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Transcriptome profiling of genes related to @
light-induced anthocyanin biosynthesis in
eggplant (Solanum melongena L.) before

purple color becomes evident
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Abstract

Background: The anthocyanins are highly enriched in eggplants (Solanum melongena L.) with purple peel.
However, our previous study showed that anthocyanins biosynthesis in eggplant cultivar ‘Lanshan Hexian' was
completely regulated by light and color becomes evident at most 2 days after exposure to light. In the present
investigation, transcriptome study was made to explore the underlying molecular mechanisms of light-induced
anthocyanin biosynthesis in eggplant (Solanum melongena L) before color becomes evident.

Results: RNA-Seq was performed for four time points (0, 0.5, 4 and 8 h after bags removal) where concerted
changes happened. A total of 32,630 genes or transcripts were obtained by transcriptome sequencing, from
which 1956 differentially expressed genes (DEGs) were found. Gene Ontology analysis showed that the 1956
DEGs covered a wide range of cellular components, molecular functions and biological processes. All the
DEGs were further divided into 26 clusters based on their distinct expression patterns. Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis found out 24 structural anthocyanin biosynthesis
genes which distributing in seven clusters. In addition, 102 transcription factors, which exhibited highly
dynamic changes in response to light, were found in the seven clusters. Three photoreceptors, UV Resistance
Locus 8 (UVR8), Cryptochrome 3 (CRY3) and UVR3, were identified as DEGs. The light signal transduction
elements, COP1 and two SPAs, might be responsible for anthocyanin biosynthesis regulation.

Conclusion: Based on the transcriptome data, the anthocyanin biosynthesis structural genes, transcription
factors, photoreceptors and light signal transduction elements were quickly screened which may act as the
key regulatory factors in anthocyanin biosynthesis pathway. By comparing the transcriptome data with our
previous studies, 869 genes were confirmed to participate in the light-induced anthocyanin biosynthesis.
These results expand our knowledge of light-induced anthocyanin biosynthesis in plants, which allowing for
fruit coloration to be improved under low-light conditions in future.
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Background

Anthocyanins are natural pigments and widely found in
plants. They not only confer plants vivid colors to attract
pollinators and seed dispersers, but also enhance plants
resistance to stress [1]. Anthocyanins are synthesized from
phenylalanine, and then under the continuous catalytic by
phenylalanine ammonia lyase (PAL), 4-coumarate-CoA
ligase (4CL), chalcone synthase (CHS), chalcone isomerase
(CHI), flavanone 3-hydroxyl enzyme (F3H), dihydroflavo-
nol reductase (DFR) and anthocyanin synthase (ANS) or
leucoanthocyanidin dioxygenase (LDOX). This pathway
creates unstable anthocyanins [2] that are stabilized by
glycosylation (GT), methylation (MT) or acylation (AT)
before transportation to the cell vacuole for storage [3].
Anthocyanins are mainly of six types: pelargonidin, cyani-
din, delphinidin, peonidin, petunidin and malvidin [4].
The structural anthocyanin biosynthesis genes of many
plant species have been identified and are mostly poly-
genes, such as PAL, CHI, CHS, and DFR [5-7].

These structural genes are simultaneously regulated by
an activated transcriptional MBW complex, consisting of
the R2R3-MYB and bHLH transcription factors, and the
WD40 repeat protein [8, 9]. The MYB family is one of
the largest gene families in plant. It is broadly divided
into four sectors according to the number of conserved
domains [10]. The R2R3-MYB transcription factors play
a central role in anthocyanin biosynthesis through their
influence on the transcriptional level of the structural
anthocyanin biosynthesis genes [11, 12]. Most are posi-
tive regulators [e.g., AtMYB75, PpMYB9 and NnMYB5
[13-15]. However, others are inhibitory in the context of
anthocyanin synthesis [e.g., ESMYBF1, PtMYBI82 and
VvMYB4 [16-18]. BHLHs belong to a multi-gene family
that can be divided into 26 subgroups, and flavonoid re-
lated bHLHs were grouped into subgroup IIIf [19]. In
Arabidopsis, some bHLHs, including TT8, GL3 and
EGL3, have been identified as participants in the biosyn-
thesis of different flavonoids [20-22]. In addition, the
bHLHs which were associated with anthocyanin biosyn-
thesis have been identified from a variety of plant spe-
cies, such as CmbHLH2 [23], LcbHLH3 [24], MtbHLH
(MtTT8) [25], LebHLH (AH) [26] and VWMYC1 [27].
Some other transcription factors, including Elongated
Hypocotyl 5 (HY5), light-regulated zinc finger protein
(LZF), CONSTANS-like (COL) and squamosa promoter
binding protein-like 9 (SPL9), have also been shown to
be associated with anthocyanin biosynthesis [28—31].

