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Abstract

Background: Omics profiling is now a routine component of biomedical studies. In the analysis of omics data,
clustering is an essential step and serves multiple purposes including for example revealing the unknown
functionalities of omics units, assisting dimension reduction in outcome model building, and others. In the most
recent omics studies, a prominent trend is to conduct multilayer profiling, which collects multiple types of genetic,
genomic, epigenetic and other measurements on the same subjects. In the literature, clustering methods tailored to
multilayer omics data are still limited. Directly applying the existing clustering methods to multilayer omics data and
clustering each layer first and then combing across layers are both “suboptimal” in that they do not accommodate the
interconnections within layers and across layers in an informative way.

Methods: In this study, we develop the MuNCut (Multilayer NCut) clustering approach. It is tailored to multilayer
omics data and sufficiently accounts for both across- and within-layer connections. It is based on the novel NCut
technique and also takes advantages of regularized sparse estimation. It has an intuitive formulation and is
computationally very feasible. To facilitate implementation, we develop the function muncut in the R package NcutYX.

Results: Under a wide spectrum of simulation settings, it outperforms competitors. The analysis of TCGA (The Cancer
Genome Atlas) data on breast cancer and cervical cancer shows that MuNCut generates biologically meaningful
results which differ from those using the alternatives.

Conclusions: We propose a more effective clustering analysis of multiple omics data. It provides a new venue for
jointly analyzing genetic, genomic, epigenetic and other measurements.

Keywords: Multilayer omics data, Clustering, NCut

Background
In biomedical studies, omics profiling is now routinely
conducted. In the analysis of omics data, clustering is an
essential step. Clustering results can be used in multiple
ways. For example, they can suggest the unknown func-
tionalities of omics units, with those in the same clusters
likely to have related biological functions [1]. Clustering
can also assist dimension reduction/variable selection in
outcome model building [2]. A large number of cluster-
ing methods have been developed under both “classic”
low-dimensional settings and high-dimensional settings
for omics data [3, 4]. The existing literature is too vast
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to be reviewed here. For relevant discussions, we refer to
[5–7] and others.
Complex biological processes involve changes at the

genetic, epigenetic, genomic, and other levels. Most
recently, a prominent trend in biomedical research is to
conductmultilayer profiling, which collects multiple types
of omics measurements on the same subjects. A repre-
sentative example is TCGA (The Cancer Genome Atlas),
which is organized by the NIH/NCI and has data pub-
licly available. In TCGA, for multiple cancer types, data
have been collected on mRNA gene expression, DNA
methylation, microRNA, copy number variation, protein
expression, and others. Such multilayer data have been
analyzed in recent studies. For example, in [8] and others,
they lead to disease outcome models with better predic-
tive power than analyzing a single layer of data. In [9] and
others, more reliable omicsmarkersmissed by single-layer
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studies are identified. However, our literature search sug-
gests that there is still insufficient attention to clustering
analysis with multilayer omics data.
Clustering analysis with multilayer omics data is chal-

lenging. Directly applying the existing clustering meth-
ods may not be appropriate. The interconnections within
layers (for example, among gene expressions) and those
across layers (for example, between gene expressions and
CNVs) are different both biologically and statistically.
The existing clustering methods are mostly designed for
“homogeneous” variables and cannot sufficiently accom-
modate such differences. Another possible strategy is to
first cluster within each layer and then combine clusters
across layers. This strategy ignores the regulations across
layers and does not use all available information. The inef-
fectiveness of such strategies can be partly seen in our
numerical study.
The goal of this study is to fill the knowledge gap

by developing a clustering method tailored to multilayer
omics data. Considering the fast increasing popularity of
multilayer omics data, essential role of clustering analy-
sis, and lack of multilayer omics data clustering methods,
the proposed study is warranted. It advances from the
existing literature inmultiple ways. Compared to the exist-
ing clustering analyses with a single layer of omics data,
the data structure is much more complicated: there are
multiple types of variables, and the connections among
variables are different. This study also differs from the
existing ones on multilayer omics data. Some published
studies use a multilayer representation of omics data to
find meaningful subgroups of subjects [10–13]. Repre-
sentative examples include the iCluster [2] and Similarity
Network Fusion (SNF) [14], both of which cluster patients
into different subgroups. In another recent study [15],
data on patients, genes, and drugs are jointly analyzed
for clustering. The output of this study is three differ-
ent subgroups of the three different data types. There
are also multilayer studies that focus on marker identifi-
cation and model building. For example, multiple layers
of protein-genetic interactions have been aggregated to
form a smaller set of layers [16]. There are also recent
works on graph measures of centrality developed specifi-
cally for multilayer data, including for example measures
of node centrality [17] and methods for community detec-
tion [18]. Data used in some of the aforementioned studies
are similar to the present study. However, the analysis
goals are quite different. Specifically, in the aforemen-
tioned clustering analyses, the goal is to cluster subjects
(patients), whereas in the present study, the goal is to clus-
ter omics measurements. With this difference, the exist-
ing clustering methods are not applicable to the present
problem. In our numerical studies, we have attempted to
employ these methods but obtained failing results (details
available from the authors and omitted here).

This study has a different goal from the aforementioned
studies and targets at clustering multiple types of omics
measurements. Methodological development in this study
is challenging and tailored to the special characteristics
of multilayer data. The proposed method is built on the
NCut technique [19], which has multiple advantages over
some of the existing techniques (for example, by mak-
ing fewer and weaker data/model assumptions) but has
not been extensively applied in omics studies, and signifi-
cantly advances from it. As such, this study may also have
independent methodological value. Numerical study will
show that the proposed method is computationally much
feasible and outperforms multiple relevant competitors.
Overall, this study can provide a useful new venue for a
practically important problem.

