantitative PCR
To obtain insight in the false discovery rate of our method
to identify CNVs, we validated 16 CNVs in our great tit
population using quantitative PCR (qPCR). We selected 6
rare and 10 frequent CNV calls based on CNV incidence,

Fig. 1 CNV inheritance in mother-daughter family structure. We inferred the percentage of CNVs in mothers overlapping CNVs at the same state
(gain or loss) in their respective daughters. The x-axis indicates distinct groups of CNVs which were classified based on the number of SNP probes
supporting each of them. CNVs supported by 50 SNP probes or more are grouped together. In the y-axis the percentage of inherited CNVs
represents the ratio between all CNVs and inherited ones in each probe group. The number of CNVs per group is reflected by the dot size. a: All
CNVRs. b: Polymorphic CNVRs (≥ 21 birds, at least 1% of the population with CNVs identified)
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Fig. 2 CNVR example and the strategy to estimate the frequency of CNVs which are sharing breakpoints. The frequency for a given genomic interval
is given by the number of CNVs starting or ending at certain SNP probes. All the windows around the breakpoints have 10 kb and may have one
frequency for the common start positions and one for the end positions

size and state. Concerning incidence, we selected CNVs
identified in only one bird, those present in two and
those present in four to five birds (all with exactly the
same breakpoints). Within each frequency class we tried
to choose different sizes of events. Concerning state, in
each frequency class we ensured the inclusion of at least
one CNV belonging to each of the most common states
(1n and 3n). The size of the CNVs chosen for valida-
tion ranged from 1.06 to 77.12 kb, and are located within
CNVRs ranging from 1.06 to 494.36 kb. The number of
SNPs supporting these CNVs ranges from 3 to 19. The
gain or loss of specific genomic intervals, detected by
PennCNV, was confirmed by qPCR for 15 of these 16
CNVs (93.75%). However, we observed discrepancies in
the copy number based on PennCNV and qPCR. Consid-
ering exactly the same state (i.e. copy number between one
and four), 9 out of the 16 CNVs (56.25%) showed the same
number of copies using these two methods [Additional
file 3].

Repetitive and functional intervals in CNVs
We evaluated five different sequence features in the great
tit genome for their overlap with CNV breakpoint win-
dows: (I) Homologous regions, (II) Interspersed repeats
and low complexity DNA sequences, (III) CpG sites, (IV)
Transcription start sites (TSSs) and (V) AT-rich regions.
It has been shown that homologous regions reflect seg-

mental duplications and promote CNV formation [43]. In
order to study this in great tits we identified large homol-
ogous regions (≥ 1 kb and at least 90% sequence identity)
using megablast [44]. We identified 3.44Mb of the auto-
mosomes as homologous regions (0.37%), representing
1,111 intra- and 879 inter-chromosomal homologies

respectively (Table 1). The breakpoints observed at very
low frequency (≤ 2) are not correlated with the occur-
rence of homologous sequences whereas the more fre-
quent ones (>3) show progressively more overlap with
homologous regions (Fig. 3a). The sequence identity of the
homologies is also correlated with breakpoint frequency.
Homologous regions with higher sequences identity tend
to overlap more with CNV breakpoints with a frequency
equal or more than four (Fig. 4), in agreement with pre-
vious studies in human and chimpanzee describing an
excess of CNVs at regions with high sequence homolo-
gies [12].
In addition to the homologous regions, we identified

repetitive elements masked by RepeatMasker [45]. These
elements represent 6.16% (56.92 Mb) of the total length
of the great tit autosomes. We found 400,503 masked
regions, representing mainly retroelements (145,689;
43.06 Mb), in-tandem repeats (240,115; 11.54Mb) and
DNA transposons (13,374; 1.95 Mb; all regions and sub-
classification are shown in [Additional file 4]). All frequen-
cies of CNV breakpoints (Fig. 2) overlap masked regions
more than expected by chance, but there was no cor-
relation between the overlap and frequency (correlation
coefficient = 0.16, p-value = 0.66, Fig. 3b).