Light is a key environmental factor that affects the syn-
thesis of anthocyanins [5, 32—36]. This process is facilitated
by special photoreceptors. They transmit a signal to the
downstream transcription factors that regulate plant growth
and metabolic processes, including anthocyanin biosyn-
thesis. The photoreceptors in higher plants have been iden-
tified to date including phytochromes (PHYs), phototropins
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(PHOTSs), cryptochromes (CRYs) and UV-resistance locus 8
(UVRS). The light receptors are sensitive to specific wave-
lengths: PHYs detect red/far red, CRYs detect blue [37],
PHOTs detect UV-A, and UVR8 detects the ultraviolet
wavelengths [38]. The significance of the photoreceptors in
anthocyanin biosynthesis has been confirmed by experi-
ments with Arabidopsis. For example, phyA mutants could
not induce the expression of CHS (an enzyme in the antho-
cyanin biosynthesis pathway) and the synthesis of anthocya-
nins under far red light [39]. The expression level of CHS
and the content of flavonoids [40] were significantly re-
duced in the uvr8 mutants. In addition, CRY1 induced an-
thocyanins synthesis under blue light through the
activation of anthocyanin biosynthesis enzymes [41].

Downstream of these photoreceptors, Constitutive Pho-
tomorphogenic 1 (COP1) acts as a central repressor in the
anthocyanin biosynthesis pathway, including PAP1, PAP2,
HYS5, Hypocotyl Homolog (HYH), Long Hypocotyl in Far-
Red 1 (HFR1) and Long After Far-Red Light 1 (LAF1)
[42—-47]. COP1 is considered to be a ‘molecular switch’ in
metabolic processes which are stimulated by light [48].
Under dark conditions, COP1 was localized in the nu-
cleus. COP1 promotes the degradation of the
photomorphogenesis-promoting  transcription  factors
[49]. Under light, the concentration of COP1 in the nu-
cleus decreased rapidly [50] and the light-activated photo-
receptors inhibited COP1 activities, thereby causing
accumulation of the photomorphogenesis-promoting
transcription factors. Maier et al. [46] reported that large
amounts of anthocyanins were synthesized in cop! mu-
tants under dark conditions. In addition, COP1 formed a
complex with phytochrome A-105 (SPA) in the nucleus to
inhibit photomorphogenesis [46, 51, 52]. In Arabidopsis,
spa mutants exhibited similar features with COP1 mu-
tants under dark conditions [53, 54].

Eggplant (Solanum melongena L.) is a commercially
significant crop cultivated and consumed in many coun-
tries [55]. The varieties of eggplant with dark purple
peel, which is caused by a high anthocyanin concentra-
tion, are more attractive to consumers than the paler
types. The anthocyanin concentration in the purple egg-
plant cultivars is high in comparison to that of other
deeply colored fruits and vegetables, e.g., 2.34x that of
grapes, and 7.08x that of red onions [56].

