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Co-sequencing and novel delayed
anti-correlation identify function for
pancreatic enriched microRNA biomarkers
in a rat model of acute pancreatic injury
Zhihua Li and Rodney Rouse*

Abstract

Background: Co-sequencing of messenger ribonucleic acid (mRNA) and micro ribonucleic acid (miRNA) across
a time series (1, 3, 6, 24, and 48 h post injury) was used to identify potential miRNA-gene interactions during
pancreatic injury, associate serum and tissue levels of candidate miRNA biomarkers of pancreatic injury, and
functionally link these candidate miRNA biomarkers to observed histopathology. RNAs were derived from
pancreatic tissues obtained in experiments characterizing the serum levels of candidate miRNA biomarkers in
response to acute pancreatic injury in rats.

Results: No correlation was discovered between tissue and serum levels of the miRNAs. A combination of
differential gene expression, novel delayed anti-correlation analysis and experimental database interrogation was
used to identify messenger RNAs and miRNAs that experienced significant expression change across the time
series, that were negatively correlated, that were complementary in sequence, and that had experimentally
supported relationships. This approach yielded a complex signaling network for future investigation and a link for
the specific candidate miRNA biomarkers, miR-216a-5p and miR-217-5p, to cellular processes that were in fact the
prominent histopathology observations in the same experimental samples. RNA quality bias by treatment was
observed in the study samples and a statistical correction was applied. The relevance and impact of that correction
on significant results is discussed.

Conclusion: The described approach allowed extraction of miRNA function from genomic data and defined a
mechanistic anchor for these miRNAs as biomarkers. Functional and mechanistic conclusions are supported by
histopathology findings.
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Background
MicroRNAs (miRNAs) are short ribonucleic acid (RNA)
sequences that are hypothesized to primarily function as
negative regulators of gene expression [1]. They accom-
plish this regulation largely through suppressing transla-
tion or catalyzing degradation of messenger RNAs
(mRNAs) that serve as the template for protein synthesis
in the cell [2]. Observed increases in serum miRNAs

during multiple disease, dysfunction, and toxicity scenar-
ios have stimulated interest in their use as non-invasive
biomarkers of injury. The highly conserved nature of miR-
NAs across species and, therefore, their large translational
potential have further heightened the scrutiny on these
small RNAs especially those that are highly enriched in
specific tissues [3]. Recent studies have demonstrated the
potential of several pancreas-enriched miRNAs as non-
invasive biomarkers of acute tissue injury with promise of
high sensitivity and specificity [4–9]. Tools are constantly
evolving to identify and provide validated interaction in-
formation for miRNAs and the mRNAs that they regulate
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[10]. Within these relationships lay the foundations for
the hypothesis and design of future mechanistic
investigations.
Next Generation Sequencing (NGS) provides an ex-

tremely powerful tool for generating comprehensive data-
sets for discovery and characterization of these interactive
relationships [11, 12]. As the capability evolves to better
analyze and interpret these NGS datasets, so does the abil-
ity to more completely capture all of the signaling,
process, and regulatory elements in a given biological lo-
cation at a specific point in time. Faced with these vast
and complex NGS datasets, the scientific community,
much as it did with microarray gene expression data, must
refine quality parameters for, as well as the utility and
shortcomings of, these datasets [13–16].
Previously, the caerulein model of acute pancreatic in-

jury was used in rats and the magnitude and temporal re-
sponses of miR-216a-5p and miR-217-5p were
characterized and their relationship to histopathology de-
fined changes was reported [6]. These two miRNAs were
evaluated because they are highly enriched in the pan-
creas. Therefore, any significant changes in their circulat-
ing levels would likely be due to pancreas specific injury
and would represent a non-invasive and highly tissue spe-
cific marker of cellular injury. The present study was de-
signed to interrogate paired NGS-generated miRNA and
mRNA data across the experimental time points in this
previous study with three objectives. The first objective
was to identify the data defined signaling network, relevant
canonical pathways, and potential miRNA-mRNA interac-
tions during early, mild pancreatic injury. The second ob-
jective was to characterize the relationship of serum levels
of specific candidate miRNA biomarkers of pancreatic in-
jury, miR-216a-5p and miR-217-5p, to their tissue levels
during pancreatic injury and recovery. The final objective
was to interrogate the refined dataset and determine the
miRNA-mRNA relationships of these two candidate
miRNA biomarkers and compare the theoretical outcome
of regulation of gene expression by these miRNAs to ac-
tual histopathology observations in the pancreas.
To achieve the present objectives, total RNA was