Table 1 Homologous regions in the great tit genome with more
than 90% of sequence identity and respective proportions of
intra and interchromosomal homologies

Homology Number of regions Total size (Mb) Similarity (+-SD)

Intrachromosomal 1111 2.66 92.97+-2.26

Interchromosomal 879 1.58 92.78+-2.1

All 1512 3.44 92.89+-2.25
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Fig. 3 Overlap of CNV breakpoints with repetitive regions in the genome. CNV breakpoints with 10 in frequency or more are grouped together. a:
Homologous regions with more than 90% in similarity and 1 kb. b: Masked regions as retroelements, RNA-related regions, DNA transposons and
in-tandem repeats

Fig. 4 Colocalization of CNV breakpoints (10 kb windows with ≥ 4 in frequency) and homologous regions binned by sequence identity. The y-axis
depicts the ratio between observed and expected number of overlaps (based on 10,000 randomic simulations) between CNV breakpoints and
homologous regions. Homologous regions are placed in one of the bin classes in the x-axis which are based on inter- or intrachromosomal percent
identities. Permutation p-values are based on the number of random simulations that obtained more overlaps than observed (*≤ 0.05 and
***≤ 0.001)
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Noteworthy is that although homologous and masked
regions show substantial overlap, their distribution differs.
Intervals covered by both features (i.e. intersection) are
considerably smaller than the regions overlapped in each
of them. From 1,512 homologous regions, 1,302 (3.13 Mb;
91%) overlap intervals masked by RepeatMasker [45] by
at least 1 bp. From 397,537 masked regions, 2,594 (1.24
Mb; 2.18%) overlap homologous regions by at least 1 bp.
However, only 985 kb is covered by both (31.5% and 1.73%
of the total length in homologous and masked regions
respectively).
Genomic regions which are rich in CpG sites and TSSs

show a high recombination rate in birds [32]. Thus, we
inferred these two features to understand the association
of highly recombinant regions with CNVs. We identified
6,861,240 CpG sites in the great tit autosomes, ranging
from 12,725 on chromosome LGE22 to 845,266 on chro-
mosome 2. All CNV breakpoints windows contain more
CpG sites than expected by chance and the number of
sites increases along with the breakpoint-frequency (cor-
relation coefficient = 0.59, p-value = 0.00017, Fig. 5a). Sim-
ilarly, TSSs have positive overlap correlation with CNV
breakpoint frequencies (up to 50% of breakpoints with fre-
quency≥ 15 overlap with TSSs, Fig. 5b). Results fromCpG
sites and TSSs are expected to be comparable given the
known high prevalence of CpG islands at TSSs [32, 46].
AT-rich intervals have been reported at genomic regions

known to be prone to breakage, thereby allowing complex
rearrangements [14]. Thus, we identified 629,840 AT-rich
intervals, of which the majority is 8 bp in size but that
can be up to 100 bp in size. CNV breakpoint frequencies
have a strong negative correlation with AT-rich intervals
(Fig. 5c).
To verify a possible technical bias underlying the

observed correlations, we evaluated the correlation

between signal variability in SNP probes outside our
CNVRs and the GC ratio of the region. The GC ratio
could be relevant because it can lead to a so-called GC
wave [47], which is a well-known bias in the detection of
CNVs from SNP-arrays (causing variation in hybridiza-
tion intensity). We inferred the Log R Ratio (LRR) values
in non-CNV probes and estimated its standard deviation
median for each tile of 10 kb in the genome.We correlated
thesemedians with the GC ratio and found a very low pos-
itive correlation coefficient (0.02; p-value=0.059) with the
LRR standard deviation (SD) median [Additional file 5].
This low correlation is expected because we corrected all
LRR values for this GC wave before CNV detection.

Gene enrichment and functional analysis
The genomic coordinates of all 8,008 CNVRs identified
overlap with 6,857 of the 16,541 annotated unique genes
(41.45%) for great tit (build 1.1 [40]). Using these overlap-
ping genes we performed an enrichment analysis looking
for pathways (Kyoto encyclopedia of genes and genomes,
KEGG) and gene ontology (GO) gene sets prevailing in
genes located within (i) CNVRs and (ii) CNV breakpoints
seen in at least four birds.
Proteins of genes overlapping CNVRs were significantly

overrepresented for 15 KEGG biological pathways (Table
2, [Additional file 6]), which aremostly related to neuronal
and cardiac processes. All significant KEGG pathways
were compared with 10,000 random enrichments and we
found all processes enriched in CNVRs with permuta-
tion p-value ≤ 0.001 [Additional file 6]. In accordance
with KEGG results, we found 77 GO gene sets mostly
related with neuronal, cardiac and ion transport pathways.
The GO gene sets with lowest p-values where synap-
tic membrane, postsynapse and postsynaptic membrane
respectively [Additional file 6].