Methods
As a representative example, consider a profiling study
that collects measurements on copy number variations
(CNVs), gene expressions (GEs), and proteins. Data with
other types of measurements can be analyzed in the same
way. The schematic plot of the data structure is shown in
Fig. 1. The three types of measurements make three lay-
ers. The bottom layer consists of CNVs, the middle layer
consists of GEs, and the upper layer consists of proteins.
The regulatory relationship between different types of
omics measurements has been studied long [20–22]. Sim-
ply put, as shown in Fig. 1, there are multiple “channels”,
which correspond to different biological functionalities.
Within each channel, a small number of CNVs in the
lower layer regulate a small number of GEs in the mid-
dle layer, which encode a small number of proteins in
the upper layer. In clustering analysis with a single type
(layer) of measurements, say for example GEs, the goal is
to put interconnected GEs in the same cluster. With mul-
tiple types (layers) of measurements, there are two types
of interconnections: within layers and across layers. In
clustering analysis with multilayer data, our first goal is
still to put interconnected CNVs (GEs, proteins) in the
same cluster. Unique to multilayer data, our second goal
is to put tightly interconnected measurements in differ-
ent layers also in the same cluster. As such, as shown in
Fig. 1, one resulting cluster corresponds to one channel
and consists of multiple types of omics measurements.
When limited to a single-layer, the obtained clustering
structure is comparable to that of the existing methods.
As to be shown below, the proposed method includes the
existing one as a special case and can be more informative
by considering multilayers.

MuNCut
Denote Z = (Z1, . . . ,Zq),Y = (Y1, . . . ,Yp), and X =
(X1, . . . ,Xr) as the length q, p, and r vectors of proteins,
GEs, and CNVs, respectively. Assume that data have been
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Fig. 1Multilayer omics data and clustering. Three data types are considered: proteins in the upper layer; gene expressions in the middle layer; and
CNVs in the lower layer. One dot represents one variable. Two dots are connected by a line if the corresponding variables are interconnected). Left
panel: the true data structure with four clusters. Middle panel: MuNCut clustering. Right panel: K-means clustering. For K-means and MuNCut,
different clusters are represented using different colors. a Truth. bMuNCut. c K-means

properly processed. With multilayer data, as described
above, both within- and across-layer connections need to
be considered.
NCut clustering within the same layers First consider

CNVs. Denote WC = (wjl,c)r×r as the weight matrix,
where the non-negative element wjl,c measures the simi-
larity between CNVs j and l. Following published studies
[19, 23], we setwjl,c equal to the Gaussian kernel. In the lit-
erature, multiple similarity measures have been proposed.
We adopt this specific definition because of its simplic-
ity and effectiveness demonstrated in published studies.
Denote A1,C , . . . ,AK ,C as a partition of {1, . . . , r} which
leads to K disjoint CNV clusters. Here in the subscript,
“C” is used to represent CNV. For Ak,C , denote Ac

k,C as its
complement set. Consider the NCut measure

NCutC =
K∑

k=1

cut
(
Ak,C ,Ac

k,C ;WC
)

cutvol(Ak,C ;WC)
, (1)

where

cut
(
Ak,C ,Ac

k,C ;WC
) =

∑

j∈Ak,C ,l∈Ac
k,C

wjl,c, (2)

and

cutvol(Ak,C ;WC) =
∑

j,l∈Ak,C

wjl,c. (3)

In a similar way, we can define the NCut measures
for GEs and proteins and denote them as NCutG and
NCutP, respectively. Note that each layer has its own
weight matrix, namely WC ,WG, and W P. Overall, define
the single-layer NCut measure as

NCutsingle = NCutC + NCutG + NCutP. (4)

The optimal cutting is defined as the one that mini-
mizes NCutsingle. Note that NCutsingle does not take into
account the regulations (interconnections) across layers,
and working with this measure is equivalent to conducting
the NCut clustering with each layer individually.
Remarks The NCut technique is originally developed

in imaging and other scientific fields [24, 25] and more
recently applied to genetic and other data types [26]. It
may have multiple advantages over the alternatives. For
example, the cutting step is relatively independent of the
similarity/distance construction. Without making restric-
tive assumptions on the similaritymeasure and underlying
data distributions and models, it enjoys broad applica-
bility. Both the numerator and denominator in (1) have
lucid interpretations, with the numerator measuring the
across-cluster similarity and the denominator measuring
the within-cluster similarity. As such, NCut is built on a
sound statistical principle: it minimizes the across-cluster
similarity while maximizing the within-cluster similarity.
In addition, data analysis in this and other studies suggests
that it is computational affordable, even with high data
dimensionality.
NCut clustering across layers In the above subsection,

we have focused on the interconnections (similarity) for
omicsmeasurements within the same layers. Nowwe con-
sider the interconnections between omics measurements
belonging to different layers (for example, CNVs andGEs).
Following the literature [27], we first adopt a regression-
based approach to describe the regulations. Specifically,
consider the models:

Y = Xβ1 + ε1, Z = Yβ2 + ε2, (5)

where β1 and β2 are the r × p and p × q matrices
of unknown regression coefficients, and ε1 and ε2 are



Teran Hidalgo and Ma BMCGenomics  (2018) 19:198 Page 4 of 13

random errors (which may also include regulation mech-
anisms not measured). Assume n iid subjects. Denote
Y and X as the data matrices composed of the Y ’s and
X’s, respectively. For estimating the regression coefficient
matrices, we consider a penalized approach, where the
estimate of β1 is defined as

β̂1 = argmin
β

{||Y − Xβ1||22+λ
(
(1−α)||β1||22+α||β1||1

)}
.