exacted from frozen pancreatic samples generated in that
previous study [6]. Extracted RNA was sequenced in sep-
arate runs for large and small RNA species to capture
mRNA and miRNA results, respectively. This paired NGS
data was analyzed for temporal change in expression pat-
terns in both miRNA and mRNA over the first 48 h fol-
lowing caerulein induced pancreatic injury. The subset of
miRNA that demonstrated significant expression change
following treatment was examined for negative correla-
tions in expression change with their predicted mRNA
targets using a novel delayed anti-correlation approach.
To satisfy the first study objective, pathway analysis was
completed for the gene targets of all negatively correlated

miRNA-mRNA pairs to identify potential components of
a large miRNA-mRNA regulatory network in early pan-
creatic injury. The second objective was addressed by cor-
relating quantitative real time polymerase chain reaction
(qRT-PCR) measured changes of miR-216a-5p and miR-
217-5p in serum with their NGS measured expression
change in tissue across the same time points. The final ob-
jective was accomplished by demonstrating negative cor-
relation between expression changes in miR-216a and
miR-217 and expression changes in their predicted gene
(mRNA) targets and then supporting these negative asso-
ciations through the experimental literature. Subsequent
investigation identified the functional pathways and pro-
cesses associated with these literature-supported genes
implicating these miRNAs in the regulation of those path-
ways and processes.

Results
Details of all the animal study methodology that yielded
the samples from which the present molecular study were
derived and the other findings from the animal study in-
cluding all histopathology findings, characterization of
miRNA levels in serum following acute pancreatic injury,
and the relationship of the miRNAs to histopathology,
have been previously published [6]. Figure 1 diagrams the
analytical workflow and provides summary data for the
present study on the scope of miRNA, mRNA, and poten-
tial miRNA-mRNA interactions defined in the data set.
NGS identified 126 miRNAs and 12,586 mRNAs that
were differentially expressed between treated and control

Fig. 1 Research Scheme and Results of mRNA and miRNA
Co-Sequencing during Pancreatic Injury. Co-sequencing revealed
126 miRNAs and 12,586 mRNA that were differentially regulated at
some time in the experimental time course. Differentially expressed
miRNAs were then linked to their predicted targets. Those predicted
miRNA-mRNA pairs that had an anti-correlation formed a 619-pair
signaling network active during pancreatic injury
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samples in at least one time point (p ≤ 0.05). These data
are supplied as additional materials (Additional files 1
and 2). Time series analysis of these differentially
expressed RNAs revealed 4 distinct miRNA profiles
(Fig. 2) and 6 distinct mRNA profiles (Fig. 3) during
pancreatic injury and recovery. An integrated analysis
combining computational miRNA target prediction, ex-
perimental miRNA target database interrogation, and
miRNA/mRNA delayed anti-correlation of time profiles
identified 619 miRNA-mRNA pairs (Additional file 3)
that formed a regulatory network of miRNA-mRNA re-
lationships with most miRNAs impacting multiple
mRNAs. Pathway analysis suggested this network
would affect cell survival/death-related pathways (e.g.,
Fibroblast Growth Factor and Epidermal Growth Factor
mediated pathways) and immune response pathways (e.
g., IL-2 and IL-6 signaling pathways). The top pathways
associated with the network are listed in Table 1.
Serum and tissue levels of two candidate miRNA bio-

markers of acute pancreatic injury, miR-216a-5p and
miR-217-5p, were compared across the time course
(Additional file 4). Although serum levels of miR-216a-
5p and miR-217-5p increased dramatically, no significant
corresponding changes in tissue levels were detected at

early time points. At 24 to 48 h post-treatment, as serum
levels returned to or neared baseline levels, significant
decreases in tissue levels were observed. No significant
correlation was demonstrated between an animal’s tissue
and serum levels of these miRNAs (Table 2). The rela-
tionships of these miRNAs to their presumptive mRNA
targets were interrogated in this data set using a novel
method that takes into consideration the possible de-
layed target gene expression change in response to its
miRNA regulator (see Methods for details). This analysis
reveals 9 mRNA negatively correlated with miR-216a-5p
and 9 mRNA negatively correlated with miR-217-5p.
These negative correlations are temporally depicted for
miR-216a-5p and miR-217-5p in Figs. 4 and 5, respect-
ively. The delayed anti-correlation scores (see Methods)
for the individual miRNA-mRNA relationships are pre-
sented in Table 3. In Fig. 2, miR-216a-5p and miR-217-
5p would be found in the group depicted in the upper
left in which miRNA values initially increase followed by
a gradual decline to or below control levels. Their asso-
ciated mRNAs are immediately depressed relative to
controls or decline after the miRNAs increase and then
increase again as the miRNAs decrease. Relative to Fig.
3, these mRNAs would fall in clusters 1, 3, or 6. A

