
Vachaspati and Warnow BMC Genomics 2018, 19(Suppl 5):252
https://doi.org/10.1186/s12864-018-4621-1

RESEARCH Open Access

SIESTA: enhancing searches for optimal
supertrees and species trees
Pranjal Vachaspati and Tandy Warnow*

From RECOMB-CG - 2017 : The Fifteenth RECOMB Comparative Genomics Satellite Conference
Barcelona, Spain. 04-06 October 2017

Abstract

Background: Many supertree estimation and multi-locus species tree estimation methods compute trees by
combining trees on subsets of the species set based on some NP-hard optimization criterion. A recent approach to
computing large trees has been to constrain the search space by defining a set of “allowed bipartitions”, and then use
dynamic programming to find provably optimal solutions in polynomial time. Several phylogenomic estimation
methods, such as ASTRAL, the MDC algorithm in PhyloNet, FastRFS, and ALE, use this approach.

Results: We present SIESTA, a method that can be combined with these dynamic programming algorithms to return
a data structure that compactly represents all the optimal trees in the search space. As a result, SIESTA provides
multiple capabilities, including: (1) counting the number of optimal trees, (2) calculating consensus trees, (3)
generating a random optimal tree, and (4) annotating branches in a given optimal tree by the proportion of optimal
trees it appears in.

Conclusions: SIESTA improves the accuracy of FastRFS and ASTRAL, and is a general technique for enhancing
dynamic programming methods for constrained optimization.

Keywords: Phylogenomics, Species trees, Dynamic programming, ASTRAL, NP-hard problems, Supertree methods

Background
Phylogeny estimation is generally approached as a sta-
tistical estimation problem, and finding the best tree
for a given dataset is typically based on methods that
are computationally very intensive; for example, maxi-
mum likelihood phylogeny estimation is NP-hard [1] and
Bayesian MCMC methods require a long time to con-
verge. For this reason, among others, the calculation of
very large phylogenies is often enabled by divide-and-
conquer methods that use “supertree methods” to com-
bine smaller trees into larger trees. A more common use
of supertree methods is to combine trees computed by
independent research groups on different datasets into a
single tree on a large dataset [2]. While Matrix Represen-
tation with Parsimony (MRP) [3, 4] is the most well known
supertree method, other supertree methods have been

*Correspondence: warnow@illinois.edu
Department of Computer Science, University of Illinois at Urbana-Champaign,
201 N. Goodwin Avenue, Urbana, IL, USA

shown to have better accuracy than MRP (e.g., Matrix
Representation with Likelihood [5], FastRFS [6], and the
recently proposed Bad Clade Deletion supertree method
[7]). Supertree methods are an area of active research in
the computational phylogenetics community, with new
methods introduced frequently and used in a variety of
contexts [8–10].

Species tree estimation, even for small numbers of
species, is also difficult because of multiple processes that
create differences in the evolutionary history across the
genome; examples of such processes include incomplete
lineage sorting (ILS), gene duplication and loss (GDL),
and horizontal gene transfer (HGT) [11]. Species tree
estimation is therefore performed using multiple loci
from throughout the genomes of the different organisms,
and is referred to as “phylogenomics”. One of the standard
approaches for species tree estimation is to compute
gene trees (i.e., trees on different genomic regions)
and then combine the trees together into a species
tree under statistical models of evolution, such as the

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-018-4621-1&domain=pdf
mailto: warnow@illinois.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Vachaspati and Warnow BMC Genomics 2018, 19(Suppl 5):252 Page 42 of 95

multi-species coalescent (which models ILS), that
allow for gene tree heterogeneity. Examples of such
“summary methods” (i.e., methods that construct species
trees by combining gene trees) that are statistically con-
sistent under the multi-species coalescent model include
ASTRAL [12–14], GLASS [15], the population tree in
BUCKy [16], MP-EST [17], NJst [18], and a modification
of NJst called ASTRID [19].

Summary methods share algorithmic features in com-
mon with supertree methods in that both construct trees
on the set of species by combining trees on subsets of the
species set; the difference between the two types of meth-
ods is that in the supertree context, the assumption is that
the heterogeneity observed between these “source trees”
is due only to estimation error, while in the phylogenomic
context the assumption is that source trees can differ from
each other and from the species tree due to a combination
of estimation error and true heterogeneity resulting from
ILS, GDL, HGT, or some other causes. Summary meth-
ods and supertree methods are often based on attempts
to solve NP-hard problems, and typically use heuristics
(a combination of hill-climbing and randomization) to
search for optimal trees. While these heuristics can be
highly effective on small datasets, they are often very slow
and there are no guarantees about the solutions they find.

An alternative approach to the use of heuristic searches
is constrained exact optimization, whereby the solution
space is first constrained using the input source trees,
and then an exact solution to the optimization problem
is found within that constrained space. This approach
can lead to polynomial time methods (where the run-
ning time depends on the size of the constraint space
as well as on the input) that can have outstanding accu-
racy. The first use of this approach was presented in [20],
which provided a method to find a species tree min-
imizing the duplication-loss reconciliation cost given a
set of estimated gene trees. Since then, many other con-
strained exact optimization methods have been developed
in phylogenomics for different purposes, including com-
puting trees from maximum likelihood quartet trees [21],
constructing species tree from sets of gene trees under
gene duplication and loss models [22] or under the multi-
species coalescent model [12, 13, 23, 24], improving gene
trees given a species tree [25], constructing consensus
trees [21], constructing supertrees [6], and extracting a
tree from a phylogenetic network [21].

Most of these approaches constrain the search space
using a set of “allowed bipartitions”, which we define here.
Each edge e in an unrooted tree T on a set S of species
defines a bipartition πe of S (also called a “split”), obtained
by deleting e but not its endpoints from T ; hence, every
tree T can be defined by its set of bipartitions C(T) =
{πe : e ∈ E(T)}. The constraints imposed by these algo-
rithms are obtained by specifying a set X of allowed

bipartitions so that the returned tree T must satisfy that
C(T) ⊆ X. The set X is used to define a set of “allowed
clades” (comprised of the halves of the bipartitions, plus
the full set of species), and dynamic programming is then
used on the set of allowed clades to find an optimal solu-
tion to the optimization problem. The set X has an impact
on the empirical performance, but even simple ways of
defining X can result in very good accuracy and pro-
vide guarantees of statistical consistency under statistical
models of evolution [6, 13].

The constrained exact optimization approach has mul-
tiple advantages over heuristic search techniques. From
an empirical perspective, the dynamic programming
approach is frequently faster, and if the constraint space
is selected well it is often more accurate than alterna-
tive approaches that typically use heuristic searches for
optimal solutions. From a theoretical perspective, the
ability to provably find an optimal solution within the
constraint space is often sufficient to prove statistical con-
sistency under a statistical model of evolution (e.g., under
the multi-species coalescent model); hence, many of the
methods that use constrained exact optimization can be
proven statistically consistent, even for very simple ways
of defining the constraint set.

These constrained exact optimization methods typically
have excellent accuracy in terms of scores for the opti-
mization problems they address (established on both bio-
logical and simulated datasets) and topological accuracy
of the trees they compute (as established using simulated
datasets). A basic limitation of these methods, however, is
that they return a single optimal tree, even though there
can be multiple optima on some inputs. This limitation
reduces the utility of the methods.

We present SIESTA (Summarizing Implicit Exact
Species Trees Accurately), an algorithmic tool that can be
used to enhance these dynamic programming methods for
finding optimal trees. The input to SIESTA is the set T of
source trees, the constraint set X of allowed bipartitions,
and a scoring function w that assigns scores to tripar-
titions of the taxon set (and which is derived from the
optimization function F that assigns scores to trees and
the set T , as we show later); SIESTA returns a data struc-
ture I that represents the set T ∗ of trees that optimize the
function F subject to the constraint that every bipartition
in every tree in T ∗ is in X. This data structure I enables
the user to explore the set of optimal trees in various ways.
In this study, we use SIESTA to compute consensus trees,
to enumerate the set of optimal trees, to count the num-
ber of optimal trees, and to report the frequency of each
bipartition in the set of optimal trees.

We explore the impact of using SIESTA with two meth-
ods that use dynamic programming for constrained exact
optimization: the supertree method FastRFS [6] and the
ILS-aware species tree estimation method ASTRAL [13].

Vachaspati and Warnow BMC Genomics 2018, 19(Suppl 5):252 Page 43 of 95

We show that using SIESTA to compute a strict consensus
tree provides improvements in accuracy (in terms of the
topology of the estimated tree) compared to a single opti-
mal tree for both ASTRAL and FastRFS when the number
of optimal trees is large enough, and is otherwise neu-
tral. Furthermore, using SIESTA with a modification to
FastRFS produces more accurate rooted supertrees than
Bad Clade Deletion (BCD), the previous best method for
rooted supertree construction [7].

Using SIESTA with ASTRAL, a species tree estimation
method that addresses incongruence due to ILS, pro-
vides additional benefits. For each optimal tree it returns,
ASTRAL provides branch support values based on local
posterior probabilities, but these values do not take the
other optimal trees into account. We show how to cor-
rect these support values to take the full set of optimal
ASTRAL trees into account, and enable the calculation
of a maximum clade credibility (MCC) tree based on
these corrected values. Hence, SIESTA provides a valu-
able tool for both species tree and supertree estimation,
providing distinct advantages over the simplistic use of
leading methods for these problems. SIESTA, combined
with ASTRAL and FastRFS is available at https://github.
com/pranjalv123/SIESTA and the datasets analyzed in
this paper are available at [26].