The observation that anthocyanin biosynthesis is
stimulated by light is paralleled in other species, e.g.
lithci, Chinese bayberry, grape berry, apple, and red
pear [6, 36, 47, 57]. Previous researches focused on
exploring the regulatory mechanisms associated with
the accumulation of anthocyanins at the molecular
level [6, 7]. Recently, the effect of light on the whole
process of anthocyanins biosynthesis was preliminary
studied in our previous study [35]. However, the
underlying molecular mechanisms of light-induced
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anthocyanins biosynthesis before color becomes evi-
dent are not well known.

Our previous study found out that anthocyanin bio-
synthesis in the peel of eggplant (cv Lanshan Hexian) is
regulated by light and color becomes evident at most
2 days after exposure to light. [5, 35]. In this study, the
expression patterns of a variety of anthocyanin biosyn-
thesis structural genes and regulator genes under light
over an 8 h period were analyzed by qRT-PCR. In the
present study, RNA-seq was used to capture the major-
ity of transcriptional changes in anthocyanin biosyn-
thesis related genes. This analysis was attempted to
elucidate the molecular mechanisms of light-induced
anthocyanin biosynthesis before color becomes evident.
This study will facilitate genetic engineering protocols
which would improve the anthocyanin content of egg-
plant or other plants under low-light condition.

Methods

Plant materials and treatments

The eggplants were grown in the horticultural farm
of Shanghai Jiao Tong University, Shanghai China.
After full bloom, the sepals were covered with paper
bags which were completely light-impermeable. The
bags were removed from the fully-grown fruits after
24 days at 8:00 am. The peels of the eggplants were
collected immediately after bags removal, and then
after a further 0.5, 4 and 8 h. Three eggplant fruits
were mixed as a sample and three samples were set
as biological replicates. The pooled samples were im-
mediately frozen in liquid nitrogen, and stored at -
80 °C prior to further processing.

RNA extraction, library construction and transcriptome
sequencing

Total RNA was extracted from pooled samples using
RNAiso Plus (TaKaRa, Otsu, Shiga, Japan) according to
the manufacturer’s instructions. After the total RNA ex-
traction and DNase I treatment, the concentration and
quality of each sample was examined using a NANO-
DROP2000 (Thermo Scientific, Wilmington, DE) and
Agilent 2100 Bioanalyzer. The mRNA was isolated by
magnetic beads with Oligo (dT) and then synthesized to
c¢DNA. Short fragments were purified and resolved with
EB buffer for end reparation and single nucleotide A
(adenine) addition. After that, the short fragments were
connected with adapters. During the quality control
(QC) steps, Agilent 2100 Bioanaylzer and ABI StepOne-
Plus Real-Time PCR System were used in quantification
and qualification of the sample libraries. Finally, the
libraries were sequenced using Illumina HiSeq™ 2000.
Four time points (0, 0.5, 4 and 8 h) were selected for
RNA-Seq analysis to obtain a general overview transcrip-
tome of the eggplant peel samples that had been

Page 3 of 12

subjected to different light exposures. Three biological
replicates were used in the RNA-Seq experiments in-
volving all the four time points, and it means that a total
of 12 samples were harvested to construct libraries.
Pearson’s correlation was exploited to measure the rele-
vance between each two samples.

Bioinformatics analysis

The raw reads produced by Illumina HiSeq™ 2000
were subjected to QC which can determine whether a
resequencing step is needed or not. After read evalu-
ated and filtered of low QC reads, reads were aligned
to the eggplant genome sequences (http://eggplant.ka-
zusa.or.jp/) [58]. And the alignment data was utilized
to calculate distribution of reads on reference genes
and mapping ratio. After alignment result passing
QC, gene and isoform expression analysis was carried
out. The differentially expressed genes (DEGs) were
selected by a threshold of False Discovery Rate
(FDR) £0.001 and an absolute Log,Ratio value >1
among the three biological replicates based on the
analysis method of the poisson distribution. And the
DEGs between groups were screened according to the
following criteria: Fold change >2 and diverge prob-
ability >0.8 using Noiseq package method [59]. Fur-
ther, the sequences of DEGs were compared with the
NCBI non-redundant (Nr) database [60], Gene Ontol-
ogy (GO) [61] and Kyoto Encyclopedia of Genes and
Genomes (KEGG) [62] databases to identify and an-
notate the obtained DEGs using Blast software [63].
In addition, the Log2 (folds of mean RPKM values to
the 0 h time point) were used to generate cluster dia-
grams by MultiExperiment Viewer software with a
colour scale (MeV v4.4.1, http://www.tm4.org/) using
the hierarchical clustering method [64].