Fig. 5 Overlap of CNV breakpoints with functional features and regions prone to breakage. a: CpG sites. b: Transcription start sites (TSSs). c: AT-rich
intervals. CNV breakpoints observed in 30 birds or more are grouped together for CpG and AT-rich features. Otherwise, in TSSs we grouped those
with 10 or in frequency because most of high frequent CNV breakpoints are small groups and can impair confident comparison with more scarce
features as TSSs (in comparison with CpG or AT-rich sites)
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Table 2 Biological pathways enriched at CNVRs in the great tit genome

ID Description Number of proteins Ajusted p-value Protein ratio

hsa05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 59 5.15× 10−6 0.728

hsa04020 Calcium signaling pathway 126 1.16× 10−4 0.583

hsa04360 Axon guidance 127 3.99× 10−4 0.57

hsa04724 Glutamatergic synapse 78 8.2× 10−4 0.609

hsa04514 Cell adhesion molecules (CAMs) 75 8.2× 10−4 0.638

hsa04925 Aldosterone synthesis and secretion 60 8.2× 10−4 0.61

hsa04713 Circadian entrainment 67 3.1× 10−3 0.604

hsa00220 Arginine biosynthesis 19 3.15× 10−3 0.826

hsa04970 Salivary secretion 48 1.34× 10−2 0.615

hsa04022 cGMP-PKG signaling pathway 105 1.73× 10−2 0.591

hsa05410 Hypertrophic cardiomyopathy (HCM) 55 1.73× 10−2 0.536

hsa04740 Olfactory transduction 29 1.73× 10−2 0.674

hsa05010 Alzheimer’s disease 78 3.84× 10−2 0.545

hsa04750 Inflammatory mediator regulation of TRP channels 60 4.92× 10−2 0.561

hsa05414 Dilated cardiomyopathy 57 4.92× 10−2 0.564

ID = pathway identification code; Description = pathway name; Number of proteins = number of protein names with genes overlapping CNVRs; Adjusted p-value =
enrichment FDR corrected p-value; Protein ratio = ratio between protein names with genes in CNVRs and all protein names assigned to a specific pathway

In order to determine if similar enrichment is also
reflected in more frequent CNVs, we performed the gene
enrichment using the CNV breakpoint windows (fre-
quency ≥ 4, subset analyzed in the Fig. 4). These CNV
breakpoints overlap 1,012 genes which are enriched for
five KEGG pathways and six GO gene sets, as presynaptic
active zone, homophilic cell adhesion and neuron recogni-
tion [Additional file 7]. From these 1,012 genes, a subset of
68 overlap homologous regions in the great tit genome, 18
have SNP alleles previously described as under selection
[40] and five overlap homologous regions and are under
selection concomitantly [Additional file 10].

Genome Synteny with zebra finch and chicken at great tit
CNVRs
We compared the great tit genome with the genomes
of chicken and zebra finch to identify synteny blocks
[Additional file 8]. For the great tit-chicken comparison,
we found 13,437 blocks in synteny ranging in size from
181 bp to 2.15 Mb. The number of blocks varied from 11
on chromosome LGE22 to 1,921 on chromosome 2. For
the great tit-zebra finch comparison, we found 5,141 syn-
teny blocks ranging in size from 182 bp to 6.19 Mb. The
number of blocks varies from 18 on chromosome LGE22
to 605 on chromosome 2.
We then inferred to what extent the identified CNVs

overlap with evolutionary breakpoints and whether this
overlap differs from overlap with regions randomly cho-
sen within the genome. We found 3,090 CNVRs (38.58%)
overlapping evolutionary breakpoints (with chicken and
zebra finch concomitantly), a number that is consistently

higher than expected by chance (p-value 9.99e-05). We
observed 7,022 genes overlapping the evolutionary break-
points, which are enriched for biological pathways mostly
related to neuronal and cardiac processes [Additional
file 9]. At least eight genes that have previously been
reported [48] to be located at CNV regions in chicken
and four in zebra finch overlap evolutionary breakpoints
[Additional file 10].