Methods
The SIESTA algorithm
SIESTA is designed to work with tree estimation methods
that seek optimal solutions within a constrained search
space using dynamic programming. Recall that in the con-
strained optimization approach, the input is a set of source
trees (estimated gene trees in the case of ASTRAL, generic
source trees in the case of FastRFS) as well as a set X of
allowed bipartitions of the set S of species. Given this set
X of allowed bipartitions, we define a set C of “allowed
clades” by taking the two halves of each bipartition, and we
also include the set S; thus, C = {A :[A|S \ A] ∈ X} ∪ {S}.

We also form a set TRIPS of “allowed tripartitions”, as
follows. TRIPS contains all ordered 3-tuples (A, B, C) of
allowed clades that are pairwise disjoint, that union to S,
and where A ∪ B is also an allowed clade. We require that
A and B be non-empty, but we allow C to be empty.

The purpose of creating this set is that it allows us
to perform the dynamic programming algorithm to find
optimal solutions for some optimization problems. To see
this, consider an unrooted binary tree T that is a feasible
solution to the constrained optimization problem under
consideration. Now root the tree T arbitrarily and pick
some internal node v defining clade c. Since T is a feasi-
ble solution to the optimization problem, all the clades in
T (r) (the rooted version of T) are allowed clades, and every
node v defining clade c that is not a leaf has two major
subclades A and B defined by its two children. The 3-tuple

(A, B, C) where C = S\(A∪B) is the tripartition associated
to node v (equivalently, associated to clade c). If v is the
root of T, then C will be empty. The set of “allowed tri-
partitions” is defined to ensure that it includes all 3-tuples
that could be formed in this way. Finally, by construction,
we consider (A, B, C) and (B, A, C) to be equivalent tri-
partitions. Similarly, given a rooted binary tree T (r) on
leafset S, each non-leaf node v in T (r) defines a triparti-
tion (A, B, C) where A and B are the clades (i.e., leafsets)
below the two children of v, and C = S \ (A ∪ B). We refer
to the set of tripartitions of a rooted binary tree T (r) by
trips

(
T (r)).

The objective of the constrained optimization problems
is to find an unrooted tree T∗ on leafset S that optimizes
a function F(·) defined on unrooted trees, subject to T∗
drawing its bipartitions from X. Hence, if we root T∗, we
obtain a rooted tree T∗(r) in which the non-leaf nodes
define allowed tripartitions. ASTRAL and FastRFS are
each algorithms that find optimal binary trees for some
optimization problem, subject to the constraint that the
tree draw its bipartitions from a set X of allowed bipar-
titions. These algorithms reframe the problem by seeking
a rooted tree that draw its clades (i.e., subsets of leaves
defined by internal nodes) from the set C of allowed
clades, and use the dynamic algorithm design that we will
now describe.

For both ASTRAL and FastRFS, it is possible to define
a function w on allowed tripartitions such that for any
unrooted binary tree T on leafset S, letting Tr denote a
rooted version of T (obtained by rooting T on any edge),

F(T) =
∑

t∈trips(Tr)

w(t) (1)

where F(T) is the optimization score for tree T.
The existence of a function w that is defined on tripar-

titions and that satisfies Eq. 1 is the key to these dynamic
programming algorithms. Given function w that is defined
on tripartitions, we define a recursive function f that is
defined on clades that we can then use to find optimal
solutions. We show how to define f for a maximiza-
tion problem; defining it for a minimization problem is
equivalently easy.

The calculation of f (c) for a given allowed clade c given
w and X uses the following recursion (phrased here in
terms of maximization):

f (c) =
{

max
{

f (a) + f (b) + w(a, b, x)|(a, b, x) ∈ TRIPS, a ∪ b = c
}

, |c| > 1
0, |c| = 1

By Eq. 1, f (S) = F(T∗), where T∗ is the optimal solution
to the constrained optimization problem.

Hence, we can solve the optimization problem using
dynamic programming. We compute all the f (c) from the
smallest clades to the largest clade S. To construct the
optimal solution T∗, when we compute f (c) for a clade c,

https://github.com/pranjalv123/SIESTA
https://github.com/pranjalv123/SIESTA

Vachaspati and Warnow BMC Genomics 2018, 19(Suppl 5):252 Page 44 of 95

we record how we obtained this best score (i.e., we record
the unordered pair (a, b) of clades whose union is c
achieving this optimal score), and we use backtracking to
construct the rooted version of T∗. Then we unroot the
rooted tree.

The SIESTA data structure
SIESTA modifies these algorithms so they output a data
structure that implicitly represents the set of all the opti-
mal trees.

Specifically, when SIESTA computes f (c), instead of
recording a single split of the clade c into two subclades
that achieves the optimal score for the clade c, SIESTA
records all such splits of c. We describe the high-level idea
of SIESTA by describing how a single optimal tree (all of
whose clades are drawn from C) can be represented with
pointers, and then show how to extend that to represent
all optimal trees.

Let T be a rooted binary tree, all of whose clades are
drawn from C. T can be stored as a collection of nodes,
where each node contains either two pointers (one to each
of its two children, if it is an internal node) or a taxon label
(if it is a leaf node). Equivalently, this representation of T
can be seen as having pointers from each clade c (with
at least two species) to a pair of disjoint clades c1 and c2,
whose union is c.

We modify this representation to compactly represent
a set of rooted binary trees, as follows. Recall that during
the dynamic programming algorithm, all optimal ways of
splitting a clade c into two clades c′ and c′′ = c \ c′ are
determined. Each of these ways of splitting c into two sub-
clades is stored in a set I(c), by having each such split
represented by a pair of pointers. In other words, instead
of having each clade have a pair of pointers to two sub-
clades, each clade has a set I[c] of pairs of pointers to a
potentially large number of subclades. Thus, the SIESTA
data structure is the array I indexed by the clades in C, and
each element of the array is a set. Note also that |I(c)| ≤
|X|, so that the SIESTA data structure uses O(|X|2) space.

The SIESTA data structure also naturally defines a
directed acyclic graph whose nodes are labelled by allowed
clades c (i.e., elements of X), and there is an edge from c
to c′ if the set I(c) contains a pair of pointers, with one
pointer pointing to c′. We will say that c′ is a child of c
when there is an edge from c to c′. Given such a repre-
sentation, it is easy to generate any single optimal tree by
following a tree from the root of the SIESTA digraph (i.e.,
starting with the entry I[S]) down to the leaves, and at
each clade x with at least two elements, picking a pair of
its children whose clades union to x.

The asymptotic running time of this phase is equal to
the asymptotic running time of the original DP algorithm,
which is O

(|X|2α)
, where α is the time required to cal-

culate w for a single tripartition [12]. Storing the entire

data structure requires O
(|X|2) space in the extreme

case where every tree has the same score, but in many
real-world cases will require less.

Using SIESTA
We show how we can use SIESTA in various ways, includ-
ing counting the number of optimal trees, generating
greedy, strict, and majority consensus trees, and comput-
ing the maximum clade credibility tree.

Counting the number of optimal trees. We tra-
verse the collection of allowed clades from smallest to
largest, calculating for each allowed clade c the number
optsubtrees(c) of optimal rooted binary trees that contain
exactly the taxa in c. Obviously, optsubtrees(c) = 1 for all
clades of size 1. It is also straightforward to check that the
number of optimal rooted binary subtrees on larger clades
can be computed by examining all the optimal splits of the
clade into two parts. Hence,

optsubtrees(c) =
{ ∑

(x,y)∈I[c] optsubtrees(x) · optsubtrees(y), |c| > 1
1, |c| = 1

The number of optimal rooted binary trees is
optsubtrees(S), where S is the entire set of species. For
the algorithms we consider (ASTRAL and FastRFS), all
rootings of a particular unrooted tree have the same
criterion score, and so this quantity should be divided by
2n − 3, where n = |S| is the number of species, to get the
number of optimal unrooted trees.

Calculating consensus trees. A particular bipartition
[c|S\c] is present in fraction Ac of the optimal trees, where

Ac = optsubtrees(c) ∗ optsubtrees(S \ c)
optsubtrees(S)

(2)

For α ≥ 0.5, the α-consensus tree is the unique tree that
contains exactly those bipartitions that occur in more than
fraction α of the optimal trees. For smaller values of α, we
can still construct a consensus tree, but the set of biparti-
tions that appear with frequency greater than α may not
form a tree. To construct the α-consensus tree, we sort
the bipartitions in descending order by Ac, restricted only
to those bipartitions [c, S \ c] with Ac > α, and construct
a greedy consensus tree using this ordering. To calcu-
late a greedy consensus tree, we sort all the bipartitions
in descending order of Ac and greedily build a tree from
them. The majority consensus tree has α = 0.5, and so
is an example of an α-consensus tree. The strict consen-
sus tree can also be computed easily, and contains only
the bipartitions that It is easy to see that each of these
consensus trees can be computed in O(|X| log |X|) time.