RNA-seq data validation

qRT-PCR analysis was performed to validate the accuracy
of the gene expression obtained from the assembled tran-
scriptome via RNA-Seq. The correlation between the
RNA-seq data and qRT-PCR result was analyzed by using
SigmaStat 3.0 (SPSS, Chicago, IL). Total RNA were ex-
tracted from the peel samples by the MiniBEST Universal
RNA Extraction Kit (TaKaRa) and examined using a
NANODROP2000 (Thermo Scientific, Wilmington, DE)
and characterized on 1.2% agarose gel electrophoresis.
And the eligible RNA was selected based on a threshold
of absorbance ratio 260/280>1.8 and 260/230>1.8.
500 ng RNA was synthesized into cDNA with the Prime-
Script™ RT Master Mix (Perfect Real Time) (Takara).
According to the manufacturer’s instructions of SYBR®
Premix Ex Taq™ II (Tli RNaseH Plus) (Takara), qRT-PCR
was performed on CFX Real Time PCR Detection System
(BioRAD) using the following program: 95 °C for 30 s,
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followed by 40 cycles of 95 °C for 5 s and 60 °C for 30 s.
The Actin gene (Sme2.5_00072.1_g00003.1) from eggplant
was amplified in parallel as an internal reference gene
[65]. The relative expression levels of the amplified prod-
ucts were analyzed using the 24T method [66]. All
qRT-PCR analyses were performed in three biological and
three technical replications. The primers employed for this
study are listed in Additional file 1.

Results

Anthocyanin biosynthesis structural genes were induced
by light within an 8 h exposure period

The transcriptions of CRY1, CRY2, HY5 and MYBI
were previously shown to be triggered by exposure to
light over an 8 h period [5]. Here, the expression
levels of six anthocyanin biosynthesis structural genes
(CHS, CHI, F3H, F3°’5’H, DFR and ANS which were
homologous with the genes reported in Arabidopsis)
were analyzed by qRT-PCR (Fig. 1). The expression
patterns of the six structural genes were similar to
those of CRY1, CRY2, HY5 and MYBI [5]. The qRT-
PCR analysis showed that the expression levels of
most of anthocyanin biosynthesis structural genes
were up-regulated slightly at 0.5 h, peaked at 4 h and
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trended back at 8 h. And similar expression patterns
were found in CRYI and HY5 [5]. Thus the four time
points were chosen to analyze the transcriptome of
‘Lanshan Hexian' after bags removal using RNA-seq
expecting to capture majority of transcriptional
changes in anthocyanin biosynthesis related genes.

Transcriptional response of light by RNA-seq

An average of 49 million clean reads was obtained from
each sample, of which 79~ 81% could be mapped to the
eggplant genome (http://eggplant.kazusa.or.jp/): 46~ 50%
could be mapped to eggplant genes (Additional file 2).
Finally, the reads were assembled into a total of 32,629
genes or transcripts (Additional file 3). To test the sam-
ples chosen was reliable, the correlation value between
each two samples was calculated based on FPKM (Fig. 2
and Additional file 4). A false discovery rate <0.001, an
absolute Log,Ratio value >1 and diverge probability >0.8
were the thresholds applied to assess the significance of
differences in gene expression. There were 1956 DEGs
detected by means of time point to time point compari-
sons, including 843 (0.5 h vs 0 h), 948 (4 h vs 0 h), 776
(8 h vs 0 h), 865 (4 h vs 0.5 h), 941 (8 h vs 0.5 h) and
223 (8 h vs 4 h) (Fig. 3 and Additional file 5). All the
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Fig. 2 Heat map representation of the correlations coefficient
between each two samples. The color represents the correlation
coefficient (the darker the color, the higher the correlation, the
lighter the color, the lower the correlation)