Discussion
Most studies have focused on single nucleotide changes
when studying genetic associations with phenotypes and
evolution. However, also variation in genomic structures
such as CNVs are shown to be associated with a wide
range of phenotypes [19, 49] and evolutionary phenom-
ena like speciation [12, 21, 50] and adaptation [51, 52]. We
here therefore used a high density SNP array to identify
CNVs as well as their inheritance and architecture in the
great tit genome. We detected CNVs covering a large per-
centage (28.09%) of the great tit genome. Because CNV
identification based on SNP Affymetrix arrays are prone
to high false discovery rates, we used themother-daughter
family structure of our data to access relative CNV confi-
dence. The relative number of inherited events is higher
for CNVs supported by more SNP probes, especially for
CNVs with more than 40 probes. The low inheritance of
the shorter CNVs suggests a relative high false negative
call rate. On the other hand, most of the CNVs tested
by qPCR were successfully validated (15/16) and all of
these had less than 25 probes suggesting a low false posi-
tive call rate of the Affymetrix array. Regarding the exact
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number of copies, the disparity between SNP-array and
qPCR results can be explained by the inherent resolution
of each technology. SNP-array data have limited power
to infer the exact number of copies whereas qPCR may
be considered a gold standard and consequently is more
reliable to infer the number of copies.
We evaluated the overlap pattern of CNVs with five

genomic features that have known role in structural
variation formation and recombination: (i) Homologous
regions, or segmental duplications, which support CNV
formation through non-allelic homologous recombina-
tion [29, 53]. (ii) Repetitive features like transposable
elements and retrotransposons which account for a sub-
stantial fraction of copy-number differences [54, 55] and
mutually explain recent and ongoing phenotypic adapta-
tion [56]. (iii) Functional CpG and (iv) TSSs that harbor
high recombination rate in birds [32]. (v) AT-rich regions
are prone to break and subsequently produce complex
rearrangements [14, 29, 57–59]. All these five genomic
features display non-random overlap with CNVs and their
breakpoint frequencies.
Homologous regions, at least one kb in size and with

at least 90% of sequence identity, reflect recent segmen-
tal duplications in the genome [43] and can increase
the chance of a triplication event in subsequent gen-
erations by more than 100-fold [60]. Thus, apart from
positive selection or drift, the CNV frequency may have
increased due to a higher rate of rearrangement at these
genomic intervals. We find a significant positive correla-
tion between, CNV breakpoints seen in at least four birds,
and regions containing segmental duplications. How sim-
ilar these genomic homologies are, is also determinant for
CNV formation and can reveal its evolutionary history
[12]. Over time, duplicated regions that are fixed decrease
in identity, which consequently decreases the chance of
recombination mechanisms, such as non-allelic homolo-
gous recombination, to act upon them [61]. Therefore,
CNVs arising from this mechanism are relatively rarer at
duplications with lower homology. This is reflected by
the increasingly overlap of CNV breakpoints (frequency
≥ 4) and homologous regions with higher sequence
identity.
Most of homologous regions overlap repetitive elements

masked in the genome, like transposable elements. How-
ever, both features display different genomic length dis-
tribution and coverage. Repetitive elements cover around
ten times more nucleotides, but are usually smaller in
length when compared with overlapping homologous
regions. In addition, masked regions overlap CNV break-
point windows more than expected by chance but do
not differ between breakpoint frequencies like homolo-
gous regions. The number of transposable elements in the
great tit genome is comparable with other bird genomes,
but they cover a relatively smaller fraction of the whole

genome sequence length. The relative coverage in great tit
is 1.24% whereas other bird species vary from 4.1 to 9.8%
([62–64], for a review see [65]). The coverage of transpos-
able elements found here for the build 1.1 is comparable
to previous version of the genome (2.06 Mb in this study
and 1.95 Mb previously in [40]). Remarkably, transpos-
able elements in great tit genome display distinct CpG
hypermethylation between tissues, albeit their expression
is correlated only with non-CpG methylation [46].
We also evaluated whether the CNV breakpoints are

positively correlated with the presence of functional
sequences like CpG sites and TSS. It has been shown that
in birds recombination prevails at transcription start or
end sites and CpG islands [32]. The overlap of CpG sites
and TSSs with CNV breakpoints increases with break-
point frequencies in this great tit population. This result
suggests a higher CNV mutation rate at these regions,
although it is complex to disentangle mutation rate from
selection of the CNVs at these regions.
AT-rich intervals have repeatedly been reported as com-