Fig. 2 Temporal patterns of differential miRNA expression during pancreatic injury. Differentially expressed miRNA during pancreatic injury sorted
into these 4 temporal patterns

Li and Rouse BMC Genomics  (2018) 19:297 Page 3 of 13



focused pathway analysis of the down regulated genes
associated with miR-216a-5p and miR-217-5p revealed
that one mRNA (Pten) was a shared target of the two
miRNAs and that all but two (Twistnb and Tmem178b)
of the identified genes had some previously documented
or hypothesized participation in pathways associated
with cell autophagy and/or cell death stimulated by

cellular stress (Fig. 6). Table 4 provides summaries of
and references [17–58] for these associations.
In processing samples, a correlation was suspected be-

tween sample RNA quality and gene counts from that
sample as demonstrated in a RNA Integrity Number
(RIN) plot across the time course (Additional file 1).
RIN values were analyzed via two-way analysis of vari-
ance (ANOVA) revealing a strong interaction between
time and treatment (p = 0.002) that obscured the relative
contributions of each. Consequently, two tailed t-tests
were run for each time point demonstrating that signifi-
cantly higher RIN scores were observed in caerulein
treated rats at 24 and 48 h post-treatment with p-values
of 0.024 and 0.013, respectively. Since it has been re-
ported that RNA integrity has a profound effect on

Fig. 3 Temporal patterns of differential mRNA expression during pancreatic injury. Differentially expressed mRNA during pancreatic injury sorted
into these 6 temporal patterns

Table 1 Top pathways identified in large miRNA-mRNA defined
signaling network

Pathway Source % of genes False discovery rate

ErbB1 signaling NCI 1.0 1.2e-6

Signaling by NGF Reactome 3.8 7.2e-6

PIP3/AKT signaling Reactome 0.9 7.2e-6

Signaling by EGFR KEGG 0.7 6.2e-7

Signaling by SCF-KIT Reactome 2.9 2.7e-5

IL-2 signaling Reactome 2.6 2.7e-5

Signaling by PDGF NCI 0.5 2.7e-5

Signaling by ERBB4 Reactome 3.0 2.7e-5

Signaling by FGFR3 Reactome 2.6 2.7e-5

IL-6 signaling NCI 0.5 2.9e-5

Table 2 Pearson correlation analysis of tissue and serum miRNA
levels

miR-216a miR-217

Coefficient 0.0324 −0.0274

p-value 0.806 0.835

n 60 60
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measurements of gene expression levels [17], we re-
peated the Generalized Linear Model (GLM) analysis
(see Methods) adding a RIN for each sample as a covari-
ate in the model to control for the varying degree of
RNA degradation among the samples and resulting in a
change in the correlation of miRNA counts to RIN as
shown in a bar graph (Additional file 2). This RNA qual-
ity bias correction modified the differential expression
list generated by the model. This “corrected” differential
expression list was then analyzed exactly as the original
differential expression list and the differences between
the two differential expression lists and their corre-
sponding mRNA-miRNA relationships were examined.
Figure 7 summarizes the workflow and findings follow-
ing statistical correction for RNA quality bias. Compared
with the uncorrected data in Fig. 1, the number of miR-
NAs and mRNAs identified as differentially expressed
were decreased to 87 and 11,209, respectively (Add-
itional files 5 & 6). The number of miRNA-mRNA pairs
identified was reduced to 490 (Additional file 7). Follow-
ing correction, the temporal relationships described in
Figs. 2 and 3 had slightly reduced miRNA and mRNA
numbers, but the shapes of the persisting relationships
remained unchanged. RNA quality bias correction

impacted the statistical analysis of miR-216a-5p and
miR-217-5p so that significant expression change was
not achieved although a significant expression change
persisted for all but one of the target mRNAs; the ex-
pression of nhlrc2 was no longer significantly changed
over any time points.