(6)

λ > 0 and 0 ≤ α ≤ 1 are data-dependent tuning parame-
ters, and || · ||2(1) denotes the �2(1) norm. The estimate of
β2 can be defined in a similar manner. With the estimates,
define Ŷ = Xβ̂1 and Ẑ = Y β̂2.
For (X, Ŷ , Ẑ), the length r+p+q “mega” vector of omics

measurements, define the (r+ p+ q) × (r+ p+ q) weight
matrix

W̃ =
⎛

⎜⎝
0 WẐ:Ŷ 0

WT
Ẑ:Ŷ

0 WŶ :X
0 WT

Ŷ :X
0

⎞

⎟⎠ , (7)

where 0 denotes a matrix with all components zero (note
that in different places, it may have different dimensions),
WẐ:Ŷ and WŶ :X are the matrices of similarity between
Ẑ and Ŷ , and between Ŷ and X respectively, and the
superscript T denotes transpose.
For a partition of {1, . . . , r + p + q} (which leads to a

clustering structure), using W̃ , we can compute the NCut
measure NCutmulti in the same manner as in (1).
Rationale Linear regression has been adopted in mul-

tiple recent studies to describe the regulations between
different types of omics measurements and shown to
be effective [27, 28]. It has multiple desirable features
including for example lucid interpretations, easy accom-
modation of multiple regulators (for each GE, protein),
simple calculations, etc. We consider “unidirectional”
effects, that is, from CNVs to GEs, and from GEs to
proteins. We acknowledge that there can be “reversed”
effects: for example, proteins may affect gene expression
levels and methylation. However, such effects are usually
much smaller, and accommodating them causes signifi-
cant statistical challenges. For estimating the regulations
(β ’s), we adopt the elastic net (Enet) approach, which eas-
ily accommodates the sparsity of regulation relationships
and correlations among regulators. Note that Enet is not
essential here and can be replaced by other regularized
estimation techniques. With the weight matrix properly
constructed, we define NCutmulti in a way consistent with
NCutsingle. Note that, although seemingly straightforward,
NCutmulti (or similar quantities) has not been considered
in the literature.
MuNCut With a fixed K, let A = {A1, . . . ,AK } denotes

a disjoint partition of the CNVs, GEs, and proteins.

Note that the cluster represented by Ak may contain
multiple types of omics measurements. For Ak denote
Ak,C ,Ak,G, andAk,P as its components that are CNVs, GEs,
and proteins, respectively. For A, we define its MuNCut
measure as

MuNCut(A) = NCutmulti + γ × NCutsingle, (8)

where NCutmulti and NCutsingle are as defined above, and
γ ≥ 0 is a tuning parameter. The optimal clustering is
defined as the one that minimizes MuNCut(A).
Rationale The MuNCut objective function is the sum

of two NCut ones. Its intuitive interpretation is sim-
ilar to that of the standard NCut, that is, to mini-
mize similarity across clusters and maximize similar-
ity within clusters. Significantly advancing from NCut
and other existing approaches, MuNCut considers both
across- and within-cluster similarity for omics measure-
ments of the same type as well as different types. We
introduce γ to be more flexible and allow for different
“degrees of emphasis” on within layers and across lay-
ers. For the example shown in Fig. 1, we present the
MuNCut clustering result as well as that of the K-means.
We observe that MuNCut accurately identifies the true
clustering structure. In contrast, the K-means mostly
separates different data types and fails to put different
types of interconnected omics measurements in the same
clusters. More definitive results are presented below in
simulation.
Remarks When describing the regulations among

omicsmeasurements, we use a linear regression approach,
which has been shown to be effective in the literature
[20, 29]. Note that for the purpose of clustering, this
regression (and Enet for its parameter estimation) is not
essential. It can be replaced by other approaches, as long
as a similarity measure can be generated. In addition, with
the “scale-free” property of NCut, this similarity measure
does not have to be consistent with that for within lay-
ers. For many types of omics measurements, the direction
of regulation is clear. However, there are exceptions. For
example, it is still not clear whether CNV and methyla-
tion regulate each other. Consider for example a dataset
with methylation, CNV, GE, and protein measurements.
We propose adopting an existing approach [30], stack the
methylation and CNV measurements together, and cre-
ate a vector of “mega regulators” (of GEs). The proposed
approach can then be applied.

Computation
Computational algorithm The proposed approach first
involves computing the Enet estimates, which can be
effectively realized using multiple existing techniques
such as coordinate descent, which is adopted in the R
package glmnet used in our numerical study.
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For optimizing the MuNCut objective function, we
adopt the simulated annealing (SA) technique [31]. At
iteration t, denote A(t) =

{
A(t)
1 , . . . ,A(t)

K

}
as the parti-

tion (clustering result) and MuNCut(t) as the value of
the objective function. Further denote B as the maximum
number of iterations. The value of B is not important, as
long as it is large enough. Define the temperature function
as T(t) = Llog(t + 1). In our numerical study, we set L =
1000, which generates satisfactory result. In practice, to
be prudent, other L values may also need to be examined.
Discussions on tuning parameters with the SA technique
are available in the literature and will not be reiterated.
The proposed algorithm proceeds as follows.
Step 1 Randomly initialize A(0) =

{
A(0)
1 , . . . ,A(0)

K

}
. In

our numerical study, different initial values lead to similar
results.
Step 2 Set t = t + 1. For k = 1, . . . ,K , compute pk as

the number of (j, l) pairs such that j, l ∈ A(t−1)
k . Draw k(−)

and k(+) from {1, . . . ,K} with probabilities proportional
and inversely proportional to pk .
Step 3 Draw i randomly from A(t)

k(−)
. Set A(t)

k(+)
=

A(t−1)
k(+)

∪ {i} and A(t)
k(−)

= A(t−1)
k(−)

\ {i}. For j �= k(+), k(−),
A(t)
j := A(t−1)

j .
Step 4 If MuNCut(t) ≤ MuNCut(t − 1), then keep

A(t) as it is. If not, keep A(t) as it is with probability

exp
(
−MuNCut(t)−MuNCut(t−1)

T(t)

)
, andotherwiseA(t) = A(t−1).