Correct local branch support in an ASTRAL tree.
Recall that ASTRAL-II uses a quartet-based local poste-
rior probability (PP) measure [27] to assign support values

Vachaspati and Warnow BMC Genomics 2018, 19(Suppl 5):252 Page 45 of 95

to edges. However, when there is more than one optimal
tree, the branch support in any individual tree is unreli-
able, since it does not take the other optimal trees into
account. However, SIESTA can modify the branch sup-
port values by taking the other optimal trees into account.
Specifically, for a given bipartition in a tree T, we com-
pute its average support across the set of optimal trees
(where an optimal tree without the bipartition contributes
a support of zero); this is the corrected support for the
bipartition.

The ASTRAL Maximum Clade Credibility tree. A
natural optimization problem would be to return the
tree whose total corrected branch support (as described
above), summed over all the edges of the tree, is maxi-
mized. Such a tree is called the Maximum Clade Credi-
bility (MCC) tree, but finding such a tree is an NP-hard
problem. We developed a greedy heuristic for the MCC
tree, as follows. We use SIESTA to compute every optimal
ASTRAL tree, and calculate the corrected local branch
support values (as described above). We then compute a
greedy consensus of the resulting bipartitions, ranked by
these corrected support values. We refer to this as the
ASTRAL MCC tree.

Evaluation protocol
We tested SIESTA in two contexts: in conjunction with
FastRFS (a supertree method) and in conjunction with
ASTRAL (an ILS-aware species tree estimation method).
We use both biological and simulated datasets for these
experiments, and on each dataset we examined, we used
SIESTA to compute the set of optimal solutions, and to
compute consensus trees for these sets of optimal trees.
Overall, we examined 1020 simulated and 16 biological
datasets (5 supertree and 11 phylogenomic).

Gene tree estimation. The simulated supertree datasets
(both rooted and unrooted) and all the biological datasets
we analyzed came with pre-calculated source trees; for
the other datasets (i.e., for the simulated phylogenomic
datasets) we used RAxML v8.2.4 [28] to estimate gene
trees (using options -m GTRGAMMA -p 12345).

Supertree methods. We evaluated the impact of
SIESTA on the FastRFS v2.0 supertree method, using sev-
eral variants of FastRFS that vary in how the constraint set
of allowed bipartitions is defined:

• FastRFSbasic, which only uses ASTRAL-II to compute
the constraint set,

• FastRFSenh (i.e., the enhanced version), which adds
the bipartitions from the Matrix Representation with
Likelihood (MRL) supertree to its constraint set and
also from the ASTRID tree (but only when the

internode distance matrix that ASTRID computes is
complete), and

• FastRFSBCD, which adds the bipartitions from the
BCD supertree, but can only be used with rooted
supertree datasets.

Hence, FastRFS uses other supertree methods (i.e.,
ASTRAL, MRL, ASTRID, and BCD) to compute the con-
straint set. We ran ASTRID v1.1 and BCD v1.0.1 in default
mode. For ASTRAL-II, we ran a custom variant (avail-
able at the github site) where we use ASTRAL v4.7.8
to compute the constraint set of allowed bipartitions,
and then our own dynamic programming implementa-
tion to find optimal solutions to the quartet support
optimization problem. This custom version (which we
call SIESTA-ASTRAL) produces exactly the same output
species tree(s) as ASTRAL v.4.7.8, and allows us to make
a comparison between SIESTA used with ASTRAL v4.7.8
to compute consensus trees and a single ASTRAL 4.7.8.
tree. For MRL, we used RAxML v8.2.4 [28], with options
-m BINGAMMA -p 12345.

The supertree FastRFSenh has already been shown
to produce more accurate supertrees than ASTRID,
ASTRAL, and MRL, on simulated datasets [6]. However,
a new supertree method, BCD, has been developed for
use with rooted source trees, and has been reported to
be more accurate than FastRFS; hence, we explore these
FastRFS variants on supertree datasets with rooted source
trees, and we compare these variants to BCD. We then
explore the impact of SIESTA on the best variant and
determine how it compares to BCD.

ILS-aware species tree methods. We evaluated the
impact of SIESTA on ASTRAL v4.7.8 on the phyloge-
nomic datasets. We also used ASTRID, v1.1 (another
ILS-aware method), but only in the context of providing
bipartitions for FastRFS. For the biological datasets, we
explored the use of the MCC (Maximum Clade Credibil-
ity) tree computed using SIESTA.

Consensus methods. For each dataset, we use SIESTA
to compute the set of optimal trees and then also to
compute three consensus trees: the strict consensus, the
majority consensus, and the greedy consensus. The strict
consensus tree is the unique tree whose bipartition set
is exactly those bipartitions that appear in every opti-
mal tree, and so will not be fully resolved whenever the
number of optimal trees is two or larger. The majority
consensus tree is the unique tree whose bipartition set is
exactly those bipartitions that appear in a strict majority of
the set of optimal trees; unlike the strict consensus, it may
be fully resolved even when there are two or more opti-
mal trees. Finally, the greedy consensus tree is obtained by
ordering the bipartitions according to their frequency in

Vachaspati and Warnow BMC Genomics 2018, 19(Suppl 5):252 Page 46 of 95

the set of optimal trees, and then adding them, one by one,
in order of their frequency (from most frequent to least
frequent) to a growing tree. By design, the greedy consen-
sus may not be unique, but will always refine (or equal) the
majority consensus; similarly, the majority consensus will
always refine (or equal) the strict consensus.

Datasets
Simulated supertree datasets. We use two collections
of simulated supertree datasets (one with unrooted source
trees and one with rooted source trees), each based on
the SMIDgen [29] simulation protocol. The unrooted
source trees were originally generated for [29], and have
been used to explore the accuracy of several supertrees
methods [5, 6]; the rooted source tree datasets were gen-
erated for [7], and enable a comparison with the BCD
supertree method [7], which requires rooted source trees.

We explore the results on the datasets with 100, 500,
and 1000 taxa. Each replicate contains one “scaffold” tree
and several clade-based trees. The scaffold tree is based
on a random sample of the species, and contains 20%,
50%, 75%, or 100% of the taxa sampled uniformly at ran-
dom from the leaves of the tree. The clade-based trees are
based on a clade and then a birth-death process within
the clade (and hence may miss some taxa). The origi-
nal 100-taxon, 500-taxon, and 1000-taxon datasets had
6, 16, and 26 source trees respectively; the number of
source trees was reduced to 6, 11, and 16 for the 500-
taxon datasets, and 6, 11, 16, 21, and 26 for the 1000-
taxon datasets. Sequences evolved down each scaffold
and clade-based source tree under a GTR+Gamma model
(selected from a set of empirically estimated parame-
ters) with branch lengths that are deviated from the strict
molecular clock. Maximum likelihood trees were esti-
mated on each sequence alignment using RAxML under
the GTRGAMMA model (with numeric parameters esti-
mated by RAxML from the data), and used as source trees
for the experiment. 25 replicates were analyzed for the
100- and 500-taxon model conditions, and 10 replicates
were analyzed for each scaffold factor of the 1000-taxon
model condition.

Simulated phylogenomic datasets. We obtained multi-
locus simulated datasets from [13], and then modified
them for this study. These datasets were generated by
evolving gene trees within species trees (with speciation
close to the leaves of the model tree) under the multi-
species coalescent (MSC) model using SimPhy [30], and
then evolving sequences down each gene tree under the
GTR+Gamma model, with branch lengths deviated from
the strict molecular clock, using Indelible [31]. Three lev-
els of ILS were generated by modifying the species tree
height.

These datasets were then modified for the purposes of
this study. These datasets originally had 200 taxa each,
but were randomly reduced to 50 taxa each to reduce the
running time. The original datasets had variable length
loci between 300 and 1500bp, and were truncated for this
experiment to 150bp to produce datasets with properties
that are consistent with empirical phylogenomic datasets
(which frequently have very low phylogenetic signal). Each
replicate was evaluated with 5, 10, and 25 loci. We eval-
uated model conditions where each gene contained all 50
taxa, as well as model conditions where each gene con-
tained 10, 20, or 30 taxa chosen at random from the taxon
set. These datasets with 50 taxa had ILS levels that ranged
from moderate to very high; we characterize the ILS using
the average normalized bipartition distance (AD) between
true gene trees and true species trees. The moderate
ILS condition has AD=12%, the high ILS condition has
AD=31%, and the very high ILS condition has AD=68%.
We also generated incomplete gene trees by randomly
deleting a specific number of taxa from each gene (so
that all genes are incomplete but have the same number
of leaves) and then re-estimated gene trees; this allows
us to evaluate species tree estimation when not all genes
have all the species (i.e., in the presence of “missing data”)
[32]. We estimated gene trees using RAxML [28] under
the GTRGAMMA model (with numeric parameters esti-
mated by RAxML), and we analyzed 25 replicates for each
model condition (defined by the ILS level, number of loci,
and amount of missing data).

Biological supertree datasets. We analyzed five (all
unrooted) supertree datasets from [29]: Marsupials [33],
Placental Mammals [34], Seabirds [35], Temperate herba-
ceous papilionoid legumes (THPL) [36], and Comprehen-
sive papilionoid legumes (CPL) [37] datasets. See Table 1
for detailed information about these datasets.

Biological phylogenomic datasets. We analyzed 11
phylogenomic datasets, described in Table 2. Each of
these datasets has multiple genes, and each gene has one
unrooted binary maximum likelihood gene tree.

