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Abstract

the nervous system.

transcriptome transition.

Background: Neuron maturation is a critical process in neurogenesis, during which neurons gain their
morphological, electrophysiological and molecular characteristics for their functions as the central components of

Results: To better understand the molecular changes during this process, we combined the protein-protein interaction
network and public single cell RNA-seq data of mature and immature neurons to identify functional modules relevant
to the neuron maturation process in humans. Among the 109 functional modules in total, 33 showed significant gene
expression level changes (discriminating modules) which participate in varied functions including energy consumption,
synaptic functions and housekeeping functions such as translation and splicing. Based on the identified modules, we
trained a neuron maturity index (NMI) model for the quantification of maturation states of single neurons or purified
bulk neurons. Applied to multiple single neuron transcriptome data sets of neuron development in humans and mice,
the NMI model made estimation of neuron maturity states which were significantly correlated with the
neuron maturation trajectories in both species, implying the reproducibility and conservation of the identified

Conclusion: We identified 33 discriminating modules whose activities were significantly correlated with single
neuron maturity states, which may play important roles in the neuron maturation process.

Keywords: Neuron maturation, Single-cell RNA-seq, Protein-protein interaction network

Background

As the central organ of the nervous system, the brain is
composed of multiple types of neurons and glia ina
complex cyto-architecture. By means of synaptic con-
tacts, neurons form local and long-distance networks,
which is a key component for brain function. Prior to
the establishment of neuronal connections, neurons are
generated from neuronal progenitor cells (NPC) located
in the areas near the ventricles, and start a long matur-
ation process comprised of a series of sequential and
sometimes overlapping steps: neuronal migration, axon
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elongation, dendrite formation, synaptogenesis and re-
finement of connections (pruning). This complex devel-
opmental process leads immature neurons to eventually
acquire their mature appearance and full electrical excit-
ability [1-3]. However, while the molecular changes and
regulatory mechanisms of NPC proliferation have been
described in detail [4, 5], our knowledge of neuron mat-
uration is still relatively sparse. A comprehensive investi-
gation of neuron maturation at the molecular level
could largely expand our understanding not only of
brain development and function, but also of neurodeve-
lopmental disorders such as autism and schizophrenia. It
could also spark the quantitative measurement of neur-
onal maturity states, which may provide a powerful tool
for future studies.

Here, we adapted an insulated-heat-diffusion-based
network smoothing procedure with a topological overlap
matrix-based module identification method to analyze
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differences between immature and mature neurons on
the transcriptome level, based on published single-cell
RNA sequencing data of adult and fetal human brain tis-
sues and the protein-protein interaction network anno-
tated in the Reactome database. With the identified
functional modules discriminating neurons in different
maturity states, we developed machine-learning-based
neuron maturity indices (or NMlIs), which aim to quan-
tify the level of neuron maturity. By applying the NMI
models to multiple human and mouse single-cell or
purified bulk RNA-seq data from neurons at different
developmental stages and conditions, we verified the
identified transcriptome transition during neuron matur-
ation in human neuron in vitro models, as well as its
high conservation in mouse neurons. The constructed
NMI models thus show their potential in describing and
comparing a variety of neuron maturity states.

Results

Detection of protein-protein interaction modules relevant
to human neuron maturation

To comprehensively investigate changes of functional
modules during the process of neuron maturation in
humans, we adapted the module detection algorithm
based on the topological overlap matrix (TOM) [6], from
the widely used gene co-expression network analysis
pipeline WGCNA [7], to the protein-protein interaction
network annotated by Reactome [8, 9]. To include gene
differential expression information, each edge in the net-
work was weighted by the difference of expression level
changes between linked genes, which were smoothed
with the insulated heat diffusion procedure to reduce in-
fluence of noise (see Materials and Methods). Gene ex-
pression level changes during the neuron maturation
process in humans were estimated based on the pub-
lished single cell RNA-seq (scRNA-seq) data of fetal and
adult human brains. [10].