Step 5 Repeat Steps 2-4 until t = B.
Extensive research on the SA technique is available in

the literature [32, 33]. Briefly, in Step 2, the proposed
probabilities prefer adding a new member to a small clus-
ter and deleting a member from a large cluster. Thus,
the “prior” is that clusters have similar sizes. Note that
this strategy can be adjusted according to preference/prior
information. Convergence of the SA algorithm to the
global optimizer has been examined in the literature [34].
It is achieved in all of our numerical examples.
With the high efficiency of the coordinate descent and

SA techniques, MuNCut is computationally very feasible.
The two steps have computational complexity O(nqpr)
and O(Bqpr), respectively. For a simulated dataset with
q = p = r = 200 and n = 50, we consider 100 tuning
parameter values in penalized estimation and B = 10, 000
in MuNCut. The proposed analysis takes about 30 s on a
laptop with standard configurations.
Tuning parameter selection In the Enet penalization

estimation, the tuning parameters are selected using cross
validation, which is the default in glmnet. With the pro-
posed MuNCut, the additional tuning parameters are γ

(which balances single- and multi-layer NCut measures)
and K, the number of clusters. For selecting these param-
eters, we adopt a cross validation-based approach [35],

which has been developed in the context of biclustering
and other studies and shown to be effective. Specifically,
consider a (γ ,K) dual.We randomly split data into a train-
ing set and a testing set. The MuNCut approach is applied
to the training set. On the testing set, we predict GEs using
CNVs in the same clusters and predict proteins using GEs
in the same clusters. The overall prediction errors for GEs
and proteins are then computed. Multiple splittings are
conducted, and prediction errors are summed over split-
tings. The (γ ,K) value that optimizes prediction is chosen
as the optimal. In our simulation, this approach leads to
satisfactory clustering results.
Software development To facilitate data analysis, we

developed an R package NCutYX publicly available
on CRAN at https://cran.r-project.org/web/packages/
NCutYX/index.html. The proposed approach is imple-
mented using the function muncut, which proceeds as
follows: clust ← muncut(Z, Y, X, K = 2, B = 3000, L
= 1000, gamma = 0.5, dist = “gaussian”, sigma = 1) In
the above command, Z is the data matrix of proteins, Y
is the data matrix of GEs, X is the data matrix of CNVs,
K is the number of clusters, B is the number of SA itera-
tions, L is the temperature coefficient, and gamma is the
tuning parameter γ . The option dist selects the type of
dissimilarity being used, which is the Gaussian kernel dis-
tance in this case with sigma specifying the bandwidth
parameter. The resulting object clust is a list where the
first entry (clust[[1]]) is a vector of SA sequence, and the
second entry (clust[[2]]) includes the clustering results.
The program can now accommodate three data layers.
Researchers can easily modify the code to accommodate
more layers.

Results
Data analysis
TCGA is a collaborative effort organized by NIH/NCI. For
multiple cancer types, data have been collected on multi-
ple types of genetic, epigenetic, genomic, and proteomic
changes. With the high data quality and public availability,
TCGA provides an ideal testbed for the proposedmethod.
Here we analyze breast invasive carcinoma (BRCA) and
cervical squamous cell carcinoma and endocervical ade-
nocarcinoma (CESC) data. The processed level 3 data are
downloaded using the R package gsdr. We refer to the
TCGA website and published studies for more informa-
tion on study design and data processing.

Evaluationmeasures
As the data generating mechanism is unknown, it is not
possible to evaluate clustering accuracy. We conduct the
following evaluation, which can provide some insights
into the clustering results.
Stability We randomly select n/2 subjects without

replacement [36] and analyze using the proposed as well

https://cran.r-project.org/web/packages/NCutYX/index.html
https://cran.r-project.org/web/packages/NCutYX/index.html
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as alternative methods. Repeat the process N times, and
denote the adjacency matrix of the kth clustering as Â(k).
Define the stability measure

Mstability = N−1
∑

1≤k≤N
Â(k). (9)

The (i, j)the element of this matrix describes the probabil-
ity that the corresponding variables are clustered together.
A stable approach has a large contrast: some elements
have large values, and the others have very small values.
The stability measure can be graphically presented using a
heatmap, with warmer colors describing larger values (and
colder colors describing smaller values). A heatmap with
greater contrast is preferred.
Concordance When applying multiple methods to the

same data, it is of interest to compare the similarity of
analysis results. For two clustering methods A and B,
denote the adjacency matrices as Â and B̂, respectively.
Define the concordance of method B with respect to A as

M(B|A) =
m∑

j,l
(Â � B̂)jl/

m∑

j,l
(Â)jl, (10)

with a larger value suggesting higher similarity. Note that
this concordance measure is not symmetric. That is, it is
possible that M(B|A) �= M(A|B), and thus both values
need to be calculated.