Table 1 Statistics for biological supertree datasets. We show the
number of taxa, source trees, and FastRFSenh supertrees for each
supertree dataset

Dataset # Taxa # Source trees # FastRFS supertrees

Marsupials [33] 267 158 258048

Placental Mammals [34] 116 726 4

Seabirds [35] 121 7 117760

THPL [36] 558 19 5.9 x 1034

CPL [37] 2228 39 7.7 1092

Vachaspati and Warnow BMC Genomics 2018, 19(Suppl 5):252 Page 47 of 95

Table 2 Statistics of the biological phylogenomic datasets. We
show the number of taxa, number of genes, and number of
optimal trees for ASTRAL

Dataset (publication) # Taxa # Genes # ASTRAL trees

Ferns [44] 85 25 1

Flatfishes [45] 152 23 1

Gallopheasants [46] 18 1479 1

Hymenoptera [47] 21 24 4

Lichens [48] 31 303 1

Louse [49] 15 1101 1

Mammalian [50] 37 424 1

Sigmontidine Rodents [39] 285 11 72

Skinks [51] 16 429 1

Synchaeta [52] 32 27 2

Testudinella [52] 25 27 7

Performance criteria.
For the simulated datasets, we compare the topological
accuracy of the trees we compute by comparing them to
the model species tree or supertree. We use DendroPy
v4.0.3 [38] to compute both the false negative (FN) rate
and the false positive (FP) rate with respect to the model
tree, where the FN rate is the number of bipartitions in
the model tree that are missing from the estimated tree
and the FP rate is the number of bipartitions in the esti-
mated tree that are not in the model tree, each divided by
n − 3 (the number of internal edges in an unrooted tree)
where n is the total number of leaves in the model tree.
For each basic tree estimation method (i.e., ASTRAL and
FastRFS), we also report Delta-Error, which is the differ-
ence between the average error rate (i.e., the average of the
FN and FP error rates) computed for the tree estimation
method and the average error rate of the strict consensus
of the optimal trees found by that method. Hence, when
Delta-Error is negative, the strict consensus has overall
lower error than a single optimal tree. We also report
the F1 score, which is the harmonic mean of the preci-
sion and recall of the estimated trees. For the biological
datasets, since topological accuracy cannot be assessed
exactly, we describe differences between the consensus
trees we compute using SIESTA and trees computed using
other techniques. We also report the number of optimal
trees for the optimization problems on all the datasets
we examine, and the running time used on the biological
datasets.

Results and discussion
Overview
Experiment 1 explores the use of SIESTA to compute the
number of optimal trees found by FastRFS and ASTRAL,
as this indicates the potential for SIESTA to improve accu-
racy by computing consensus trees. Experiment 2 explores

how the choice of consensus tree (strict, majority, or
greedy) impacts the average topological accuracy of the
resulting tree. The next experiments compare the strict
consensus tree to a single optimal tree, with Experiment
3 examining FastRFS variants on simulated supertree
datasets and Experiment 4 examining ASTRAL on simu-
lated phylogenomic datasets. Experiment 5 examines the
use of SIESTA to calculate branch support with ASTRAL
and FastRFS on biological datasets, and Experiment 6
evaluates running time issues.

Experiment 1: computing the number of optimal trees
We used SIESTA to compute the number of optimal trees
found by FastRFS and ASTRAL on both the biological and
simulated datasets. We explore the differences between
FastRFS variants (which depend on how the constraint set
is defined) and also between FastRFS and ASTRAL.

FastRFS variants. As shown in Table 1, FastRFSenh tends
to produce large numbers of optimal trees on the biologi-
cal supertree datasets, and this number tends to increase
with the number of taxa and decreases with the number
of source trees. On the simulated supertree datasets, both
FastRFSenh and FastRFSbasic typically have a large number
of optimal trees (Additional file 1: Tables S1 and S2), but
FastRFSenh generally had a much larger number of opti-
mal trees than FastRFSbasic. In addition, the number of
optimal trees for both variants grows with the number of
taxa: FastRFSenh typically has tens or hundreds of optimal
solutions on datasets with 100 taxa, but there are up to
1018 optimal FastRFSenh trees on datasets with 1000 taxa.
The density of the scaffold factor also impacts the num-
ber of optimal trees, with fewer optimal trees with the
100%-scaffold factor than with sparser scaffold factors.

ASTRAL. ASTRAL showed distinctly different trends.
For example, ASTRAL typically only produced a single
optimal tree on the biological phylogenomic datasets, as
shown in Table 2. We also examined the number of opti-
mal ASTRAL trees on simulated phylogenomic datasets.
As shown in Additional file 1: Table S3, when all the gene
trees are complete, nearly all the analyses produced only
one optimal ASTRAL tree, and when more than one tree
was produced it was typically a very small number (often
just two). However, there are many optimal ASTRAL trees
on the phylogenomic datasets with incomplete gene trees
(see Additional file 1: Table S4). Thus, although ASTRAL
usually only finds a single optimal tree, it can (in some
cases) return a larger number.

Comparison of ASTRAL and FastRFS variants on the
same datasets. We then compared the number of opti-
mal trees found by ASTRAL, FastRFSbasic, and FastRFSenh
on the biological supertree datasets. FastRFSenh found

Vachaspati and Warnow BMC Genomics 2018, 19(Suppl 5):252 Page 48 of 95

the largest number, followed by FastRFSbasic, and then by
ASTRAL (Table 3). The comparison between FastRFSbasic
and FastRFSenh shows that increasing the size of the con-
straint space for FastRFS results in an increase in the
number of optimal trees, which is as expected.

The comparison between ASTRAL and FastRFSbasic,
which have the same constraint set, is more interesting,
and suggests that the optimization problem solved by
ASTRAL tends to have a smaller set of optimal trees than
the optimization problem solved by FastRFS. The reason
that FastRFS tends to have more optimal solutions than
ASTRAL may be that the number of possible FastRFS
scores is substantially smaller than the number of possible
ASTRAL scores. Specifically, if n is the number of species
and k is the number of source trees, the FastRFS scores
are all integers in the range [0, (n−3)k], while the possible
ASTRAL scores are integers in the range [0, k

(n
4
)
]. There-

fore, the frequency of multiple trees with the same optimal
score is higher for FastRFS than for ASTRAL. However,
ASTRAL has by far a much smaller number of optimal
trees, and typically has only one optimal tree under con-
ditions where even FastRFSbasic has at least 106 optimal
trees.

Overall, therefore, FastRFSenh typically has many opti-
mal trees on supertree datasets, while ASTRAL typically
(but not always) has only one optimal tree when given
complete gene trees but can have many optimal trees
when given highly incomplete gene trees. This means that
if we use SIESTA to compute a consensus tree of the
optimal trees, this has a greater probability of impacting
FastRFSenh than ASTRAL, but can also impact ASTRAL
when the input dataset has genes that are missing many
taxa.

Experiment 2: comparing different consensus trees
computed using SIESTA
We explored the impact of using different consensus
methods (i.e., the strict consensus, majority consensus,
and greedy consensus) in conjunction with FastRFSenh
and FastRFSBCD. We report the difference in average topo-
logical error (i.e., the average of the FN and FP error rates)
of these consensus trees compared to a single best tree.

Table 3 Number of optimal trees found by FastRFSbasic ,
FastRFSenh , and ASTRAL for biological supertree datasets

Dataset (publication) FastRFSbasic FastRFSenh ASTRAL

Seabirds [35] 17664 117760 24

Marsupial [33] 24576 258048 96

Placental [34] 64 4 4

THPL [36] 2.7 × 1018 5.9 × 1034 1.1 × 1011

CPL [37] 5.4 × 1064 7.7 × 1092 3.9 × 1029

For the unrooted supertree datasets, as seen in
Additional file 1: Figure S1, for all numbers of taxa and
scaffold factors, the three consensus trees of the best
FastRFSenh supertrees are nearly identical in accuracy, and
typically are more accurate than a single best FastRFSenh
tree. However, there are some cases where the strict con-
sensus has a very slight advantage over the other consen-
sus methods. Additional file 1: Figure S2 shows FN and
FP rates separately for the strict consensus of the optimal
FastRFSenh trees on the unrooted supertree datasets, and
how they are impacted by the number of optimal trees. As
expected, the FP rates decrease and the FN rates increase
as the number of optimal trees increases; furthermore, as
the number of optimal trees increases, the decrease in FP
rate is substantially larger than the increase in FN rate. As
a result, the average of the FN and FP rates decreases with
the number of optimal trees.

We then explored the impact of choice of consensus
tree on the simulated rooted supertree datasets (where
we used FastRFSBCD); see Additional file 1: Figure S3. On
these data, the strict consensus tree had generally the low-
est average topological error rate, followed by the majority
consensus, and then by the greedy consensus, but all three
consensus trees were typically more accurate than a single
best FastRFSBCD tree.

Experiment 3: FastRFS-SIESTA vs. FastRFS on simulated
supertree datasets
We compare the strict consensus of the optimal FastRFS
supertrees (referred to as FastRFS-SIESTA) to a single Fas-
tRFS supertree on the simulated supertree datasets. For
the unrooted supertree datasets, we use FastRFSenh, which
was shown to provide better topological accuracy than
other supertree methods in [6].

Results on the unrooted supertree datasets (Fig. 1) show
that FastRFS+SIESTA is at least as accurate as FastRFS
for all scaffold factors and all numbers of taxa. The differ-
ence between the two methods is often small, but there
are larger improvements when the scaffold factor is the
smallest (which is also when the number of optimal trees
is largest).