The analysis resulted in 109 functional modules with
sizes ranging from 21 to 203 genes, with a median size of
38 genes (Fig. 1a). As shown by the calculated adjusted
random index (ARI) [11, 12], choice of insulating param-
eter did influence the identified modules, but the modular
composition remained generally robust (Additional file 1:
Figure S1). A two-sided Wilcoxon signed rank test was ap-
plied to each module in order to identify functional mod-
ules with significant expression level changes with
concordant direction. Thirty-three functional modules
with significant directional changes, which were referred
to discriminating modules, were identified (Benjamini-
Hochberg (BH) corrected P < 0.05, Additional file 2: Table
S1). Among them, 17 modules accounting for 964 genes
in the network showed higher activity in mature neurons
(referred as mature-high modules). On the other hand,
the remaining 16 modules accounting for 1125 genes
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showed higher activity in immature neurons (referred as
immature-high modules). Among the 33 discriminating
modules, 31 of them were significantly overlapped with
the three co-expression modules identified by applying
WGCNA to the 20 cell-pooling samples (Fig. 1b). Gene
Ontology (GO) enrichment analysis by topGO [13] and
GOSemSim [14] indicated that genes encoding for mem-
brane proteins which participate in cell communication,
signaling and oxidation-reduction processes for energy
generation were strongly enriched in mature-high mod-
ules (Fig. 1b, Additional file 3: Table S2). On the other
hand, genes encoding for nuclear proteins related to tran-
scription and post-transcriptional processing including
splicing and translation were enriched in immature-high
modules (Fig. 1b, Additional file 3: Table S2). The neuron
specificity index (NSI) for each of the 33 discriminating
modules suggested that, genes in majority of those mod-
ules (22 out of 33, one-sided binomial test P=0.04, Fig.
1b) presented a trend of higher gene expression levels in
neurons compared to glial cells, which further implied the
biological importance of those modules in neurons.

Although lacking additional data for in vivo transcrip-
tome of human neurons across the whole neuron matur-
ation process, it has been reported that neuron
maturation explains the majority of brain transcriptome
changes during prenatal and new-born postnatal devel-
opment [15]. Therefore, we took the advantage of fetal
and early postnatal brain RNA-seq dataset in BrainSpan
and another age series RNA-seq data [16], to compare
the brain transcriptome before and after postnatal day
100. Remarkably, 28 out of the 33 discriminating mod-
ules showed significant concordant expression level
changes (one-sided Wilcoxon signed rank test to fold
changes (FC), BH-corrected P<0.1) in at least one data-
set, while 20 of them showed significant concordance in
both datasets (Fig. 1). In addition, although not signifi-
cant, another two modules showed consistent direction
of changes in both datasets. These results suggest that
the discriminating modules represent the reproducible
functional modules discriminating mature and immature
neurons.

Adversarial functional module pairs

Interestingly, a further comparison with PPI functional
modules, which were detected without integrating with
expression level differences, identified six adversarial
functional module (AFM) pairs. The two modules in one
AFM pair were corresponding to the same module when
the differential expression information was not inte-
grated (Fig. 1). Three out of six AFM pairs (M4-M14,
M36-M108, M8-M72) showed significant expression
changes with consistent directions in at least one bulk
brain RNA-seq dataset (one-sided Wilcoxon signed rank
test, BH corrected P<0.01). In addition, consistent
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Fig. 1 Neuron maturation relevant functional modules in protein-protein interaction (PPl) network. a The network of PPl modules. Nodes represent
distinct modules and are scaled to reflect the number of proteins in each. Colors of nodes represent directions of expression changes during neuron
maturation: red — higher in mature neurons, blue — higher in immature neurons, and grey — no significant tendency. Nodes are connected if proteins
within the respective modules interact with significantly high frequency. Ellipses mark the functional clusters of modules. b Functional and expression
properties of the discriminating modules. The tree shows the hierarchical clustering of Gene Ontology (GO) similarity among discriminating modules
using GOSemSim. Colors of module labels represent directions of expression changes of the respective modules during neuron maturation. Colors of
the column next to module labels show the overlapping WGCNA-based coexpression modules (red — mature-high; blue — immature-high; blank - no
significant overlap). Colors of the next two columns show gene expression changes of the respective modules in two brain RNA-seq data (left: He Z, et
al. 2014; right: BrainSpan) covering prenatal and early postnatal development stages: red — increase during development, blue — decrease during
development. Color darkness indicates whether the change is significant according to Wilcoxon rank sum test. Boxes mark adversarial module pairs.
Signature functions, defined as module-specific GO-BP terms annotated to majority of genes in modules are shown next. The rightmost bars show the
neuron specificity index (NSI) of each module: orange — positive NSI; green — negative NSI
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adversarial modules

discordance in all pairs were observed in both bulk brain
datasets (one-sided Wilcoxon rank sum test, P<0.01).
Further functional analysis revealed highly consistent,
connected but varied GO term and biological pathway
enrichment in each pair of adversarial modules (topGO
with the parentchild algorithm for GO terms, one-sided
Fisher’s exact test for pathways; BH-corrected P < 0.05,
Additional file 3: Table S2). This analysis indicated that
highly connected biological pathways may play distinct
roles during neuron maturation in humans. They may
reflect decoupling of components in the same pathway
during the neuron maturation process.