BRCA data
We analyze CNV, GE, and protein data. Data are collected
and processed as follows. A quick examination of data
suggests that there are much fewer protein measurements
than for GEs and CNVs. Thus we first identify 873 sub-
jects with 164 protein measurements. We then select the
top 1000 GEs and CNVs with the strongest distance corre-
lations [37] with the proteins. The considerations are that
clustering is more sensible with correlated measurements,
the numbers of GEs and CNVs relevant to proteins are not
expected to be large, and (as observed in simulation) per-
formance of the proposed method is better with a smaller
number of variables. GEs and CNVs with missing mea-
surements are removed from analysis. The three types of
omics data are then merged together. The analyzed data
contain 164 protein, 334 GE, and 514 CNVmeasurements
on 873 subjects.
With MuNCut and data-dependent tuning parame-

ters, three clusters are generated. The detailed clustering
results are presented in the Additional file 1. The num-
bers of (protein, GE, CNV) in the three clusters are
(52, 112, 168), (55, 108, 168) and (57, 114, 179), respec-
tively. Considering the inferior performance of KM, SC,
HC, LC, and FGC observed in simulation, we here analyze

data with KM*, SC*, and HC* and compare. The con-
cordance results are presented in Table 1. More detailed
clustering results using the alternatives are available from
the authors. Table 1 suggests that the MuNCut results
are moderately to strongly in concordance with those
using the alternatives. Different methods generate differ-
ent clustering results. The stability heatmaps of MuNCut
and the three alternatives are shown in Fig. 2. Better sta-
bility results are observed for MuNCut. Specifically, very
warm colors are observed within clusters, and very cold
colors are observed across clusters. This is not observed
with the alternatives. In addition, a closer examination
suggests that the alternatives often generate one big clus-
ter along with very small clusters, which can be less
interpretable and hence not desired.

CESC data
We first conduct the same data collection and process-
ing as previously described. The analyzed data contain
144 protein, 325 GE, and 488 CNV measurements on 164
subjects. When employing the proposed method, three
clusters are generated. The detailed clustering results are
presented in the Additional file 1. The numbers of (pro-
tein, GE, CNV) in the three clusters are (45, 100,160),
(43, 104, 152) and (56, 121, 176), respectively. The con-
cordance analysis in Table 1 again suggests that MuNCut
generates results different from using the alternatives,
and different methods have moderate concordance. More
detailed clustering results using the alternatives are avail-
able from the authors. The stability heatmaps are pre-
sented in Fig. 3. ForMuNCut, we again observe an obvious
contrast between warm/cold color regions, which sug-
gests satisfactory stability. More closely examining the
numerical values suggests that the stability is lower than
for the BRCA data, which is reasonable with the smaller
sample size. For the alternatives, observations similar to
those for the BRCA data are made.

Table 1 Data analysis: concordance between the analysis results
using different methods. In each cell,M(B|A), where B and A are
the clustering methods in the column and row, respectively

BRCA MuNCut KM* SC* HC*

MuNCut 100% 59.4% 72.7% 80.1%

KM* 44.7% 100% 74% 82.3%

SC* 34.5% 46.7% 100% 90.1%

HC* 36.3% 49.6% 85.9% 100%

CESC MuNCut KM* SC* HC*

MuNCut 100% 48.3% 44.6% 52.5%

KM* 37.8% 100% 51.3% 64.7%

SC* 38.7% 56.9% 100% 61.5%

HC* 35.6% 56.2% 48.1% 100%
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Fig. 2 Analysis of BRCA data: stability of heatmaps. aMuNCut; b KM∗ ; c SC∗ ; d HC∗ . The (i, j)th entry is the probability that the ith and j elements
belong to the same cluster. Higher/lower probabilities are presented using warmer/colder colors

Simulation
We conduct simulation to gauge performance of the pro-
posed approach and compare against multiple relevant
alternatives.
Alternativemethods In the literature, methods tailored

to the present data settings are lacking. We consider the
following alternatives because of their popularity and rel-
evance. It is specially noted that methods for clustering
subjects (with multilayer omics measurements) are not
applicable for clustering omics measurements. We first
consider clustering using the standard K-means (KM),
spectral clustering (SC), and hierarchical clustering (HC).
These methods are directly applied to the pooled data,
i.e, (Z,Y ,X). Note that this approach does not take into
account the differences among multiple types of omics
measurements. To tackle this problem, we also consider
KM*, SC*, and HC*, the matching version of these three
methods. Consider for example KM*. The KM clustering
is first conducted with the three types of measurements

separately. Here we reinforce that the numbers of clus-
ters for all three data types are the same. We then match
clusters across layers. Specifically, we experiment with
all combinations of CNV, GE, and protein clusters, and
select the one with the strongest associations between
GE and CNV clusters and between protein and GE clus-
ters. This approach is built on the popular clustering
techniques and conducts “post-clustering connections”
across layers. A potential advantage of this approach is
that if clusters from different layers “confirm” each other,
then the results can be more robust and trustworthy. In
addition, this approach can potentially avoid the “over-
fitting” problem with simultaneously clustering multiple
layers (as for example the connections among GEs can
be attributable to connections among CNVs and GE-
CNV regulations). With the growing popularity of net-
work analysis, we also consider two network community
detection methods, namely the Louvain (LC) [38] and
Fast Greedy Clustering (FGC) [39] methods, which have
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Fig. 3 Analysis of CESC data: stability of heatmaps. aMuNCut; b KM∗ ; c SC∗ ; d HC∗ . The (i, j)th entry is the probability that the ith and j elements
belong to the same cluster. Higher/lower probabilities are presented using warmer/colder colors

demonstrated competitive performance in the literature.
For the fairness of comparison, we use the same network
and similarity matrix input as for the MuNCut. As such,
this comparison can directly reveal the advantage of the
proposed clustering.
Evaluation of clustering accuracy For a specific clus-

tering result {A1, . . . ,AK }, an adjacency matrix A =
(ajl)m×m (m = q + p + r) can be constructed, where the
element ajl = 1 if the omics measurements correspond-
ing to j and l belong to the same cluster, and ajl = 0
if otherwise. Let AT and Â be the adjacency matrices of
the true and estimated clusters, respectively. Then the
accuracy measure is defined as the diversity between AT
and Â,