For rooted supertree datasets, we explore another
supertree method called the Bad Clade Deletion (BCD)
supertree method, which can only be used with rooted
source trees. As shown in [7], BCD produced more accu-
rate species trees (with respect to the F1 metric) than
FastRFSbasic and several other supertree methods. We
confirm that BCD outperforms FastRFSbasic with respect
to the F1 metric (Additional file 1: Figure S4), and also
note that BCD outperforms FastRFSbasic with respect to
the RF error rate (Additional file 1: Figure S5). How-
ever, it is not known whether BCD is more accurate than
FastRFSenh or FastRFSBCD, nor whether using SIESTA
enables some FastRFS variant to outperform BCD. We

Vachaspati and Warnow BMC Genomics 2018, 19(Suppl 5):252 Page 49 of 95

Fig. 1 We compare a single FastRFSenh supertree to FastRFSenh+SIESTA (the strict consensus of the optimal FastRFSenh supertrees) on unrooted
supertree datasets. Error shown is the normalized average topological error (i.e., average of FN and FP rates) between true and estimated supertrees.
Error bars indicate the standard error. There are 25 replicates each for the 100- and 500-taxon datasets, and 10 replicates for the 1000-taxon datasets

compared these three methods with respect to RF errors
(Additional file 1: Figure S6) and F1 scores (Additional
file 1: Figure S7). The two FastRFS variants are very close
in accuracy with respect to both criteria, with a slight
advantage to FastRFSBCD. Interestingly, the comparison to
BCD shows that the FastRFS variants are less accurate on
the sparse scaffolds than BCD, but slightly more accurate
on the 100%-scaffold. Overall, therefore, FastRFSBCD has a
slight advantage over the other FastRFS variants on these
rooted supertree datasets, and is competitive with BCD
(worse under some conditions and better under others).

We then examined whether computing the strict con-
sensus improves FastRFSBCD enough to enable it to out-
perform BCD. We first observed that the strict consensus
of the FastRFSBCD supertrees was more accurate than a
single FastRFSBCD supertree (Fig. 2). Furthermore, using
SIESTA to compute the strict consensus of the opti-
mal trees found by FastRFSBCD produces supertrees that
are generally (but not always) more accurate than BCD
(Fig. 3 shows average tree error and Additional file 1:
Figure S8 shows the F1 scores). The differences are small-
est on the 100-taxon datasets, but the strict consensus

Vachaspati and Warnow BMC Genomics 2018, 19(Suppl 5):252 Page 50 of 95

Fig. 2 We compare a single FastRFSBCD supertree (FastRFSBCD) to FastRFSBCD+SIESTA (the strict consensus of the optimal FastRFSBCD supertrees) on
rooted supertree datasets. Error shown is the normalized average topological error (i.e., average of FN and FP rates) between true and estimated
supertrees. Error bars indicate the standard error. There are 25 replicates each for the 100- and 500-taxon datasets, and 10 replicates for the
1000-taxon datasets

of the FastRFSBCD trees is generally more accurate than
BCD on the larger datasets, especially for the denser scaf-
folds. Thus, the use of SIESTA enables FastRFSBCD to
outperform BCD.

Experiment 4: ASTRAL+SIESTA vs. ASTRAL on simulated
phylogenomic data
As noted earlier, ASTRAL often returns only one opti-
mal tree, so that the strict consensus of the optimal
ASTRAL trees cannot differ from the single best tree.
In this experiment, we restrict the attention to the
datasets on which ASTRAL found more than one tree.
In general, this occurred for the phylogenomic datasets
with substantial levels of missing data (i.e., when we
deleted species randomly from genes). For these cases,
we see that the average topological error rates for the strict
consensus of the ASTRAL trees are lower than the error
rate for a single ASTRAL tree (Fig. 4) under three dif-
ferent ILS levels, when there is missing data. However,
the degree to which the strict consensus of the ASTRAL
trees improves over a single ASTRAL depends upon the
amount of missing data.

A more nuanced analysis is shown in Fig. 5, where we
explore how the number of optimal trees impacts the FN
and FP rates for the strict consensus. Note that the FN
rate of the strict consensus is very similar to the FN rate
of a single optimal ASTRAL tree, but the strict consen-
sus has a much lower FP rate; hence the strict consensus
has a reduced average error rate compared to a single
best tree. Although the FN rates are slightly higher under
lower ILS conditions, the FP rates drop more than the FN
rates increase, so that the same overall trends are similar
(Additional file 1: Figure S9).

Experiment 5: results on biological datasets
For the biological datasets, we do not know the true
species tree (which is the unstated objective of the
supertree analysis), and so we cannot evaluate accuracy.
However, we show how to use SIESTA to provide mean-
ingful branch support in estimated species trees.

Biological supertree datasets. We use SIESTA to
compute the greedy consensus tree of the FastRFSenh
supertrees on the unrooted supertree datasets, and then

Vachaspati and Warnow BMC Genomics 2018, 19(Suppl 5):252 Page 51 of 95

Fig. 3 We compare Bad Clade Deletion (BCD) supertrees to the strict consensus of FastRFSBCD supertrees on rooted supertree datasets. Error shown
is the normalized average topological error (i.e., average of FN and FP rates) between true and estimated supertrees. Error bars indicate the standard
error. There are 25 replicates each for the 100- and 500-taxon datasets, and 10 replicates for the 1000-taxon datasets

annotated each edge in the greedy consensus supertree
with the fraction of the optimal trees on the dataset.
Figure 6 shows that most of the edges in the greedy con-
sensus of the optimal FastRFSenh supertrees for each of
these datasets have 100% support, indicating that these
edges are consistent across all optimal trees. It also shows
that some edges are only found in about half (sometimes
even less) of the optimal trees, and so should not be con-
sidered as reliable. However, this depends on the dataset:
nearly all the edges in the greedy consensus of the optimal
FastRFSenh supertrees for the placental mammals dataset
have 100% support, while the THPL and CPL datasets
have a substantial fraction of edges that appear in at most
60% of the optimal FastRFSenh supertrees.

Hymenoptera phylogenomic dataset. The Hymenoptera
dataset is a phylogenomic dataset with 21 taxa and
24 genes. There are four optimal ASTRAL trees on
this dataset (shown in Fig. 7). The differences between
these four trees are restricted to two clades with
three species each: (1) Solenopsi, Apis, and Vesputal_C,
and (2) Acyrthosi, Myzus, and Acyrthosp. The strict and
majority consensus trees (Fig. 8) on these four ASTRAL

trees are identical, and present these two groups as com-
pletely unresolved. The MCC tree (Fig. 8) on this set of
four ASTRAL trees matches one of the four trees with
respect to topology, but has different branch support on
the edges, so that the branch support for the two clades
in question are halved in comparison to the four ASTRAL
trees; thus, the MCC tree appropriately identifies these
clades as having very low support.

Sigmontidine rodent phylogenomic dataset. The Sig-
montidine rodent dataset is a phylogenomics dataset with
285 taxa and 11 genes, and there are 72 optimal ASTRAL
trees on this dataset. The species tree computed on this
dataset in [39] was a concatenated Bayesian tree using
MrBayes [40], with branch support based on posterior
probabilities. The Sigmontidine rodent dataset had 72
optimal ASTRAL trees. We computed the ASTRAL MCC
tree, and then collapsed all branches with support less
than 75%; this produced a tree with only 74 internal edges.
This dataset has 285 taxa, meaning that a fully resolved
tree would have 282 internal branches. By comparison, the
MrBayes tree has 223 internal branches after collapsing
branches with less than 75% support.

Vachaspati and Warnow BMC Genomics 2018, 19(Suppl 5):252 Page 52 of 95

Fig. 4 We show Delta-error (change in mean topological error between a single ASTRAL tree and the strict consensus of the set of ASTRAL trees) on
simulated phylogenomic datasets with three different ILS levels, 50 species, and 25 incomplete estimated gene trees; values below 0 indicate that
the strict consensus of the ASTRAL trees is more accurate than a single ASTRAL tree. We show results for 25 replicates. Error bars indicate the
standard error; topological error is the average of the FN and FP error rates

Comparing the MrBayes tree with the ASTRAL MCC
tree, we find that 64 bipartitions are present and highly
supported in both trees. After collapsing the edges with
lower support, we are left with only the high support
edges. Six highly supported bipartitions are present in the
ASTRAL MCC tree and compatible with the collapsed
MrBayes tree, and three bipartitions are present in the
ASTRAL MCC tree and incompatible with the collapsed
MrBayes tree. One hundred fifty three highly supported
bipartitions are present in the MrBayes tree and compati-
ble with (but not present in) the collapsed ASTRAL MCC

tree, and 5 highly supported bipartitions in the MrBayes
tree are incompatible with the collapsed ASTRAL MCC
tree. The highly supported conflicts between the trees
occur in three locations:

1 The MrBayes tree has Akodon Mimus as the root of
the Akodon genus, while the ASTRAL MCC tree has
it internal to Akodon (the root of Akodon is not
resolved with greater than 75% support).