mon fragile sites [29, 57, 58], which are more prone to
break induced replication [66]. This mechanism has a high
risk of undergoing template switching [14, 59], result-
ing in complex structural variants. Therefore, as AT-rich
intervals are expected to easily break during meiosis,
each meiosis breakage might produce CNVs with distinct
breakpoints and gene content in the population [29]. CNV
breakpoint frequencies in this great tit population are neg-
atively correlated with AT-rich sites, in agreement with
the expectancy that lower number of CNVs will share
breakpoint positions among individuals in fragile sites
throughout genome.
We also performed a functional enrichment for genes

within (i) CNVRs and (ii) CNV breakpoints seen in at least
four birds. A large proportion of the great tit genes over-
laps with CNVRs (41.76%) and these CNV breakpoints
(6.12%). Although CNVRs overlap almost seven times
more genes, pathways in CNVRs as well as in these CNV
breakpoints were enriched to neuronal processes and
structure like axion guidance and glutamatergic synapse;
cardiac or muscular processes like arrhythmogenic right
ventricular cardiomyopathy and calcium signaling. Inter-
estingly, genes related to neuronal functions were previ-
ously shown to be under positive selection in great tit [40].
Moreover, a comparative CNV analysis among different
bird species such as chicken, turkey and common quail
found a gain in leucine rich repeat and fibronectin type III
domain containing 5 (LRFN5), which is involved in presy-
naptic differentiation, to occur just in quails [67]. In this
great tit population, LRFN5 is located within CNVR7101
(frequency ≥ 5.4%) that harbor gains and losses. Cal-
cium signaling, that is also enriched in great tit CNVRs,
is a key process in neuronal physiology mainly due to
its role on neuron buffering [68] and in muscle activity
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by troponin-tropomyosin complex ([69], for a review on
calcium signaling see [70]). However, the high rate of false
negative of the CNVs identified here hampered efforts to
find which genes are under selection, or that display high
LD with SNP alleles at genes previously found to be under
selection [40].
We identified a median of 12 CNVs per bird, which

is comparable to 11.75 found by Skinner et al. [67] that
evaluated different bird species, which in turn is compa-
rable to the situation in mammals [67]. The same study
also claimed that CNVRs in birds could have a slightly
higher association with genes than in mammals, but the
limited number of samples prevented a more robust con-
clusion at that time. Here we found 66% of the CNVRs
harboring genes, value that increases to 78.3% when con-
sidering only polymorphic CNVRs. These proportions
are comparable with the 70% that has been found pre-
viously [67]. Therefore, the large population analyzed
here plus the prevalence of bird CNVs on genes may
explain the striking proportion of 41.45% great tit genes
with CNVs.
To shed light on the evolutionary implications of CNVs

and their associated genomic architecture, we compared
the great tit genome with the genomes of two other birds:
chicken and zebra finch. As expected, because of the
higher evolutionary proximity we found a higher degree
of synteny between the two songbirds, great tit and zebra
finch. The overrepresentation of CNVs at evolutionary
breakpoints suggests a critical role in speciation. More-
over, we found biological pathways that are related to
neuronal and cardiac processes enriched in both CNVs
and evolutionary breakpoints. Syntenic regions among
zebra finch and chicken with known CNVs harbor at
least nine genes that are at evolutionary breakpoints.
These genes are involved in signalling and neuronal
pathways.

Conclusion
CNVs can be challenging to detect and interpret using
SNP arrays due to biological and technical variability.
The qPCR validation and the intrinsic genomic architec-
ture of the CNVs identified here point to a substantial
number of false negatives. The genomic features enriched
in CNVs (homologous regions, masked regions, CpG
sites, TSSs and AT-rich intervals) support specific mech-
anisms of the formation of CNVs. Moreover, CNVs are
enriched at evolutionary breakpoints, neuron and car-
diac related genes and a subset harbors SNP alleles under
selection [40]. Therefore, we expect the CNVs identified
here to be valuable for future studies on the great tit
genome, but the non-random distribution and inheritance
patterns of CNVs indicate that they should be inter-
preted in the light of their genomic architecture and false
negative rate.