A good example is the AFM pair M4-M14 (Fig. 2).
Genes in both modules participate in signaling by Rho
GTPases, and more specifically, by activating the Rhote-
kin and Rhophilins pathway according to the Reactome
annotation. Interestingly, this pathway splits into two
parts: RHOB/C and RTKN in mature-high M4, and
RHOA, RHPN1/2 and TAXI1BP3 in immature-high

M14. This partition implies that, although Rhotekin and
Rhophilins both participate in Rho GTPases signaling,
they interact with different members of the Rho protein
family and play different roles in the process of neuron
maturation. Rhophilins interact with RhoA and take part
in neuron maturation including neuron migration, which
is supported by previous studies suggesting interaction
between them [17] as well as the role of Rhophilins in
cell migration [18]. Rhetekin, on the other hand, while
being important in neural differentiation and neurite
outgrowth, is also required for neuron survival [19]. This
may explain why the expression level of RTKN gene
remains high in mature neurons.

Another AFM pair, M32-M39, represents another
scenario. While both modules show significant enrich-
ment of pathways related to endocytosis, genes in the
two modules also participate in distinct pathways (Fig.
2). Spry regulation of FGF signaling pathway, which has
been reported to be required for cortical development
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Fig. 2 Two examples of adversarial functional module (AFM) pairs. Each circle represents one gene. Edges show annotated PPIs in Reactome
among genes in the two functional modules. Colors of circles show expression alteration scores. The upper panel shows the AFM pair M4-M14.
Circles with grey border show genes in the network which participate in the pathway "RHO GTPases activates rhotekin and rhophilins”, with PPIs
among them shown by the wider grey lines. The lower panel show the AFM pair M32-M39. Circles with grey border show genes which participate in
the pathway “Clathrin-mediated endocytosis”. Interactions connecting genes participating in the pathway “Spry regulation of FGF signaling” are shown
as blue lines, and interactions connecting genes in the pathway “EPH-ephrin mediated repulsion of cells” are shown as pink lines

[20], only appears in the immature-high module M32,
whereas EPH-ephrin mediated cell repulsion, whose role
extends from development to adulthood regulating neur-
onal plasticity [21], only appears in the mature-high
module M39. In summary, the pleiotropy of genes and
pathways leads to the separation of the two modules.

Identified functional modules discriminated different
maturity states of neurons from in vitro models

To further estimate how well the neuron-maturation-
related transcriptome transitions we identified, especially
genes participating in the detected discriminating mod-
ules, reflect status of neuron maturation, we establish a
machine-learning-based quantitative estimate of neuronal
maturity state and tried to apply it to other data sets.

In brief, we constructed a LASSO-regularized logistic
regression model based on the standardized expression
level of genes involved in each identified module. Each
model provided a value ranging between zero and one,
namely a modular Neuron Maturity Index (mNMI), with
values closer to 1 indicating higher maturity. Ten-fold
cross-validation suggested high performances for most of
the mNMIs (median AUC = 0.87, Additional file 4: Figure
S2). Applying the models in the test set also resulted in

accurate estimations (median AUC = 0.84, Additional file
4: Figure S2), with those based on discriminating modules
performing marginally better (two-sided Wilcoxon rank
sum test, P=0.11). The mNMIs were further added to
two integrated NMIs to represent the overall maturity
state, by taking their averages weighted by their perfor-
mances. This procedure was done by either including all
mNMIs (transcriptome NMI or tNMI), or only those
based on discriminating modules (discriminating NMI or
dNMI). Both general NMIs performed perfectly in distin-
guishing mature and immature neurons in the test set
(AUC = 1, Additional file 4: Figure S2).

With the NMI models constructed, we applied them to
neuron transcriptome data sets of in vitro neuron models
in order to check whether the identified transcriptome
transition could be reproduced and therefore represent
the general molecular signature of neuron maturation. In
a previous study, Bardy et al. combined patch clamping
and scRNA-seq to investigate the relationship between
transcriptome and electrophysiology of iPSC-derived neu-
rons [22]. The estimation of NMIs indicated trend of in-
creased neuron maturity accompanying increased action
potential, i.e. the electrophysiological maturity, especially
between the most immature and mature neurons (one-
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sided Wilcoxon rank sum test, P = 0.12 for ANMI, P = 0.02
for tNM]I, Fig. 3 and Additional file 5: Figure S3).