2 The MrBayes tree and the ASTRAL MCC tree swap
the locations of the Holochilus and Sooretamys

Fig. 5 We show the FN and FP error rates of the strict consensus of ASTRAL trees, compared to a single ASTRAL tree, on simulated phylogenomic
datasets with 50 species and 25 incomplete estimated gene trees; values below 0 indicate that the strict consensus ASTRAL is more accurate for that
criterion (i.e., it has lower error) than ASTRAL. The x-axis shows the number of optimal trees, and we show results for 25 replicates. Error bars indicate
the standard error

Vachaspati and Warnow BMC Genomics 2018, 19(Suppl 5):252 Page 53 of 95

Fig. 6 Histogram of support values for edges in the FastRFSenh greedy consensus tree on the unrooted supertree datasets. These support values are
the percentages of the optimal trees they appear in. Although the majority of the edges have 100% support in each tree, some edges have low
support, suggesting that they are not as reliable as the higher support edges

clades, with ASTRAL putting Holochilus as the basal
clade and MrBayes putting Sooretamys as the basal
clade.

3 The ASTRAL MCC tree and the MrBayes tree
disagree about some resolutions within the
Oligoryzomys clade.

These placements are in general not well established
in the literature [41–43], and so it is not clear which
of the two trees is more likely to be correct for these
questions.

The difference between a single ASTRAL tree and the
ASTRAL MCC tree is therefore quite significant for some
datasets. To understand these differences, recall that the
support values are obtained using posterior probabilities
based on quartet trees around an edge in a single optimal
tree. However, a simple example can explain why this can
be misleading. Suppose T1 and T2 are the only trees that
are optimal for ASTRAL, and that T1 has a split π that
T2 does not have. Then under the assumption that T1 and
T2 are both equally likely to be the true species tree, the
maximum probability that π can be a true split is 0.5 –
since it is in only one optimal tree. It is easy to see that any
support value greater than 0.5 produced when T1 is exam-
ined is inflated, and that a correction must be made that
takes into consideration that T2 is also an optimal tree.
SIESTA’s way of calculating support explicitly enables this

correction, since it explicitly considers the support of each
bipartition obtained from the entire set of optimal trees.

Experiment 6: running time
We explore the computational impact of using SIESTA to
compute the strict consensus of the optimal trees found
using two variants of FastRFS on the rooted supertree
datasets with 1000 species. We compare the cost of
using FastRFSbasic to find a single tree to the total run-
ning time needed to compute the strict consensus of
the FastRFSbasic supertrees (Table 4). All methods com-
plete in under a minute (actually under 40 seconds),
and that the difference in terms of time needed to
compute a single FastRFSbasic tree and the strict con-
sensus of all the optimal FastRFSbasic trees is at most
0.3 seconds. We also compare the time needed to run
BCD, FastRFSBCD, and the total time needed to com-
pute the strict consensus of the FastRFSBCD supertrees
(Table 5). Note that BCD is substantially faster than
FastRFSBCD, but that all methods complete in less than
a minute. Note also that the difference in terms of time
needed to compute a single FastRFSBCD tree and the
strict consensus of all the optimal FastRFSBCD trees is at
most 0.5 seconds

Thus, the additional time needed to compute the strict
consensus of the set of optimal trees is less than half a
second. This is particularly noteworthy, given the number

Vachaspati and Warnow BMC Genomics 2018, 19(Suppl 5):252 Page 54 of 95

Acyrthosp

Pelecinid

Acyrthosi

Apis

Lysi3_CG3

Neodiprio

Drosophil

Tribolium

Orthopter

Figitidae

Vespula_C

Lysi2__CG

Nas_girau

Bombyx

Campoleti

Aulacidae

Ceraphron

Solenopsi

Nasonia

Lysiphleb

Myzus

0.65

0.5

0.34

0.77

0.67

0.33

0.23

0.65

0.33

0.33

0.81

0.33

0.85

0.99

0.78

0.67

Drosophil

Acyrthosp

Ceraphron

Lysiphleb

Aulacidae

Orthopter

Nas_girau

Pelecinid

Solenopsi

Lysi3_CG3

Bombyx

Figitidae

Lysi2__CG

Campoleti

Tribolium

Apis

Nasonia

Neodiprio

Acyrthosi

Myzus

Vespula_C

0.67

0.65

0.5

0.33

0.85

0.33

0.33

0.67

0.33

0.77

0.78

0.23

0.99

0.65

0.34 0.81

0.67

Bombyx

Acyrthosp

Lysi2__CG

Acyrthosi

Orthopter

Figitidae

Tribolium

Solenopsi

Apis

Lysi3_CG3

Nasonia

Lysiphleb

Neodiprio

Aulacidae

Pelecinid

Campoleti

Drosophil

Nas_girau

Ceraphron

Myzus

Vespula_C

0.23

0.33

0.33

0.33

0.67

0.67

0.5

0.77

0.85

0.65

0.65

0.81

0.78

0.99

0.34

0.98

Nasonia

Nas_girau

Acyrthosp

Figitidae

Lysiphleb

Aulacidae

Apis

Solenopsi

Myzus

Vespula_C

Tribolium

Pelecinid

Neodiprio

Campoleti

Acyrthosi

Orthopter

Lysi2__CG

Lysi3_CG3

Drosophil

Ceraphron

Bombyx

0.98

0.67

0.85

0.33

0.67

0.65

0.77

0.34 0.81

0.65

0.67

0.78

0.5

0.33

0.99

0.23

0.33

Fig. 7 The four optimal ASTRAL trees on the Hymenoptera dataset, each rooted at the outgroup, and given with local posterior probabilities for
branch support. The four trees differ only in two groups: (1) Solenopsi, Apis, and Vesputal_C, and (2) Acyrthosi, Myzus, and Acyrthosp

of optimal trees that are found by FastRFSbasic on these
1000-taxon supertree datasets. Overall, these data show
that the cost of using SIESTA is small, and represents a
small percentage of the total time needed to find a single
tree.

Conclusions
SIESTA is a simple technique for computing a data struc-
ture that implicitly represents a set of optimal trees found
during the dynamic programming algorithms used by
ASTRAL and FastRFS, but SIESTA is generalizable to any

Vachaspati and Warnow BMC Genomics 2018, 19(Suppl 5):252 Page 55 of 95

Myzus

Solenopsi

Aulacidae

Bombyx

Pelecinid

Nas_girau

Tribolium

Lysi3_CG3

Orthopter

Figitidae

Neodiprio

Apis

Ceraphron

Acyrthosp

Acyrthosi

Campoleti

Drosophil

Vespula_C

Lysiphleb

Nasonia

Lysi2__CG

0.23

0.65

0.85

0.33

0.67

0.99

0.835

0.5

0.165

1

0.78

0.34

0.655

0.65

0.67

0.77

0.81

0.165

Pelecinid

Aulacidae

Orthopter

Lysi3_CG3

Neodiprio

Myzus

Figitidae

Ceraphron

Apis

Tribolium

Lysiphleb

Bombyx

Vespula_C

Solenopsi

Acyrthosp

Nasonia

Campoleti

Lysi2__CG

Nas_girau

Drosophil

Acyrthosi

Fig. 8 The ASTRAL Maximum Clade Credibility (MCC) tree (left) with branch support and the strict consensus tree (right) on the Hymenoptera
dataset. The ASTRAL MCC tree is topologically identical to one of the four ASTRAL trees, but has different branch support; in particular, the branch
support on the clades in question is half the branch support in the original ASTRAL trees on these clades. The ASTRAL strict consensus tree makes
these two clades into polytomies

algorithm that uses the same basic dynamic programming
structure. Once the data structure is computed, it can be
used in multiple ways to explore the solution space. In
particular, it can be used to count the number of opti-
mal solutions and determine the support for a particular
bipartition, thus enabling the estimation of the support on
branches for a given optimal tree that takes into account
the existence of other optimal trees.

We studied SIESTA in conjunction with ASTRAL and
FastRFS on a collection of biological and simulated

Table 4 Running time (in seconds, rounded to the nearest tenth)
on the 1000-taxon rooted supertree datasets for FastRFSbasic and
for the computation of the strict consensus of the FastRFSbasic

optimal trees (averaged over 10 replicates). The difference in
running time to compute the strict consensus of the set of
optimal trees compared to computing a single best tree is at
most 0.3 seconds

Scaffold factor FastRFSbasic (single) FastRFSbasic (strict
consensus)

Difference

20% 31.6 31.6 <0.1

50% 39.3 39.4 0.1

75% 37.5 37.8 0.3

100% 34.6 34.6 <0.1

datasets. This study showed that using SIESTA to com-
pute the strict consensus produced a benefit for some
methods in some cases, but not in all. The trends we
observed clearly indicate that when there are many opti-
mal trees, the use of the strict consensus tree results
in a substantial reduction in the false positive rate and
a lesser increase in the false negative rate, for an over-
all reduction in topological error. Conversely, when there
are only a small number of optimal trees, there is little
change between the strict consensus tree and any sin-
gle optimal tree. Thus, the impact of using the strict

Table 5 Running time (in seconds) on the 1000-taxon rooted
supertree datasets for BCD, FastRFSBCD , and for the computation
of the strict consensus of the FastRFSBCD optimal trees (averaged
over 10 replicates). The difference in running time to compute
the strict consensus of the set of optimal trees compared to
computing a single best tree is at most half a second

Scaffold factor BCD FastRFSBCD
(single)

FastRFSBCD (strict
consensus)

Difference

20% 10.2 33.1 33.5 0.4

50% 8.1 41.8 42.3 0.5

75% 9.2 39.9 40.1 0.2

100% 14.4 36.3 36.4 0.1

Vachaspati and Warnow BMC Genomics 2018, 19(Suppl 5):252 Page 56 of 95

consensus depends on the number of optimal solutions,
which tended to be larger for all FastRFS variants than for
ASTRAL. We also saw that the number of optimal trees
for ASTRAL depends on the amount of missing data, so
that the benefit of using SIESTA with ASTRAL to com-
pute the strict consensus seems to be reliable only when
there is missing data. The study also showed that FastRFS
typically benefited from using the strict consensus tree,
while ASTRAL’s benefit varied with the dataset, as a result
of the differences in numbers of optimal trees.