Maccuracy = 1 −
m∑

j,l
(AT � Â)jl/m2, (11)

where � is the component-wise product. A smaller value
indicates more accurate clustering.
Scenario I Set p = q = r. We have also examined

settings with unequal sizes and observed similar perfor-
mance (results omitted). There are four clusters, and the
numbers of CNVs (GEs, proteins) in the four clusters are
p/5, 2p/5, p/5, p/5, respectively. The clustering structure
is determined by the distribution of CNVs and the two
regressionmodels. Specifically,X is generated from amul-
tivariate normal distribution with marginal means zero,
marginal variances one, and variance-covariance matrix
�.� has a block diagonal structure. The first three blocks,
which correspond to the first three clusters, have off diag-
onal elements all equal to ρ. Two different ρ values are
considered (0.2 and 0.4), representing weak and moder-
ate correlations. The fourth block, which corresponds to
the last cluster, is identity. Under this correlation struc-
ture, CNVs in different clusters are independent of each
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other. For the first three clusters, CNVs within the same
cluster are correlated. For the fourth cluster, CNVs within
the same cluster are independent. β1 and β2 also have
the same block diagonal structure as �. That is, GEs only
depend on CNVs in the same cluster; and proteins only
depend on GEs in the same cluster. For the first three
clusters, 20% of randomly selected elements are nonzero
and have values satisfying Unif (h/2, h). Two different h
values are considered, representing weak and moderate
regulations. The remaining 80% of the elements are zero,
corresponding to sparse regulations. Note that, this data
generating mechanism allows for both cis- and trans-
acting effects. For the fourth cluster, the corresponding
blocks in β1 and β2 have all zero elements. For the first
three clusters, measurements in the same cluster are inter-
connected with each other and not connected with mea-
surements in other clusters. The fourth cluster is a “noisy”
cluster, which reflects the “biological reality” that there are

some “isolated” omics measurements, and some GEs and
proteins have regulations too weak to be detected. In the
two regression models, the random errors are generated
from N(0, 1).
For each setting, 200 replicates are generated. The

results are summarized in Table 2. Across all simula-
tion settings, the proposed method outperforms the eight
alternatives. For example in the first row, with n =
200, q = 400, h = 0.15, and ρ = 0.20, MuNCut has
Maccuracy value 0.023, compared to 0.411 (KM), 0.47 (SC),
0.565 (HC), 0.13 (KM*), 0.126 (SC*), 0.159 (HC*), 0.155
(LC), and 0.157 (FGC). The classic KM, SC, and HC
consistently perform poorly. A closer examination of the
analysis results suggests that their clusters tend to include
just a single type of omics data. That is, they fail to clus-
ter interconnected CNVs and GEs and proteins together.
The matching versions KM*, SC* and HC* can solve this
problem to a certain extent. However, they are still inferior