known anthocyanin biosynthesis related genes were in-
volved in the DEGs. The RNA-Seq and qRT-PCR results
for these genes were highly correlated (r=0.97~ 1.000)
(Fig. 1). In addition, 10 selected genes, which had differ-
ent expression patterns after bag removal, were chosen
to validate the RNA-Seq results by qRT-PCR (r=0.91~
1.000) (Additional file 6). These results provided further
validation of the reliability of the transcriptome data.
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Fig. 3 Overview of differentially expressed genes (DEGs)
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GO analysis of the DEGs

The GO consortium provides a standard vocabulary that
is dynamic and controlled, and that can be applied to all
eukaryotes even though knowledge of the roles of genes
and cell proteins is accumulating and expanding [67]. We
therefore used GO assignments to classify the functions of
the DEGs in eggplant peel. Of the total of 1956 DEGs, 873
have been annotated according to the GO database and
are classified as ‘biological process; ‘cellular component’
and ‘molecular function’. The results covered 34 import-
ant functional groups including 17 for biological process,
9 for cellular components, and 8 for molecular function
(Fig. 4). The two largest subcategories in the ‘biological
process’ category were ‘metabolic process’ including 500
DEGs and ‘cellular process’ including 344 DEGs. In the
‘cellular component’ category, the two largest subcategor-
ies were ‘cell’ and ‘cell part’ and both included 367 DEGs.
For the ‘molecular function’ category, ‘catalytic activity’ in-
cluding 514 DEGs and ‘binding activity’ including 429
DEGs were the most abundant.

Cluster analysis of expression patterns in the DEGs
The 1956 DEGs were subjected to complete-linkage
hierarchical clustering using a Euclidean distance metric
by MeV v4.4.1 software and divided into 26 clusters
(Additional file 7). We also present an overview of the
KEGG pathway enrichment to provide a global descrip-
tion of the enriched biological pathways in each cluster
of similarly regulated transcripts. The structural genes in
anthocyanin biosynthesis pathway were divided into
three pathways, including ‘phenylpropanoid biosynthesis,
‘flavonoid biosynthesis; and ‘anthocyanin biosynthesis’.
These pathways were enriched in clusters 7, 9, 12, 15, 18,
19 and 24 (Fig. 5). Therefore, genes in these clusters were
the focus of further attention in this study. In addition,
‘metabolic pathways’ and ‘biosynthesis of secondary me-
tabolites” were highly enriched in six out of seven clusters.
As shown in Fig. 5, the expression level of genes in
cluster 7 declined during this period. The expression
level of genes in cluster 9 were down-regulated at
0.5 h but up-regulated to peak level in the samples
taken after 4 h exposure to light, and maintained a
high expression level. The genes in cluster 12, 15 and
19 were up-regulated slightly at 0.5 h, peaked after
4 h exposure to light, and maintained a high expres-
sion level at 8 h. Cluster 18 and 24 contained genes
that were up-regulated to peak level in the samples
taken after 0.5 h, but then the expression level of
genes decreased after 4 and 8 h (Fig. 5). From the
above, we found the genes in cluster 12, 15 and 19
have similar expression pattern but with different
relative Log,ratio value at the same time point after
eggplants exposure to light. Therefore, the genes in
cluster 12, 15 and 19 could be analyzed together.
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The structural anthocyanin biosynthesis genes
Twenty-four structural anthocyanin biosynthesis genes
were identified. They participated in each step of antho-
cyanin metabolic pathway. 2 PAL, 4CL, CHS, 2 CHlIs,
F3H, 2 F3’'Hs, F3’5’H, DFR, ANS, 2 3GT and 5GT pre-
sented in cluster 12, 15 and 19. The expression levels of
these genes were increased and peaked after 4 h. In clus-
ter 18, another three PAL genes were identified which
expression level with peaked expression level at 0.5 h
time point. The expression level of the exception,
Sme2.5_03336.1_g00008.1 (PAL), another 4CL and 5GT
were specifically induced after 0.5 h light exposure but
then their activity declined. Another two CHS genes
were down-regulated after 0.5 h, but then up-regulated
were divided into cluster 9. The transcriptional level of
another F3’H gene was down-regulated over the period
after exposure to light (Fig. 6a).