While this dataset was limited by its relatively small
number of neurons (N =56), Close et al. applied scRNA-
seq to interneurons generated by in vitro differentiation of
human embryonic stem cells (hESCs) to characterize tem-
poral interneuron transcriptome during its maturation,
generating another dataset which involved 1733 cells [23].
By estimating NMIs for each DCX" interneuron (N = 993)
, we observed the significant increase of integrated NMIs
across the time course, especially between 54-day and
100-day (Wilcoxon rank sum test, P < 0.0001, Fig. 3 and
Additional file 5: Figure S3). We also noticed that both
tNMI and dNMI did not present significant increase be-
tween 100-day and 125-day interneurons (Wilcoxon rank
sum test, P =0.26 for tNMI, P = 0.58 for ANMI), which is
consistent with the weak discrimination between them at
the whole transcriptome level proposed by Close et al.

It is worth noting that even at the most electrophysio-
logically mature state (Bardy et al. dataset) or at the lat-
est time point (Close et al. dataset), a large proportion of
interneurons were still in immature state (Fig. 3 and
Additional file 5: Figure S3). These observations may be
due to the technical issue that the NMI model failed to
provide prediction of mature neurons, or reflected the
failure to complete the neuron maturation process in
vitro. To answer this question, we examined the human
single neuronal nucleus RNA-seq in adult brains [24],
resulting in both tNMI and dNMI values significantly
larger than 0.5 (Fig. 3 and Additional file 5: Figure S3).
As expected, no significant difference of both tNMI and
dNMI was observed between excitatory and inhibitory
neurons (Wilcoxon rank sum test, P =0.22 for tNMI, P
=0.27for dNM]I, Fig. 3 and Additional file 5: Figure S3).
Hierarchical clustering based on Pearson’s correlation
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coefficient among samples revealed that cell type makes
more contributions to sample separation than source of
dataset, showing that the estimation is less likely to be
biased by batch effect (Additional file 6: Figure S4). The
above results suggested the potential maturation arrest
of the in vitro differentiated neurons.

Transcriptome transition during maturation is conserved
in mouse neurons

To check whether the detected transcriptome transition
during neuron maturation was conserved in mice, the
most widely used animal model for brain development
and mental disorders, we applied the constructed
human-based NMI model to neuron transcriptome data
in mice. Chen et al. extracted maturing interneurons
from mouse embryonic medial ganglionic eminence
(MGE) and applied scRNA-seq to measure their tran-
scriptome [25]. Estimation of ANMI suggested a boost of
maturity state at E17.5, the latest time point across the
time course. This result suggested that the human-based
NMI models successfully recurred the neuron matur-
ation process in mouse, implying the conserved matur-
ation programs of neuron between humans and mice.
Interestingly, the three subtypes of maturing interneu-
rons identified in the study showed significantly different
dNMIs (ANOVA, df; =2, df; =130, F=55.2, P<0.0001,
Fig. 4a), suggesting that they represented interneurons at
distinct stages of maturation.

Activities of mature-high modules reflect mature neuron
functionality level

Interestingly, applying the dNMI model to the purified
neuron transcriptome of PS2APP Alzheimer’s disease
mouse model [26] suggested a significantly weaker ma-
turity state than controls (median dNMlpgyapp = 0.782,

Bardy et al. 2016 Close et al. 2017
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Fig. 3 Applications of dNMI in human brain single cell RNA-seq data to investigate neuron maturity dynamics. The estimated dNMI of each neuron
sample is shown, as represented by the y-axis, in four public single cell/nucleus RNA-seq data sets. Each dot represents one cell, with cells involved in
the training set colored in brown. The dash line represents NMI= 0.5 as the boundary of estimated immature and mature state. For each of the four
data sets, cells are grouped based on the respective metadata: Bardy et al. 2016 dataset: action potential (AP) type; Close et al. 2017
dataset: differentiation time; Darmanis et al. 2015: cell donor ages; Lake et al. 2016: neuron subtypes (excitatory and inhibitory neurons).
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Fig. 4 Applications of NMI/NFI in mouse brain neuron RNA-seq data to investigate neuron maturity dynamics. (A) Estimated dNMI of dissected
single neurons in mouse medial ganglionic eminence (MGE) based on Chen et al. 2017 dataset. Each dot represents one cell, with color darkness
showing maturity states estimated by dNMI. Darker color represents higher level of maturity. Cells are grouped based on the dissection time
(x-axis) and cell groups identified by Chen et al. (y-axis). (B) Changes of neuron functionality indicated by neuron functionality index (NFI) in
mouse purified neurons responding to neuroinflammation and neurodegeneration, based on Srinivasan et al. 2017 dataset. The left panel shows
the estimated NFI, and the right panel shows the integrated NMI of immature-high modules. Each dot represents one purified neuron bulk