Discussion
The linking of miRNA and mRNA sequencing to iden-
tify mechanism has become an increasingly popular tool
in different fields of study in both in vitro and in vivo
models [60–63]. Although experimental repeats may
have been completed to demonstrate reproducibility, the
majority of these studies focused on miRNA and mRNA
differences in treatment groups at single time points or
within single time point comparisons. These single time
points have been logically chosen to provide the largest
opportunity to capture relevant data but do not attempt
to identify temporal relationships. Those studies that
examine time series data [64, 65] rely upon intra-time
point comparisons with the advantage of assessing
changes for individual molecules from time point to
time point but do not address how a change in one en-
tity at one time point might impact a different entity at a

Fig. 4 Genes of Differentially Expressed mRNAs Negatively Correlated to miR-216a-5p during Pancreatic Injury
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different time point. The present study includes very
acute time points, 1 h, 3 h, and 6 h, as well as time
points 24 and 48 h post-treatment. Intra-time point
comparisons in an acute time frame may not capture
biological responses between miRNAs their mRNA tar-
gets that require some time for signaling, translation,
and transcription upregulation. Therefore, the authors
have created and applied a “delayed” correlation method
that allows correlation assessment not only within the
same time point but also across acute serial time points.
This method will detect relationships that would not be
evident within a single time point comparison. In our fo-
cused analysis of the data, a delayed response was often
observed from the target gene after the change of the
regulatory miRNA expression level.
However, the authors also recognize that even delayed

anti-correlation analysis across 5 time points would not

reliably identify miRNA-mRNA regulatory pairs or mod-
ules although others have published time series relation-
ships with even fewer time points [11, 12]. Many
random or “accidental” relationships would emerge.
Therefore a standalone anti-correlation approach was
not used. Instead, anti-correlation was only a component
of a more comprehensive bioinformatics pipeline, as de-
scribed in Methods, used to derive high-confidence
miRNA-mRNA pairs. This pipeline included computa-
tional miRNA target analysis and experimentally verified
target database interrogation to minimize or eliminate
false positive identification of miRNA-mRNA pairs. At
the end of the pipeline, the novel delayed method to
evaluate miRNA/mRNA anti-correlation relationships
was applied to identify miRNA/mRNA target pairs that
are specifically linked to the biological process of interest
in this study. The short list of target genes for each

Fig. 5 Genes of Differentially Expressed mRNAs Negatively Correlated to miR-217-5p during Pancreatic Injury

Table 3 Time-shifted anti-correlation coefficients for miRNAs and verified target mRNAs

ACOX1 ATF6 CALR INO80 MITF NGFRAP1 PTEN TMEM178B TWISTNB

miR-216a-5p −0.9982 − 0.7833 − 0.8367 −0.9143 − 0.8788 −0.8744 − 0.7810 −0.9339 − 0.8513

ADSS CDC73 NHLRC2 PPM1D PTEN SIRT1 SLC4A2 TMEM63A ZBTB20

miR-217-5p −0.9368 −0.9337 −0.8931 − 0.7570 −0.7896 − 0.7178 −0.8062 − 0.9898 −0.8066
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Fig. 6 miR-216a-5p and miR-217-5p Associated Genes Modulate Apoptosis and Cell Survival. This figure shows previously reported relationships between
mRNAs associated with miR-216a-5p and miR-217-5p in this study and modulation of apoptosis and cell survival, the key histopathology findings in the current
study. Figure created with the pathway designer tool in IPA (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis)

Table 4 miR-216a and miR-217 modulated mRNAs

Gene Targeted by Protein function

Atf6 miR-216a-5p ER stress response transcription factor involved in autophagy and increasing chaperone proteins for unfolded
proteins to enhance cell survival [18–22]

Ino80 miR-216a-5p Component of chromatin remodeling complex; loss of activity yields decreased transcription of genes requiring
this remodeling [23, 24]

Tmem178b miR-216a-5p Unknown function transmembrane glycoprotein

Acox1 miR-216a-5p Beta-oxidation enzyme for long-chain fatty acids that are involved in ER stress responses resulting in apoptosis from
mitochondrial injury & increased ROS [25–28]

CALR miR-216a-5p Calcium binding molecule that acts as a chaperone during endoplasmic reticulum stress and modulates apoptosis
[29, 30]

Ngfrap1 miR-216a-5p Mediator or co-factor inducing or promoting apoptosis in response to multiple signals [31, 32]

Mitf miR-216a-5p Transcription factor that when inhibited leads to apoptosis of mast cells and melanocytes; over expression can
result in cellular hypertrophy [33, 34]

Twistnb miR-216a-5p Unknown specific function; component of RNA polymerase I (subunit RPA43) controlling transcription [35, 36]

Pten miR-216a-5p
miR-217-5p

A phosphatase mediator of apoptosis in multiple cell types and initiated through multiple signaling paths; loss
of Pten leads to proliferation [37–40]

Zbtb20 miR-217-5p Transcription factor associated with enhanced cell survival and proliferation [41, 42]

Sirt1 miR-217-5p Enhances cell survival under stress and protects against apoptosis by promoting autophagy [43–46]