Transcription factors

One hundred and thirty-eight transcription factors that
exhibited highly dynamic changes in response to light
were found, 102 of which were present in the 7 clusters.
Among the 102 transcription factors, MYB (18 genes)
constituted the largest group, followed by AP2-EREBP
(16 genes), WRKY (15 genes), GRAS (6 genes), bHLH (6
genes), C2C2-CO-like (5 genes), C2C2-Dof (3 genes),
HSF (3 genes), SPL (3 genes), zf-HD (2 genes), MADS (2
genes), mTERF (2 genes), TCP (2 genes), NAC (2 genes),
C3H (2 genes), Tify (2 genes), C2C2-YABBY (2 genes),
G2-like, Sigma70-like, C2C2-GATA, C2H2, Trihelix,
HRT, HYS5, bZIP, TAZ, TGAland BES1 (Fig. 6b).
Strikingly, HYS5, MYB113, TT8 and WRKY44 (TTG2),
which were known as anthocyanin biosynthesis regu-
lated genes [25, 31, 46, 68, 69], were divided into clusters
12, 15 and 19 (Fig. 6b). In the three clusters, another 8
MYBs, 3 C2C2-CO-likes, 2 SPLs, bZIP, WRKY and bHLH
were found. Previous studies have reported that genes
which belong to the same gene families with these tran-
scription factors participated in anthocyanin biosynthesis
[24, 28, 31, 69-73]. Thus, we suggested that these tran-
scription factors might be involved in light-induced
anthocyanin biosynthesis.

Plant light signal perception and transduction

Under light condition, photoreceptors act as central pro-
motors to substitute ubiquitination and degradation of
the positive regulators in anthocyanin biosynthesis
pathway caused by COP1, such as HY5 [42] and MYB1
[46, 47]. Here, UVR3, CRY3 and UVRS were identified in
clusters 9, 15 and 24, respectively (Fig. 6¢c). The expres-
sion levels of CRY3 and UVR3 were changed slightly at
0.5 h time point, increased to the highest level at 4 h
time point but then declined slightly at 8 h time point.
By contrast, the expression level of L/VR8 was increased
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to a peak after 0.5 h exposure to light, declined towards
the control level after 4 h and continued to decrease for
the next 4 h. The COP1/SPA complex act as a molecular
switch of light-induced anthocyanin biosynthesis located
downstream of the photoreceptors. In this study, COPI
and two SPAs were found in clusters 12 and 15 (Fig. 6c).
KEGG pathway analysis showed that the three genes
were enriched in ‘ubiquitin mediated proteolysis’.

Discussion

In our previous study, anthocyanins couldn’t accumulate
in eggplant peel under shaded conditions. After egg-
plants were exposed to light, anthocyanins rapidly syn-
thesized within a short time [5, 35]. These findings
indicated that the coloration of eggplants peel com-
pletely depend on light, as observed in previous studies
on lithci, Chinese bayberry, grape berry, apple, and red
pear [6, 36, 47, 57]. The existing studies focused on ex-
ploring the molecular regulatory mechanisms associated
with the accumulation of anthocyanins, including the
paper we recently published [6, 7, 35]. However, whether
and how does light participate in regulating anthocyanin
biosynthesis before color becomes evident have not been
studied so far. Here, RNA-seq was used to explore the
relationship between light and the expression of candi-
date genes, which might be involved in anthocyanin bio-
synthesis over an 8 h period in eggplant.