median dNMI 01 = 0.791, two-sided Wilcoxon rank
sum test, P=0.003). Further studies on each of the
mNMIs indicated that three mNMIs, all of which were
based on mature-high modules, significantly decreased in
PS2APP neurons (Wilcoxon’s rank sum test, BH corrected
P <0.1). In addition, among the top-ten of the 27 discrim-
inating modules with reliable mNMlIs (AUC > 0.8 in cross-
validation in training set) and strongest decrease in
PS2APP comparing to control neurons, eight were
mature-high modules (Fisher’s exact test, odds ratio (OR)
=4.25, P=0.1). The bias of changes to the mature-high
modules was different from observation from the above
MGE interneurons data set, as only nine out of 15 (60%)
modules with mNMIs significantly different among the
three subtypes of maturing interneurons were mature-
high modules (Fisher’s exact test, OR = 1.83, P = 0.49).
Considering that the mature-high modules are more
likely to be responsible for mature neuronal function
maintenance, the biased changes implied that the lower
tNMI of PS2APP neurons represented impairment of
neuronal function rather than maturation, which has been
reported previously [27]. Therefore, we constructed the
third integrated index, the neuron functionality index
(NFI), which integrated mNMlIs from only the mature-
high discriminating modules. As expected, the estimated
NFIs of PS2APP neurons were significantly lower than
those of control neurons (median NFIpgyapp = 0.836, me-
dian NFI g0 = 0.850, Wilcoxon rank sum test, P =0.05,
Fig. 4b). On the other hand, the integrated NMIs of
immature-high discriminating modules did not show any
significant difference (Wilcoxon rank sum test, P =0.58,
Fig. 4b). For comparison, no significant difference of either

dNMI or NFI was observed between purified neuron tran-
scriptome of a lipopolysaccharide-treated neuroinflamma-
tion mouse model and control mouse (Fig. 4b). These
results indicated that the activities of mature-high, but not
the immature-high, modules may act as signatures of
neuron functionality.

Discussion

In this study, we studied the transcriptome changes dur-
ing neuron maturation in humans and those functional
pathways involved. For this purpose, we developed a
new bioinformatics framework, by integrating module
identification in the protein-protein interaction (PPI)
network and differential expression (DE) analysis. Our
strategy revealed 33 discriminating modules, each of
which represents distinct biological pathways, which
may be relevant to neuron maturation.

In general, the 17 modules whose genes show signifi-
cantly higher expression levels in mature neurons, namely
mature-high modules, tend to participate in processes
relevant to neuronal function and electrophysiology. For
instance, there are six discriminating modules, all of which
are mature-high modules, which show enrichment of syn-
aptic genes and have been reported to be relevant to the
electrophysiological maturity of in vitro differentiated
neurons [22]. Genes in M90, the module enriched for
voltage-gated potassium channel complex components,
also show higher expression levels in mature neurons. Dir-
ectly checking those genes in the Bardy et al. dataset sug-
gests higher expression levels in neurons with higher
action potential than in neurons with lower action poten-
tial in marginal significance (permutation test, P = 0.052).
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Furthermore, energy consumption is suggested to grow
during neuron maturation, as genes in functional modules
related to both respiratory chain (M24) and tricarboxylic
acid cycle (M37) show higher expression levels in mature
neurons. As previously reported, higher neuronal activity
increased mitochondrial oxidative phosphorylation [28].
Therefore, the increasingly active energy generation
machinery in mature neurons we observed may be an
adaptive strategy of mature neurons to its higher electro-
physiological activity.