Table 2 Simulation results for Scenario I

Parameters Maccuracy

n q h ρ MuNCut KM SC HC KM* SC* HC* LC FGC

200 400 0.15 0.20 0.023 0.411 0.47 0.565 0.13 0.126 0.159 0.155 0.157

200 400 0.15 0.40 0.016 0.364 0.468 0.585 0.134 0.115 0.17 0.160 0.159

200 400 0.25 0.20 0.054 0.368 0.474 0.587 0.131 0.123 0.157 0.155 0.152

200 400 0.25 0.40 0.068 0.363 0.477 0.586 0.133 0.117 0.193 0.151 0.149

400 400 0.15 0.20 0.022 0.373 0.460 0.588 0.129 0.124 0.165 0.160 0.159

400 400 0.15 0.40 0.014 0.364 0.468 0.585 0.129 0.123 0.174 0.160 0.160

400 400 0.25 0.20 0.048 0.367 0.462 0.586 0.127 0.115 0.175 0.153 0.151

400 400 0.25 0.40 0.063 0.361 0.464 0.584 0.12 0.11 0.176 0.148 0.147

200 800 0.15 0.20 0.095 0.322 0.44 0.576 0.122 0.124 0.152 0.150 0.149

200 800 0.15 0.40 0.103 0.319 0.432 0.575 0.127 0.129 0.173 0.146 0.145

200 800 0.25 0.20 0.111 0.33 0.366 0.582 0.126 0.123 0.153 0.141 0.162

200 800 0.25 0.40 0.128 0.315 0.433 0.577 0.129 0.134 0.17 0.134 0.138

400 800 0.15 0.20 0.092 0.318 0.423 0.577 0.134 0.114 0.168 0.148 0.148

400 800 0.15 0.40 0.102 0.324 0.428 0.579 0.111 0.107 0.149 0.143 0.143

400 800 0.25 0.20 0.109 0.319 0.431 0.579 0.119 0.115 0.162 0.138 0.154

400 800 0.25 0.40 0.123 0.324 0.427 0.58 0.135 0.139 0.174 0.188 0.133

200 1200 0.15 0.20 0.11 0.312 0.384 0.578 0.139 0.139 0.157 0.145 0.156

200 1200 0.15 0.40 0.104 0.304 0.395 0.577 0.135 0.14 0.17 0.138 0.144

200 1200 0.25 0.20 0.124 0.308 0.4 0.576 0.132 0.131 0.153 0.212 0.162

200 1200 0.25 0.40 0.131 0.309 0.395 0.582 0.133 0.136 0.168 0.207 0.212

400 1200 0.15 0.20 0.112 0.316 0.388 0.58 0.122 0.124 0.154 0.141 0.154

400 1200 0.15 0.40 0.122 0.314 0.396 0.58 0.123 0.123 0.161 0.160 0.126

400 1200 0.25 0.20 0.127 0.315 0.403 0.573 0.13 0.132 0.162 0.186 0.197

400 1200 0.25 0.40 0.127 0.309 0.40 0.579 0.135 0.137 0.173 0.157 0.231

n is the sample size; q is the number omics measurements in each layer;
h measures the strength of regulation across layers; ρ is the correlation coefficient among CNVs
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to the proposed method. The network-based methods LC
and FGC have stable performance across settings, how-
ever, inferior to the proposed method. When the dimen-
sionality is high (q = p = r = 1200), performance of the
proposed method deteriorates. This is reasonable, as the
proposed method needs to estimate the regulations where
the number of parameters grows quadratically. When the
data dimensionality is ultrahigh (for example in a whole-
genome study), it is usually possible to select a smaller
number of “interesting” genes for analysis. Another option
is to use biological (for example pathway) or statistical
information, separate measurements into smaller func-
tional sets, and conduct clustering analysis with each set
separately.
Scenario II In the above simulation, CNVs, GEs, and

proteins not in the same cluster are independent, which
can be too simplified. Here we consider a more realistic
scenario. The settings are mostly identical to those in the

previous simulation. The key difference is in the variance-
covariance matrix �. Specifically, the first three clusters
have off diagonal elements equal to 2ρ, and all other off
diagonal elements of � are equal to ρ. That is, for the first
three clusters, CNVs, GEs, and proteins in the same clus-
ter are more strongly interconnected. However, those in
the fourth cluster and those in different clusters are still
correlated. This setting has many more correlations and is
more challenging than the previous one.
The results are summarized in Table 3. The patterns are

similar to those observed in Table 2. Under most settings,
the proposed method outperforms the eight alternatives.
Under a small number of settings, it is only slightly inferior
to SC*, with very small differences.
Scenario III Under this scenario, the true data generat-

ing models are

Y = Xβ1 + U1γ1 + ε1, Z = Yβ2 + U2γ2 + ε2. (12)

Table 3 Simulation results for Scenario II

Parameters Maccuracy

n q h ρ MuNCut KM SC HC KM* SC* HC* LC FGC

200 400 0.15 0.20 0.026 0.365 0.462 0.582 0.13 0.122 0.188 0.139 0.155

200 400 0.15 0.40 0.025 0.411 0.476 0.564 0.133 0.119 0.202 0.158 0.157

200 400 0.25 0.20 0.095 0.409 0.475 0.566 0.131 0.122 0.19 0.163 0.163

200 400 0.25 0.40 0.118 0.409 0.473 0.563 0.124 0.12 0.202 0.157 0.155

400 400 0.15 0.20 0.024 0.412 0.469 0.564 0.13 0.125 0.204 0.155 0.152

400 400 0.15 0.40 0.024 0.413 0.475 0.567 0.129 0.123 0.197 0.155 0.153

400 400 0.25 0.20 0.096 0.413 0.469 0.564 0.128 0.113 0.20 0.162 0.159

400 400 0.25 0.40 0.111 0.411 0.479 0.565 0.125 0.134 0.203 0.153 0.151

200 800 0.15 0.20 0.113 0.399 0.436 0.561 0.129 0.118 0.179 0.152 0.174

200 800 0.15 0.40 0.132 0.397 0.443 0.560 0.138 0.138 0.194 0.144 0.143

200 800 0.25 0.20 0.132 0.405 0.432 0.562 0.127 0.12 0.18 0.181 0.151

200 800 0.25 0.40 0.142 0.397 0.442 0.56 0.138 0.137 0.197 0.208 0.164

400 800 0.15 0.20 0.106 0.402 0.443 0.560 0.129 0.129 0.184 0.148 0.149

400 800 0.15 0.40 0.134 0.394 0.452 0.559 0.14 0.137 0.198 0.141 0.140

400 800 0.25 0.20 0.13 0.391 0.431 0.546 0.125 0.122 0.189 0.180 0.149

400 800 0.25 0.40 0.141 0.396 0.429 0.561 0.143 0.142 0.196 0.165 0.213

200 1200 0.15 0.20 0.127 0.383 0.412 0.554 0.137 0.131 0.161 0.145 0.176

200 1200 0.15 0.40 0.143 0.404 0.441 0.558 0.14 0.138 0.186 0.218 0.149

200 1200 0.25 0.20 0.137 0.393 0.417 0.558 0.142 0.14 0.178 0.224 0.219

200 1200 0.25 0.40 0.148 0.393 0.434 0.56 0.141 0.14 0.188 0.163 0.238

400 1200 0.15 0.20 0.126 0.398 0.426 0.559 0.14 0.142 0.183 0.194 0.147

400 1200 0.15 0.40 0.14 0.396 0.427 0.559 0.142 0.141 0.184 0.192 0.221

400 1200 0.25 0.20 0.126 0.401 0.428 0.560 0.139 0.141 0.181 0.165 0.220

400 1200 0.25 0.40 0.142 0.397 0.420 0.559 0.143 0.147 0.187 0.165 0.242

n is the sample size; q is the number omics measurements in each layer;
h measures the strength of regulation across layers; ρ is the correlation coefficient among CNVs
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Here U1 and U2 are length s1 and s2 vectors and describe
regulating mechanisms that also affect Y and Z but are
not measured, reflecting the fact that, in some studies,
data collection can be “incomplete”, and not all relevant
regulators are measured. γ1 and γ2 are matrices of regres-
sion coefficients. In simulation, we set s1 = s2 = p,
generate U1 and U2 in the same way as X, and gener-
ate γ1 and γ2 in the same way as β1 and β2. Note that
under this data generating mechanism, models in (5) are
mis-specified.
Results for this specially challenging scenario are sum-

marized in Table 4. With the mis-specified models,
performance of MuNCut is not as competitive as in
the previous simulations. However, for two-thirds of
the simulation settings, it still outperforms the alter-
natives, sometimes by a large margin. For the remain-
ing settings, its performance is very close to the best
alternative.