Jiang et al. has reported that the transcriptional levels
of CRY1, CRY2, HY5 and MYBI were significantly in-
duced by exposure to light over an 8 h period [5]. In
addition, qRT-PCR analysis showed that the expression
levels of six anthocyanin biosynthesis structural genes
were also affected in our pre-preparation work. Then an-
other 18 structural anthocyanin biosynthesis genes were
identified as DEGs by RNA-seq analysis and divided into
7 clusters. Most of them were up-regulated after expos-
ure to light for 4 h. These results suggested that the light
response of these genes is dependent upon some up-
stream transcription factors. For instance, HY5 is neces-
sary for the rapid transcription of F3H and CHS during
the dark-to-light transition, which eventually allows the
accumulation of anthocyanins [74]. In addition, the
expression patterns of these anthocyanin biosynthesis
structural genes corresponded to the light intensity fluc-
tuation which was parabolic in the day. This result might
reveal the direct reason why eggplant peel shows poor
color production under weak light conditions.

In this study, 102 transcription factors which were sig-
nificantly regulated by light were involved in the 7 clus-
ters. Among these transcription factors, the well-known
anthocyanin biosynthesis regulating genes including HY5
[31], MYB113 [31], TT8 [9] and WRKY44 (TTG2) [69]
were found. As is well known, HY5 [42, 51] and MYB
[46] were repressed by the activity of COP1 in darkness,
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Fig. 6 Heat map representation of the genes expression patterns. a The structural anthocyanin biosynthesis genes, b All the transcription factors response
to light, € The photoreceptors and genes related to light signal transduction. The color scale represents the Log2 (fold-change to the 0 h time point). Genes
that are upregulated appear in yellow, and those that are downregulated appear in blue, with the relative Log2Ratio reflected by the intensity of the color
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but they triggered expression of light-inducible genes,
such as the gene encoding CHS after light exposure [75].
In addition, MYBI [76, 77], MYB2 [12], MYBS [70],
COL11 (C2C2-CO-like) [28], MADS [78], MYC2 (bHLH)
[79] and SPL [29] were reported to participate in antho-
cyanin biosynthesis in various plant species. In addition,
the connections between other transcription factors and
anthocyanin synthesis have attracted much attention.
For example, the family genes of WRKY [69], C2C2-CO-
like [28, 80] and NAC [81] were also reported to be in-
volved in anthocyanin biosynthesis. In the present study,
15 WRKYs, 6 GRASs, 5 C2C2-CO-likes, 3 SPLs and NAC
were screened in the seven clusters that included antho-
cyanin biosynthesis structural genes. These genes might
be involved in the regulation of anthocyanin biosyn-
thesis. Also, these genes point to the direction for fur-
ther studies of anthocyanin biosynthesis in eggplants.

COP1 is an E3 ubiquitin ligase that represses photo-
morphogenesis by mediating light-dependent degrad-
ation of various transcription factors involved in light
signaling. The subcellular localization of COP1 is light
dependent [82]. In darkness, COP1 is situated in the
nucleus where it interacts with photomorphogenesis-
promoting transcription factors. When plants are ex-
posed to light, the concentration of COP1 in the nucleus
declines rapidly [50]. SmCOPI1, which is annotated as
Sme2.5_00128.1_g00013.1, is functionally complemented
in phenotypes of corresponding Arabidopsis mutants
where it interacts with SmHY5 and SmMYB1
(SmMYB113) [5]. In this study, another COP1 annotated
as Sme2.5_00499.1_g00010.1, and two SPA genes were
located in clusters 12 and 15. Their expression levels
kept control level at 0.5 h time point, increased to the
highest level at 4 h time point but then declined a little
at 8 h time point. Strikingly, the expression level of
Sme2.5_00128.1_g00013.1 showed little change after
eggplants were exposed to light when compared to
control level. Stacey et al. [82] reported that light is
the control of COP1 partitioning between nucleus
and cytoplasm. Maier and Hoecker [83] found that
mutations in the COP1/SPA complex, which is the
most important repressor of light signaling, cause a
hyperaccumulation of anthocyanins in normal and
high intensity light. Taking into account the previous
information from Arabidopsis, we concluded that the
expression level of COPI may be not be regulated by
light and the function of the COP1 protein was to
combine the photoreceptors but not the positive reg-
ulators, in the context of anthocyanin biosynthesis.
These results suggest that Sme2.5_00499.1_g00010.1
may participate in light-induced anthocyanin biosyn-
thesis in a different way.