On the other hand, it is interesting that the 17
immature-high modules whose genes show significantly
higher expression levels in immature neurons tend to
show enrichment for nuclear functions, which are mainly
related to housekeeping processes including RNA and
protein metabolism. Indeed, genes in the immature-high
modules are significantly overlapped with human house-
keeping genes [29], especially when comparing with genes
in the mature-high modules (one-sided Fisher’s exact test,
odds ratio (OR) =2.1 P<0.0001 compared to all genes in
the network; OR =3.0, P<0.0001 compared to genes in
mature-high modules). There are two possible explana-
tions. The decreased activities of housekeeping processes
may be an artificial observation due to the increased
activities of pathways related to neuronal functions, since
the quantification of expression assumes constant amount
of transcripts in samples. In such case, genes in the
immature-high modules share similar expression level
differences which are not relevant to significances of
modular expression level differences. However, ANOVA
results suggest that genes in different immature-high
modules show different amplitude of changes (F=6.37, P
<0.0001). Partial Pearson correlation (PPC) between stat-
istical significances (log-transformed P) and modular ex-
pression level changes (average expression alteration
score) given the module sizes as condition (PPC =0.57, P
=0.025) suggest dependency between them. Therefore, al-
though this possibility cannot be completely ruled out,
there is another scenario, where at least parts of these
“housekeeping” processes may play more important roles
in the maturation process compared to the final mature
stage. This hypothesis is supported by previous studies
where mRNA metabolism has proven relevant to some
neuronal diseases such as spinal muscular atrophy (SMA)
[30], and many regulators of transcription, mRNA transla-
tion and protein synthesis have been reported to be re-
lated to neurodevelopmental disorders such as autism
[31]. Together with the significant neuron enrichment of
gene expression patterns of our identified discriminating
modules, these results to some extent relieve us from the
concern about the sensitivity of our method to identify
functional modules related to neuron maturation. Mean-
while, we also admit that to integrate more protein-
protein interactions with neuron specific functions in the
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future, rather than just base on PPI network in Reactome
many pathways of which play housekeeping functions,
might be helpful to increase the sensitivity of our method
and have a more detailed interpretation of the neuron
maturation process.

To further verify the observed differences between
mature and immature neurons, we generated the
LASSO logistic regression based neuron maturity index
(NMI) model based on the detected gene differential ex-
pression, to estimate overall maturity states of neuronal
samples. By applying NMI to two public data sets of
neurons in vitro generated from neuronal progenitor
cells (NPC), we find that the constructed NMI model
correctly predict neuron maturation statuses. It suggests
that the observed transcriptome differences represent
general transition during neuron maturation which can
be reproduced in neuron models in vitro. Meanwhile, we
also observed that neurons in vitro generated from neur-
onal progenitor cells (NPC) are likely undergoing matur-
ation arrest, as their estimated maturity states hardly
attain complete maturation. In a previous study compar-
ing the transcriptome of in vitro neuron models to spa-
tiotemporal human brain transcriptome, in vitro neuron
models were suggested to be similar to fetal brains [32].
However, the comparison between bulk neural samples
with both neurons and proliferative cells can hardly tell
whether this similarity is due to the similar NPC:neuron
combination, or similar maturity states. Our results sug-
gest that in vitro neuronal models are likely to be far
from full maturation, which may be due to the lack of
environmental stimulation that has been shown to be
relevant to neuronal development [33].

Results of applying the NMI model in the mouse med-
ial ganglionic eminence (MGE) single cell RNA-seq data
suggests that our observed transcriptome transition hap-
pened during neuron maturation is applicable and con-
served in mouse. At the same time, it is interesting to
see that the three subtypes identified by the study repre-
sent neurons with distinct maturity states [25]. In the
original study, three neuronal subtypes were identified
on a spatial distinction basis: neurons from lateral gan-
glionic eminence (LGE) expressing LGE markers, neu-
rons from MGE expressing MGE markers, and LGE/
MGE neurons expressing both markers. Our study sug-
gests that neurons expressing LGE markers tend to be
more mature, and those expressing MGE markers tend
to be immature. This observation provides an alternative
explanation on a developmental sequential basis,
which reconciles with spatial distinction basis explan-
ation, as a previous study has reported that interneu-
rons are generated in MGE and migrate to LGE
during their maturation [34]. Together, they provide a
more comprehensive description about the origin of
interneurons during brain development.
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It is worth to mention that our NMI model, although
was originally developed to verify the detected transcrip-
tome transition between immature and mature neurons in
other data sets, has the potential to corroborate or bench-
mark transcriptome changes during neuron maturation.
Previous studies have developed statistical tools to evalu-
ate maturity state of neural samples, e.g. CONTExT [32].
Those tools were designed to be used for bulk tissue sam-
ples, e.g. dissected brain samples and in vitro neural cul-
tures, which consist of multiple cell types including
neuronal progenitor cells, immature and mature neurons,
as well as non-neuronal glial cells. The NMI model, on
the other hand, serves homogeneous neuronal samples,
including single neurons and purified neuron populations.
In the era of single cell biology, pseudo-time construction
analysis, e.g. TSCAN [35], is commonly used to study
transcriptome trajectory of cell development, and may be
applied also to study neuron maturation [23]. This ana-
lysis, however, is limited by lacking benchmark of matur-
ation stages. Although expression of several biomarkers
may be helpful in a rough manner, the quantitative de-
scription is still missing. The relatively large sample size
required to reconstruct a reliable pseudo-time series is
also one limitation (although with less significance), as
many studies only measured limited number of neurons
[22, 25, 36]. In such a scenario, the NMI model can be im-
plemented into, and complement, the existing framework,
thus potentially benefitting future research.