Discussion
Clustering analysis results can be used in multiple ways.
For example, they can suggest the functional connections
among measurements. As can be partly seen in Fig. 1, by
taking into account the interconnections across layers, the
MuNCut results look like channels: from CNVs to their
regulated GEs, and from GEs to their encoded proteins.
The MuNCut results can be biologically more informa-
tive. In the literature, clustering results have also been
used to assist dimension reduction in model building.
Recent studies have also conducted model building using
multilayer omics data. It can be of interest to explore
using the MuNCut results in such analysis. The proposed
method can be potentially extended. Presently, the reg-
ulation relationships are built purely statistically. For the
regulation of GEs and coding of proteins, there exists
extensive biological information accumulated from func-
tional experiments. It can be of interest to accommodate

Table 4 Simulation results for Scenario III

Parameters Maccuracy

n q h ρ MuNCut KM SC HC KM* SC* HC* LC FGC

200 400 0.15 0.20 0.064 0.359 0.459 0.583 0.124 0.125 0.186 0.172 0.200

200 400 0.15 0.40 0.108 0.354 0.464 0.582 0.124 0.126 0.194 0.171 0.171

200 400 0.25 0.20 0.126 0.360 0.462 0.584 0.127 0.128 0.186 0.192 0.224

200 400 0.25 0.40 0.141 0.355 0.468 0.578 0.131 0.129 0.198 0.147 0.144

400 400 0.15 0.20 0.06 0.356 0.457 0.583 0.121 0.123 0.185 0.171 0.169

400 400 0.15 0.40 0.097 0.354 0.46 0.587 0.12 0.124 0.193 0.164 0.162

400 400 0.25 0.20 0.121 0.358 0.456 0.585 0.122 0.123 0.185 0.174 0.152

400 400 0.25 0.40 0.138 0.357 0.462 0.586 0.124 0.124 0.191 0.134 0.136

200 800 0.15 0.20 0.122 0.314 0.434 0.578 0.13 0.132 0.189 0.175 0.172

200 800 0.15 0.40 0.134 0.315 0.431 0.579 0.139 0.134 0.19 0.212 0.172

200 800 0.25 0.20 0.142 0.32 0.402 0.567 0.128 0.128 0.19 0.202 0.195

200 800 0.25 0.40 0.144 0.318 0.414 0.58 0.146 0.144 0.196 0.166 0.206

400 800 0.15 0.20 0.121 0.321 0.421 0.578 0.129 0.129 0.174 0.191 0.153

400 800 0.15 0.40 0.144 0.321 0.427 0.577 0.146 0.144 0.193 0.165 0.216

400 800 0.25 0.20 0.141 0.315 0.424 0.578 0.127 0.128 0.173 0.152 0.197

400 800 0.25 0.40 0.143 0312 0.439 0.579 0.131 0.134 0.188 0.168 0.228

200 1200 0.15 0.20 0.138 0.307 0.391 0.578 0.139 0.139 0.168 0.207 0.212

200 1200 0.15 0.40 0.146 0.314 0.389 0.575 0.148 0.147 0.19 0.160 0.235

200 1200 0.25 0.20 0.136 0.30 0.374 0.575 0.136 0.133 0.169 0.187 0.225

200 1200 0.25 0.40 0.144 0.308 0.405 0.572 0.146 0.145 0.189 0.169 0.232

400 1200 0.15 0.20 0.136 0.316 0.406 0.573 0.138 0.139 0.163 0.159 0.223

400 1200 0.15 0.40 0.144 0.30 0.389 0.571 0.146 0.145 0.189 0.165 0.239

400 1200 0.25 0.20 0.141 0.316 0.376 0.577 0.135 0.139 0.183 0.171 0.228

400 1200 0.25 0.40 0.141 0.308 0.391 0.575 0.139 0.14 0.186 0.146 0.219

n is the sample size; q is the number omics measurements in each layer;
h measures the strength of regulation across layers; ρ is the correlation coefficient among CNVs
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some of that information. We do note that such infor-
mation is still partial and cannot completely replace the
proposed statistical analysis. In our description and data
analysis, CNV, GE, and protein are used. The proposed
method can directly accommodate more/other types of
omics data. It can be of interest to conduct more exten-
sive data analysis with additional omics measurements. In
data analysis, results different from using the alternatives
are obtained. However, additional experiments or studies
may be needed to fully validate our findings. The stability
evaluation results and superior performance observed in
simulation may to a certain extent suggest the credibility
of our analysis.

Conclusion
With omics data, clustering analysis has played an impor-
tant role. Significantly advancing from some of the exist-
ing studies, we have developed a novel clustering method
tailored to multilayer omics data. For quite a few complex
diseases, recent multilayer omics studies have provided
important insights not shared by the single-layer studies.
This study has filled the knowledge gap by being among
the first to develop tailored clustering methods that can
informatively accommodate connections not only within
layers but also across layers. The proposed method has an
intuitive formulation and can be effectively realized using
an SA algorithm. Across a wide spectrum of simulation
settings, it significantly outperforms multiple relevant
competitors. In the analysis of TCGA datasets, it leads to
clustering results different from using the alternatives and
with satisfactory stability.
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