Three photoreceptors in eggplant, CRY3, UVR3, and
UVRS, were identified as DEGs in this study. Jiang et al.
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[5] suggested that a blue-light-triggered CRY1/CRY2-
COP1 interaction allows HY5 and MYB1 to combine
with the downstream anthocyanin biosynthesis genes
(CHS and DFR) in eggplant. These results from this later
experiment suggest that the expression of CRY3 was
stimulated by light, but CRYI and CRY2 were not thus
stimulated. Also, the expression pattern of CRY3 was
similar to those of CRYI and CRY2 [5]. The anthocyanin
content and the expression level of L/VR8 were also ele-
vated under UV-B in peach, strawberry, lettuce and rad-
ish sprouts [84—87]. In this study, UVR8 was up-
regulated by light after 0.5 h exposure and was down-
regulated after 4 and 8 h. It is possible that unknown
genes negatively regulate the expression of L/VR8 under
sunlight. In addition, L/VR3 encodes a photolyase that is
specific for 6,4 photoproducts in Arabidopsis thaliana
but which is not activated by light [88]. In eggplant peel
the UVR3 mRNA level was increased within 4 h after
bags removal suggesting that UVR3 responds to light
differently in eggplant.

Comparing the transcriptome data with our previous
studies [35], we found that the 1956 DEGs could be di-
vided into two parts: 869 genes could be identified as
DEGs in both the two studies (Additional file 8) and the
other 1087 genes were only identified as DEGs in this
study. Then the biological processes and pathways in-
volved in the 869 DEGs were identified by GO and KEGG
pathway enrichment analysis (Additional files 9 and 10).
Except for the ‘anatomical structure formation’ in the ‘bio-
logical process’ category was not found, the functional
groups involved in the 869 DEGs were same with which
involved in all the DEGs (Additional file 9 and Fig. 4).
KEGG pathway enrichment analysis showed that ‘phenyl-
propanoid biosynthesis; ‘flavonoid biosynthesis; and
‘anthocyanin biosynthesis’ pathways were enriched in the
869 DEGs (Additional file 10). Further analysis found that
22 structural genes, 37 transcription factors and 3 photo-
receptors were included in the 869 DEGs. Strikingly, 3
AP2-EREBPs, 3 WRKYs, 2 bHLHs, 2 MYBs, 2 C2C2-CO-
likes, C2C2-YABBY, GRAS, HSE, MADS, mTERF, SPL,
TAZ and TGA1I were found in the 37 transcription factors
except for HYS, MYBI113, TT8 and WRKY44. These re-
sults suggested that these 869 DEGs participated in
the light-induced anthocyanin biosynthesis. As for the
identification of the other 1087 DEGs, this might be
consequence of the light condition change, the circa-
dian clock or other factors.

Conclusion

In this study, RNA-seq was applied to elucidate the under-
lying molecular mechanism of light-induced anthocyanin
biosynthesis in eggplant peel before color becomes
evident. A total of 1956 DEGs were identified and divided
into 26 clusters based on the distinct expression patterns.
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By comparing the transcriptome data with our previous
study [35], the structural genes, photoreceptors, light
signal transduction elements and transcription factors
involved in the anthocyanin biosynthesis pathway could
be found in the intersection of the two transcriptome data.
These results suggested that light induce anthocyanin
biosynthesis from the moment of exposure to light to the
saturation of anthocyanin. This study will expand our
understanding of the mechanism of light-induced antho-
cyanin biosynthesis in plant, and point to new directions
in the study of anthocyanin biosynthesis.
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