Conclusions

To our knowledge, our study is the first report to compre-
hensively investigate and characterize molecular functions
related to the transcriptome transition happened during
neuron maturation in humans. By comparing public single
cell RNA-seq data with both immature and mature neu-
rons in vivo, we identified 33 functional modules with ac-
tivities related to neuron maturity states and participating
in varied biological processes, including synaptic func-
tions, energy consumption and housekeep processes such
as translation and splicing. The detected transcriptome
transition was further validated by public human brain
transcriptome profiles during development, as well as its
high predictive power of neuron maturity states in mul-
tiple human neuron in vitro models. We also showed that
such transition is conserved in mammals, considering its
reasonable predictive power of neuron maturity states in
mouse neurons.

Methods

Identification of neuron maturation relevant functional
modules in the human protein-protein interaction (PPI)
network

The human protein-protein interaction network was re-
trieved from the Reactome database (v57) [8, 9], which
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is comprised of 8170 proteins and 200,260 undirected
interactions. Proteins encoded by genes whose expres-
sion was undetectable in brains were excluded, with
5962 proteins and 125,437 interactions remaining.

Single-cell RNA-seq (scRNA-seq) data of human
brains was retrieved from SRA (SRP057196) [10]. The
RNA-seq reads were mapped to the human genome
hg38 using STAR 2.3.0e [37] with default parameters.
The number of reads covering exonic regions of each
protein-coding gene annotated in GENCODE v21 was
counted and normalized using DESeq2 [38]. FPKM was
calculated for each gene in each sample. Average FPKM
of each gene was calculated for mature and immature
neurons, as the mean FPKM across all cells classified as
“neurons” and “fetal quiescent”, respectively. Expression
level difference between mature and immature neurons
of each gene was represented by expression alteration
score s:

s = log,f (- logyop).

where f'is the fold change between average FPKM of ma-
ture and immature neurons, and p is the P-value of
ANOVA with neuron maturity state as the independent
variable.

A heat-diffusion-based network smoothing procedure,
as described and implemented in HotNet2 [39], was
then applied to the obtained PPI network where the
above expression alteration scores were assigned to
corresponding nodes. In brief, a diffusion matrix, which
describes the amount of heat diffused between each
node pair in the network during the insulated heat diffu-
sion process when the system reaches equilibrium, was
defined as:

F = BU-(1-p)W)™.

Here, S is the insulating parameter (set to 0.55 in this
study), and W is the normalized adjacency matrix. The
smoothed expression alteration score of nodes in the
network was then calculated as:

s = Fs,

where s is the vector of expression alteration scores of
all nodes in the network. Weights were assigned to the
edges which represent the annotated protein-protein
interactions:

ai,,r =1 E[O, 1]

2% max(|§}\, }SA,|)

A topological overlap matrix (TOM) based module
identification procedure [6], as implemented in WGCNA
[7], was then applied to resulted weighted PPI network. In
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brief, TOM was defined as a N x Nsquare matrix with N
as the number of nodes in the network:

aij + Zuzi,]’ﬂiaua”j

TOMi’/ - min(ki,k}-) + 1—61,"1'7

where a;; is the weight of edge between node i and node
J, k; is the degree of node i. Hierarchical clustering with
average linkage method was applied using TOM as the
distance matrix, followed by the dynamic tree cutting
procedure implemented in the R package DynamicTree-
Cut [40], requiring minimal module size as 20. For each
identified module, a Wilcoxon signed rank test was ap-
plied to the expression alteration scores of proteins in
the module. Modules with Benjamini-Hochberg (BH)
corrected P<0.05 were defined as discriminating mod-
ules. Discriminating modules with positive median ex-
pression alteration scores were defined as mature-high
modules, while the remaining ones were defined as
immature-high modules.

The pipeline to identify functional modules has been
implemented as an R package and can be downloaded at
https://github.com/maplesword/TOMRwModule.