Our study showed that using SIESTA to produce a maxi-
mum clade credibility (MCC) tree with ASTRAL provided
a more statistically meaningful point estimate of the true
species tree than any single optimal ASTRAL tree, espe-
cially with respect to appropriately modified branch sup-
port values that take the multiple optima into account.
Thus, SIESTA provides multiple benefits to species tree
and supertree estimation: identifying cases where there is
a unique optimum and providing better point estimates of
the true tree when there are multiple optima.

Finally, there are many other methods that also use
a dynamic programming approach for tree estimation
(often within a constrained search space), and SIESTA can
be used with these methods in similar ways. Future work
should explore the impact of SIESTA with these other
methods.

Additional file

Additional file 1: Supplementary Materials. Software version numbers
and commands. Three tables and nine figures presenting additional results.
PDF (935 kb).

Abbreviations
AD: Average distance; CPL: Comprehensive papilionoid legumes; FN: False
negative; FP: False positive; GDL: Gene duplication and loss; HGT: Horizontal
gene transfer; ILS: iIncomplete lineage sorting; MCC: Maximum clade
credibility; MCMC: Markov Chain Monte Carlo; MRL: Matrix representation with
likelihood; THPL: Temperate herbaceous papilionoid legumes

Acknowledgments
We thank the anonymous reviewers for their helpful criticisms on an earlier
draft, which greatly improved the manuscript. We also thank Erin Molloy, Sarah
Christensen, and Siavash Mirarab, for feedback on the initial results.

Funding
This study made use of the Illinois Campus Cluster, a computing resource that
is operated by the Illinois Campus Cluster Program in conjunction with the
National Center for Supercomputing Applications and which is supported by
funds from the University of Illinois at Urbana-Champaign. This work was
partially supported by U.S. National Science Foundation Graduate Research
Fellowship Program under Grant Number DGE-1144245 to PV and U.S. National
Science Foundation grant CCF-1535977 to TW. The publication cost of this
article was funded by U.S. National Science Foundation grant CCF-1535977.

Availability of data and materials
SIESTA is available at https://github.com/pranjalv123/FastRFS (included in the
standard FastRFS distribution), https://github.com/pranjalv123/ASTRAL-
SIESTA (included in our implementation of the ASTRAL algorithm), and at
https://github.com/pranjalv123/phylonaut (for the library that implements a
generic version of the dynamic programming algorithm including SIESTA) in

open source form. The simulated datasets analyzed in this paper are available
on FigShare at [26].

About this supplement
This article has been published as part of BMC Genomics Volume 19
Supplement 5, 2018: Proceedings of the 15th Annual Research in
Computational Molecular Biology (RECOMB) Comparative Genomics Satellite
Workshop: genomics. The full contents of the supplement are available online
at https://bmcgenomics.biomedcentral.com/articles/supplements/volume-
19-supplement-5.

Authors’ contributions
TW and PV conceived the study. TW designed the study. PV implemented
SIESTA, performed the analyses, and made the figures. TW and PV interpreted
the data. TW wrote the paper, with assistance from PV. Both authors read and
approved the final manuscript.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Published: 8 May 2018

References
1. Roch S. A short proof that phylogenetic tree reconstruction by maximum

likelihood is hard. IEEE/ACM Trans Comput Biol Bioinform(TCBB).
2006;3(1):92.

2. Bininda-Emonds ORP. Phylogenetic supertrees: combining information to
reveal the “tree of life”. Dordrecht: Springer; 2004.

3. Baum BR. Combining trees as a way of combining data sets for
phylogenetic inference, and the desirability of combining gene trees.
Taxon. 1992;41(1):3–10.

4. Ragan MA. Phylogenetic inference based on matrix representation of
trees. Mol Phylogenet Evol. 1992;1(1):53–8. https://doi.org/10.1016/1055-
7903(92)90035-F.

5. Nguyen N, Mirarab S, Warnow T. MRL and SuperFine+MRL: new
supertree methods. Algorithms Mol Biol. 2012;7(1):3.

6. Vachaspati P, Warnow T. FastRFS: fast and accurate Robinson-Foulds
Supertrees using constrained exact optimization. Bioinformatics.
2017;33(5):631–9.

7. Fleischauer M, Böcker S. Bad Clade Deletion Supertrees: A Fast and
Accurate Supertree Algorithm. Mol Biol Evol. 2017;34(9):2408–21.
https://doi.org/10.1093/molbev/msx191.

8. Akanni WA, Wilkinson M, Creevey CJ, Foster PG, Pisani D. Implementing
and testing Bayesian and maximum-likelihood supertree methods in
phylogenetics. R Soc Open Sci. 2015;2(8). https://doi.org/10.1098/rsos.
140436. http://rsos.royalsocietypublishing.org/content/2/8/140436.full.
pdf.

9. Redelings BD, Holder MT. A supertree pipeline for summarizing
phylogenetic and taxonomic information for millions of species.
PeerJ. 2017;5:3058. https://doi.org/10.7717/peerj.3058.

10. Lafond M, Chauve C, El-Mabrouk N, Ouangraoua A. Gene tree
construction and correction using supertree and reconciliation. IEEE/ACM
Trans Comput Biol Bioinform. 2017;99:1–1. https://doi.org/10.1109/TCBB.
2017.2720581.

11. Maddison W. Gene trees in species trees. Syst Biol. 1997;46(3):523–36.
https://doi.org/10.1093/sysbio/46.3.523.

12. Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T.
ASTRAL: genome-scale coalescent-based species tree estimation.
Bioinformatics. 2014;30(17):541–8.

https://doi.org/10.1186/s12864-018-4621-1
https://github.com/pranjalv123/FastRFS
https://github.com/pranjalv123/ASTRAL-SIESTA
https://github.com/pranjalv123/ASTRAL-SIESTA
https://github.com/pranjalv123/phylonaut
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-19-supplement-5
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-19-supplement-5
https://doi.org/10.1016/1055-7903(92)90035-F
https://doi.org/10.1016/1055-7903(92)90035-F
https://doi.org/10.1093/molbev/msx191
https://doi.org/10.1098/rsos.140436
https://doi.org/10.1098/rsos.140436
http://rsos.royalsocietypublishing.org/content/2/8/140436.full.pdf
http://rsos.royalsocietypublishing.org/content/2/8/140436.full.pdf
https://doi.org/10.7717/peerj.3058
https://doi.org/10.1109/TCBB.2017.2720581
https://doi.org/10.1109/TCBB.2017.2720581
https://doi.org/10.1093/sysbio/46.3.523

Vachaspati and Warnow BMC Genomics 2018, 19(Suppl 5):252 Page 57 of 95

13. Mirarab S, Warnow T. ASTRAL-II: coalescent-based species tree estimation
with many hundreds of taxa and thousands of genes. Bioinformatics.
2015;31(12):44–52.

14. Zhang C, Sayyari E, Mirarab S. ASTRAL-III: Increased scalability and
impacts of contracting low support branches. In: Meidanis J, Nakhleh L,
editors. Comparative Genomics: Proceedings of the 15th International
Workshop, RECOMB-CG 2017, Barcelona, Spain, October 4-6, 2017.
Cham: Springer; 2017. p. 53–75.

15. Mossel E, Roch S. Incomplete lineage sorting: consistent phylogeny
estimation from multiple loci. IEEE/ACM Trans Comput Biol Bioinform
(TCBB). 2010;7(1):166–71.

16. Larget BR, Kotha SK, Dewey CN, Ané C. BUCKy: gene tree/species tree
reconciliation with Bayesian concordance analysis. Bioinformatics.
2010;26(22):2910–1.

17. Liu L, Yu L, Edwards SV. A maximum pseudo-likelihood approach for
estimating species trees under the coalescent model. BMC Evol Biol.
2010;10(1):1–18. https://doi.org/10.1186/1471-2148-10-302.

18. Liu L, Yu L. Estimating species trees from unrooted gene trees. Syst Biol.
2011;60(5):661–7. https://doi.org/10.1093/sysbio/syr027.

19. Vachaspati P, Warnow T. ASTRID: Accurate Species TRees from Internode
Distances. BMC Genomics. 2015;16(10):1–13. https://doi.org/10.1186/
1471-2164-16-S10-S3.

20. Hallett MT, Lagergren J. New algorithms for the duplication-loss model.
In: Proceedings of the Fourth Annual International Conference on
Computational Molecular Biology (RECOMB). New York: ACM; 2000.
p. 138–146.

21. Bryant D, Steel M. Constructing optimal trees from quartets. J Algorithms.
2001;38(1):237–59.

22. Bayzid MS, Mirarab S, Warnow TJ. Inferring optimal species trees under
gene duplication and loss. In: Pac Symp Biocomput; 2013. p. 250–61.