Methods
Genotype calling and population description
Blood samples of great tits (Parus major) were collected
from our long-term study populations on the ‘Veluwe’
area near Arnhem (52°02’ N, 5°50’ E, the Netherlands).
Whole blood samples were stored in either 1 ml Cell Lysis
Solution (Gentra Puregene Kit, Qiagen, USA) or Queens
buffer [71]. DNA was extracted by using the FavorPrep
96-Well Genomic DNA Extraction Kit (Favorgen Biotech
corp.). DNA quality and DNA concentration were mea-
sured on a Nanodrop 2000 (Thermo Scientific).
A total of 2,648 great tits were genotyped using a custom

made Affymetrix®great tit 650K SNP chip at Edinburgh
Genomics (Edinburgh, United Kingdom). SNP calling was
done following the Affymetrix®best practices workflow by
using the Axiom®Analysis Suite 1.1. Nine individuals with
dish quality control value of <0.82 were discarded. The
length of the probes is 70 bp and more information is
available in the raw data submitted to gene expression
omnibus (GEO, GSE105131).

Input construction and individual CNV calling
We applied the files denominated ‘summary’, ‘calls’ and
‘confidences’, built during SNP genotyping, to obtain
the inputs for CNV detection. These files were used
to generate canonical clusters [72] by the PennCNV
(version 08 Feb 2013) function ‘generate_affy_
geno_cluster.pl’, which allowed the estimation
of the relative signal intensities (i.e. LRR) and rela-
tive allele frequencies (B allele frequency, BAF) by the
‘normalize_affy_geno_cluster.pl’ PennCNV
function. Using individual BAF values we then estimated
the population BAF for each SNP marker, with the
‘compile_pfb.pl’ PennCNV function.
As the CG ratio content around each SNP marker is

known to influence the signal strength [47], their rel-
ative content (1 Mb window) was estimated using the
‘nuc’ BEDTools function [73]. Therefore, we used the
‘genomic_wave.pl’ PennCNV function to adjust indi-
vidual raw LRR signal values.
To identify the individual CNVs, we applied the

‘detect_cnv.pl -test’ for all 31 autosomes. The
raw CNVs were filtered out if smaller than 1 kb or sup-
ported by less than 3 SNPs. Birds with LRR standard
deviation >0.30 or BAF drift >0.02 were also filtered out. A
total of 2,175 birds had at least one CNV call after quality
control.

Establishment of CNV hotspots and CNV frequency
The genomic regions with at least one individual CNV
mapped were defined by the ‘reduce’ function from
GenomicRanges R/Bioconductor package (version 1.28,
[74]) and then defined as CNVRs. The frequency of
each CNVR was estimated based on the number of
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samples mapped at the genomic interval comprised by the
CNVR.
We inferred the frequency of all CNV start and

end positions and extend by 5 kb up and downstream
these breakpoints. These genomic intervals are defined
throughout the text as CNV breakpoint windows and their
coordinates were compared with functional and repetitive
intervals in the great tit genome.

CNV validation by quantitative PCR
Primers were designed using Primer3plus [75] and quality
testing was performed with NetPrimer (http://www.
premierbiosoft.com/netprimer).
Samples to be validated were checked for quality based

on the amount of dsDNA, which was measured with
Qubit®Fluorometer. Subsequently, in each sample we used
four different concentrations to determine primer effi-
ciency: 15ng, 7.5ng, 3.8ng and 1.9ng of DNA. Reactions
were joined in a final volume of 12.5μl, containing 3.75μl
DNA, 6.25μl 2X reaction buffer (MESA Blue from Invit-
rogen®), 1.25μl forward primer (2μM) and 1.25μl reverse
primer (2μM). Samples with CNV and diploid (2n, refer-
ence samples) were tested with the designed primer sets.
Measurements were performed with the Applied Biosys-
tems®7500 real-time PCR system. Cycle thresholds (log2
Ct) were corrected based on the efficiency of each primer.
�Ct was calculated as Ct from the sample with a specific
CNV minus Ct of the diploid (2n) reference sample [76].
The reference sample was given by a random bird with 2n
state on the tested region.