To compare the discriminating modules identified
with our PPl-assisted approach to the WGCNA-based
co-expression modules, WGCNA analysis was applied to
the same data set. Considering the high inter-cellular
variability of single-cell RNA-seq data, gene expression
levels of randomly selected cells with the same cell type
were firstly averaged, resulted in 20 cell-pooling samples
(10 for mature neurons and 10 for immature neurons).
WGCNA was then applied to the cell-pooling samples.
Eigen-gene patterns of each identified modules were cor-
related with the maturity labels of the pseudo-bulk sam-
ples to determine the significance and direction of its
expression level changes during neuron maturation.

Characterization of functional modules

A Gene Ontology (GO) enrichment analysis was per-
formed for each identified discriminating functional
module using the parentChild algorithm [41] imple-
mented in topGO [13], with all genes encoding for pro-
teins involved in the PPI network as background.
Pairwise functional similarities of discriminating mod-
ules were calculated using GOSemSim [14], by averaging
similarities of the three GO categories: cellular compo-
nent (CC), biological process (BP), and molecular
function (MF). Hierarchical clustering with complete
linkage was applied to the distances among discriminat-
ing modules defined as one minus the calculated similar-
ity. The signature function of each module was defined
as the module-specifically enriched representative GO
terms under the Biological Processes category. The
module-specific representative term was required to be
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annotated to at least half of genes in the module. When
multiple module-specific terms met this criterion, the
one covering the largest number of genes in the module
was chosen. For module pairs with high inter-
connectivity and highly shared functions, terms shared
by the two modules were considered, but limited to the
ones annotated to more than half of the genes in both
modules.

Functional pathway annotation was performed for
each identified discriminating functional module based
on the pathway gene set annotation in Reactome using a
one-sided Fisher’s exact test to compare with all genes
encoding for proteins in the PPI network. Pathways with
BH corrected P < 0.05 were selected.

The neuron specificity index (NSI) was calculated for
each discriminating module to estimate neuron specifi-
city of its expression pattern. More specifically, utilizing
the published RNA-seq data of purified cell types in
mouse brains [42], a neuron enrichment score (NES)
was firstly calculated for each detected gene, as the Pear-
son correlation coefficient between its expression pat-
terns across the purified brain cell type samples and the
neuron-representative binary pattern [43]. NSI was then
calculated as the difference between the average NES of
genes in one discriminating module and the average
NES of genes in non-discriminating modules. A positive
NSI indicates a trend of higher gene expression levels in
neurons compared to glial cells.

Generation of neuron maturity index (NMI)

The NMI models were constructed aiming at the
discrimination of mature and immature neurons. To
objectively build and test the models, the mature and
immature neuron scRNA-seq data mentioned above
were randomly separated into two groups. The training
set included 99 mature neurons and 82 immature neu-
rons. The test set included 32 mature neurons and 28
immature neurons.

Based on the training set, LASSO logistic regression as
implemented in glmnet [44] was applied to each identi-
fied functional module, with standardized expression
levels of genes in the module in each sample set as inde-
pendent variables and neuron maturity state as the
dependent variable. Expression level standardization was
performed for each gene separated as following:

_ loglo(e + 1)_meanseT( 10g10(es + 1))
SdSGT( 10g10 (es + 1))

o

Here, meanscp(logioles+1)) and sdsr(logioles + 1))
represent the mean and standard deviation of the log10-
transformed expression levels (in FPKM) across all
samples in the training set. The LASSO regularization
parameter A was then determined using ten-fold cross-
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validation to maximize area under curve (AUC) of re-
ceiver operating characteristic (ROC) of the model. For
each sample given the expression levels in FPKM, the re-
sulted LASSO logistic regression model of each module
predicted the probability of the sample being mature
neuron in relative to immature neuron; therefore, it was
defined as the modular neuron maturity index (mNMI)
of the functional module. Those mNMI models were
then applied to the test set for performance evaluation,
as well as other neuron scRNA-seq data or purified
neuron bulk RNA-seq data for further investigations.

To integrate multiple mNMlIs of different functional
modules, a weighted mean of multiple mNMIs was cal-
culated for module set S:

> iesWi ¥ mNMI;
Zieswi .

Here, the weight of mNMI; (w;) was defined as AUC;-
0.5, where AUC; is the AUC of ROC of mNMI during
the ten-fold cross-validation in the training dataset.
When S={all functional modules, the corresponding
iNMIg was defined as transcriptome NMI (tNMI). Dis-
criminating NMI (dNMI), on the other hand, was de-
fined as the iNMlg when S-={all discriminating
modules}. Lastly, neuron functionality index (NFI) was
defined as the iNMIg when S-={all mature-high
modules).

The NMI models have been implemented as an R
package (neuMatldx) and can be downloaded at https://
github.com/maplesword/neuMatIdx.

iNMIg =
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