23. Than C, Nakhleh L. Species tree inference by minimizing deep
coalescences. PLoS Comput Biol. 2009;5(9):1000501. https://doi.org/10.
1371/journal.pcbi.1000501.

24. Yu Y, Warnow T, Nakhleh L. Algorithms for MDC-based multi-locus
phylogeny inference: beyond rooted binary gene trees on single alleles.
J Comput Biol. 2011;18(11):1543–59.

25. Szöllősi GJ, Rosikiewicz W, Boussau B, Tannier E, Daubin V. Efficient
exploration of the space of reconciled gene trees. Syst Biol. 2013;62:
901–12. https://doi.org/10.1093/sysbio/syt054.

26. Vachaspati P. Simulated Data for SIESTA paper. 2017. Retrieved July 21,
2017 from https://doi.org/10.6084/m9.figshare.5234803.v1.

27. Sayyari E, Mirarab S. Fast coalescent-based computation of local branch
support from quartet frequencies. Mol Biol Evol. 2016;33(7):1654–68.

28. Stamatakis A. RAxML Version 8: A tool for Phylogenetic Analysis and
Post-Analysis of Large Phylogenies. Bioinformatics. 2014;30(9).
https://doi.org/10.1093/bioinformatics/btu033.

29. Swenson MS, Barbançon F, Warnow T, Linder CR. A simulation study
comparing supertree and combined analysis methods using SMIDGen.
Algorithms Mol Biol. 2010;5(8).

30. Mallo D, Martins LDO, Posada D. SimPhy: phylogenomic simulation of
gene, locus, and species trees. Syst Biol. 2016;65(2):334–44.
https://doi.org/10.1093/sysbio/syv082.

31. Fletcher W, Yang Z. INDELible: A Flexible Simulator of Biological
Sequence Evolution. Mol Biol Evol. 2009;26(8):1879–88. http://doi.org/10.
1093/molbev/msp098. http://mbe.oxfordjournals.org/content/26/8/
1879.full.pdf+html.

32. Molloy EK, Warnow T. To include or not to include: the impact of gene
filtering on species tree estimation methods. Syst Biol. 2017.
https://doi.org/10.1093/sysbio/syx077.

33. Cardillo M, Bininda-Emonds ORP, Boakes E, Purvis A. A species-level
phylogenetic supertree of marsupials. J Zool. 2004;264:11–31.

34. Beck RMD, Bininda-Emonds ORP, Cardillo M, Liu FGR, Purvis A.
A higher-level MRP supertree of placental mammals. BMC Evol Biol.
2006;9(93).

35. Kennedy M, Page RD, Prum R. Seabird supertrees: combining partial
estimates of procellariiform phylogeny. The Auk. 2002;119(1):88–108.

36. Wojciechowski M, Sanderson M, Steele K, Liston A. Molecular phylogeny
of the “temperate herbaceous tribes” of papilionoid legumes: a supertree
approach. Adv Legume Syst. 2000;9:277–98.

37. McMahon M, Sanderson M. Phylogenetic supermatrix analysis of GenBank
sequences from 2228 papilionoid legumes. Syst Biol. 2006;55:818–36.

38. Sukumaran J, Holder MT. DendroPy: a Python library for phylogenetic
computing. Bioinformatics. 2010;26(12):1569–71.

39. Maestri R, Monteiro LR, Fornel R, Upham NS, Patterson BD, Freitas TRO.
The ecology of a continental evolutionary radiation: Is the radiation of
sigmodontine rodents adaptive? Evolution. 2017;71(3):610–32.

40. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S,
Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient
Bayesian phylogenetic inference and model choice across a large model
space. Syst Biol. 2012;61(3):539–42.

41. Alvarado-Serrano DF, D’Elía G. A new genus for the Andean mice Akodon
latebricola and A. bogotensis (Rodentia: Sigmodontinae). J Mammal.
2013;94(5):995–1015.

42. González-Ittig RE, Rivera PC, Levis SC, Calderón GE, Gardenal CN.
The molecular phylogenetics of the genus Oligoryzomys (Rodentia:
Cricetidae) clarifies rodent host–hantavirus associations. Zool J Linnean
Soc. 2014;171(2):457–74.

43. Machado LF, Leite YL, Christoff AU, Giugliano LG. Phylogeny and
biogeography of tetralophodont rodents of the tribe Oryzomyini
(Cricetidae: Sigmodontinae). Zool Scripta. 2014;43(2):119–30.

44. Rothfels CJ, Li F-W, Sigel EM, Huiet L, Larsson A, Burge DO, Ruhsam M,
Deyholos M, Soltis DE, Stewart C, Shaw S, Pokorny L, Chen T, Pamphilis C,
DeGironimo L, Chen L, Wei X, Sun X, Korall P, Stevenson D, Graham S,
Wong GK-S, Pryer K. The evolutionary history of ferns inferred from 25
low-copy nuclear genes. Am J Botany. 2015;102(7):1089–107.

45. Betancur-R R, Ortí G. Molecular evidence for the monophyly of flatfishes
(carangimorpharia: Pleuronectiformes). Mol Phylogenet Evol. 2014;73:
18–22.

46. Meiklejohn KA, Faircloth BC, Glenn TC, Kimball RT, Braun EL. Analysis of
a rapid evolutionary radiation using ultraconserved elements: evidence
for a bias in some multispecies coalescent methods. Syst Biol. 2016;65(4):
612–27.

47. Sharanowski BJ, Robbertse B, Walker J, Voss SR, Yoder R, Spatafora J,
Sharkey MJ. Expressed sequence tags reveal Proctotrupomorpha (minus
Chalcidoidea) as sister to Aculeata (Hymenoptera: Insecta).
Mol Phylogenet Evol. 2010;57(1):101–12.

48. Leavitt SD, Grewe F, Widhelm T, Muggia L, Wray B, Lumbsch HT.
Resolving evolutionary relationships in lichen-forming fungi using diverse
phylogenomic datasets and analytical approaches. Sci Rep. 2016;6.

49. Allen JM, Boyd B, Nguyen N-P, Vachaspati P, Warnow T, Huang DI,
Grady PG, Bell KC, Cronk QC, Mugisha L, Pittendrigh B, Soledad L,
Reed D, Johnson K. Phylogenomics from whole genome sequences
using aTRAM. Syst Biol. 2017;105:786–98.

50. Song S, Liu L, Edwards SV, Wu S. Resolving conflict in eutherian mammal
phylogeny using phylogenomics and the multispecies coalescent
model,. Proc Natl Acad Sci. 2012;109(37):14942–7. https://doi.org/10.
1073/pnas.1211733109.

51. Linkem CW, Minin VN, Leaché AD. Detecting the anomaly zone in
species trees and evidence for a misleading signal in higher-level skink
phylogeny (squamata: Scincidae). Syst Biol. 2016;65(3):465–77.

52. Tang CQ, Humphreys AM, Fontaneto D, Barraclough TG. Effects of
phylogenetic reconstruction method on the robustness of species
delimitation using single-locus data. Methods Ecol Evol. 2014;5(10):
1086–94.

https://doi.org/10.1186/1471-2148-10-302
https://doi.org/10.1093/sysbio/syr027
https://doi.org/10.1186/1471-2164-16-S10-S3
https://doi.org/10.1186/1471-2164-16-S10-S3
https://doi.org/10.1371/journal.pcbi.1000501
https://doi.org/10.1371/journal.pcbi.1000501
https://doi.org/10.1093/sysbio/syt054
https://doi.org/10.6084/m9.figshare.5234803.v1
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1093/sysbio/syv082
http://doi.org/10.1093/molbev/msp098
http://doi.org/10.1093/molbev/msp098
http://mbe.oxfordjournals.org/content/26/8/1879.full.pdf+html
http://mbe.oxfordjournals.org/content/26/8/1879.full.pdf+html
https://doi.org/10.1093/sysbio/syx077
https://doi.org/10.1073/pnas.1211733109
https://doi.org/10.1073/pnas.1211733109

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	The SIESTA algorithm
	The SIESTA data structure
	Using SIESTA
	Counting the number of optimal trees.
	Calculating consensus trees.
	Correct local branch support in an ASTRAL tree.
	The ASTRAL Maximum Clade Credibility tree.

	Evaluation protocol
	Gene tree estimation.
	Supertree methods.
	ILS-aware species tree methods.
	Consensus methods.

	Datasets
	Simulated supertree datasets.
	Simulated phylogenomic datasets.
	Biological supertree datasets.
	Biological phylogenomic datasets.

	Performance criteria.

	Results and discussion
	Overview
	Experiment 1: computing the number of optimal trees
	FastRFS variants.
	ASTRAL.
	Comparison of ASTRAL and FastRFS variants on the same datasets.

	Experiment 2: comparing different consensus trees computed using SIESTA
	Experiment 3: FastRFS-SIESTA vs. FastRFS on simulated supertree datasets
	Experiment 4: ASTRAL+SIESTA vs. ASTRAL on simulated phylogenomic data
	Experiment 5: results on biological datasets
	Biological supertree datasets.
	Hymenoptera phylogenomic dataset.
	Sigmontidine rodent phylogenomic dataset.

	Experiment 6: running time

	Conclusions
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