Identification of repetitive regions in the great tit genome
To identify masked regions in the reference genome and
their respective functionality we applied RepeatMasker
[45] version open-4.0.6 using the default mode run with
cross match version 0.990329. The query species was
assumed to be ‘aves’. The regions identified were classi-
fied as retroelements, RNA-related regions, DNA trans-
posons and in-tandem repeats. Subclassification to define
the families within each class was also described when
available for a specific class. For simplification, we con-
sidered three general families in retrotransposons (short
interspersed nuclear elements [SINEs], long interspersed
nuclear elements [LINEs] and long terminal repeats
[LTRs]) and in-tandem repeats (satellites, regions of low
complexity and simple repeats). Uncertain family classi-
fication was neglected in DNA transposons (e.g. “hAT?”
was considered “hAT”).
To identify homologous regions in the great tit genome

we used a protocol described elsewhere [77], which
applied the megablast greedy algorithm [44] on the great
tit reference genome build 1.1, [40].We performed all pos-
sible comparisons among autosomes and each one against
itself to identify inter and intra chromosomal duplications,

respectively. We subset regions larger than 1 kb and >90%
in sequence similarity, which suggest regions containing
recent segmental duplications [77]. We filtered out all
homologies with more than 10% of its size containing
unknown nucleotides (“N”) or/and with less than 1 kb of
know nucleotides: adenine (A), cytosine (C), thymine (T)
or guanine (G).

Functional features and patterns in great tit genome
Thus, we identified genomic intervals containing [CG]n
(n = 1) and TSSs (defined the gene promoters as regions
starting 300 bp upstream and ending 50 bp down-
stream each gene start position, always considering the
transcription orientation in each gene). We also identi-
fied regions rich in AT ([AT/TA]n or [AA/TT]n, where n
≥ 4), due to their role on recombination by break induced
replication [66]. CpG sites and AT-rich intervals were
converted into reference genomic ranges (build 1.1 [40])
by ‘vmatchPattern’ function in GenomicRanges Bio-
conductor/R package (version 1.28, [74]). The overlap
expected by chance was obtained by simulating genomic
tiles of 10 kb with ‘randomizeRegions’ function in
regioneR R/Bioconductor package (version 1.80, [78]).

Gene annotation and enrichment analysis
We used gene annotation version 101 from the gen-
eral feature format (GFF) file from National Center
for Biotechnology Information (NCBI) great tit genome 1.1
(https://www.ncbi.nlm.nih.gov/assembly/GCF_001522545.2).
From 17,545 unique gene names, 16,541 were assigned
to autosomal chromosomes which were then used to
the subsequent enrichment steps. Gene names were
converted to Entrez Ids and subsequently enriched with
‘enrichKEGG’ function to identify KEGG pathways;
and ‘enrichGO’ function to identify GO gene sets
overrepresented in all CNVRs and in CNV breakpoint
windows present in four birds or more. Both functions,
implemented in the ClusterProfiler R/Bioconductor pack-
age (version 3.4.1, [79]), used human as the organism
(org.Hs.eg.db R/Bioconductor package version 3.4.1,
2017-Mar29, [80]) due to high accuracy in gene and path-
way annotation. The p-values were adjusted by Benjamini
and Hochberg method (FDR [81]). The gene background
to enrichment of CNV breakpoint windows included
just genes up to 5 kb from SNPs (reflecting every 10 kb
window around SNPs).
To infer the enrichment expected by chance using the

same number of genes, we randomly sampled 6,812 genes
(total number of unique gene names overlapping CNVRs)
10,000 times and followed the same enrichment process.
Thus, for each significant KEGG pathway in CNVRs, we
compared the number of protein/gene names in CNVRs
with random enrichments. Therefore, the permutation
p-value was based in the number of times that a random

http://www.premierbiosoft.com/netprimer
http://www.premierbiosoft.com/netprimer
https://www.ncbi.nlm.nih.gov/assembly/GCF_001522545.2
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enrichment obtained equal more protein/gene names
linked to a specific process (times/10,000).

Identification of Syntenic blocks and evolutionary
breakpoints
We used the chicken (Gallus gallus, Gallus_gallus-
5.0) and zebra finch (Taeniopygia guttata, taeGut3.2.4)
genomes to find sequence synteny with the great tit
genome build 1.1 [40]. All FASTA files were used in the
‘FindSynteny’ and ‘AlignSynteny’ functions, which
are both implemented in the R/Bioconductor package
DECIPHER ([82], version 2.6.0). The synteny blocks were
merged by overlap with ‘reduce’ function (Genomi-
cRanges R/Bioconductor package, version 1.28, [74]). We
classified the resulting output into (i) syntenic blocks, (ii)
evolutionary breakpoints and (iii) evolutionary breakpoint
regions as described previously [83].
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