Slc4a2 miR-217-5p Ion exchange protein that mediates anion influx into cells with loss of function promoting apoptosis [47, 48]

Nr4a2 miR-217-5p Nuclear hormone receptor that modulates apoptosis with decreased expression yielding increased apoptosis
[49, 50]

Cdc73 miR-217-5p Component of transcriptional regulatory complex modulating apoptosis with loss of function and over expression
associated with proliferation [51–53]

Nhlrc2 miR-217-5p Asparagine-Histidine-Leucine repeat containing protein of undescribed function although this repeat motif is
associated with caspase inhibitors and regulation of growth factors [54, 55]

Adss miR-217-5p Enzyme involved in purine synthesis and creation of AMP; reported in human autophagy network as a likely
binding partner to ATG10, gene for an autophagy related enzyme [56, 57]

Ppm1d miR-217-5p Protein phosphatase implicated in regulation of apoptosis in pancreatic cancer and autophagy in genotoxic
stress [58, 59]

ER endoplasmic reticulum, ROS reactive oxygen species, AMP adenosine monophosphate
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miRNA identified by this stringent bioinformatics pipe-
line is of high quality and biological significance, as evi-
denced by the fact the vast majority (15 out of 17) of
identified targets for miR-216a-5p and miR-217-5p turn
out to be associated with tightly regulated pathways re-
lated to injury response. The authors believe that this
approach resulted in a list of high confidence pairs as
demonstrated by the results for miR-216a-5p and miR-
217-5p that were very strongly supported by histopath-
ology findings. The integration of target prediction, time
relationship profiles, and known functional relationships
promoted the authors’ confidence in the data particularly
in review of that the findings for miR-216a-5p and miR-
217-5p where a connection could be made to the experi-
mentally observed histopathology.
As hypothesized leakage serum biomarkers, the rapid

increase in serum concentrations of the miRNAs with
acute injury would be expected. The response of these
miRNAs in injured tissue is less intuitive. In this study,
no significant increase in tissue levels was noted at early
time points. It may be that tissue levels are static or that
the rapid (1 h or less) and progressive (over the first 6 h)
leakage of miRNAs into the serum [6] might counter
and obscure any concurrent increase in tissue levels at
these early time points. Because these are proposed cell
leakage biomarkers, it is likely that tissue expression
levels will increase only if increase expression benefits
the remaining intact cells. This is one reason that inves-
tigation of tissue levels is essential as it reflects regula-
tion of cellular responses in a situation of stress whereas

serum levels merely reflect what has leaked from an un-
determined number of cells. That no clear relationship
exists between tissue and serum levels neither supports
nor contradicts the proposed value of these miRNAs as
serum biomarkers of pancreatic injury. Significant tissue
decreases in the miRNAs at later time points were re-
corded and seem consistent with a net loss of miRNAs
to the serum, however, this was in no way demonstrated
in this study. Further, at these later time points serum
miRNAs levels had returned to baseline so ongoing leak-
age would not account for the decline and suggests re-
duced expression during recovery.
Initially, the total number (> 12,000) of mRNAs show-

ing differential expression in this data set seems quite
high. But it must be recognized that this represents dif-
ferential expression at 5 time points across 48 h during
which pancreatic injury evolution and resolution oc-
curred as well as changes that would be expected with
different times of the day and during different states of
physiological activity. In that context, the total degree of
differential expression (≈60%) does not seem unreason-
able. When examined unfiltered, the relationship of the
differentially expressed miRNAs and their differentially
expressed presumptive target mRNAs, the resultant net-
work was extremely complex and appeared largely inde-
cipherable. Nevertheless, pathway evaluation identified a
number of basic and critical cellular functions that
would be influenced by this signaling network. However,
finding specific discrete interactions that might provide
targets for therapeutics or describe candidate biomarkers
within this tangled network remains a daunting discov-
ery task requiring evolving bioinformatics approaches.
A more focused interrogation of the co-sequencing

data revealed association of candidate miRNA bio-
markers, miR-216a-5p and miR-217-5p, with specific
mRNA of genes involved in cell survival or death largely
through autophagy and apoptosis. Confirmation of
changes in respective protein levels or of the relationship
of miR-216a-5p and miR-217-5p to autophagy and apop-
tosis or cell survival and death was not in the scope of
this project. However, autophagy and apoptosis were the
prominent processes observed in the tissue from which
these RNA samples were obtained [6]. The balance of
these processes within the tissue changed with severity
of injury and determined survival or death for individual
cells. These data and the analytical approach used to
generate that data provide strong circumstantial evi-
dence for mediation of autophagy and apoptosis in the
pancreas by these specific pancreas enriched miRNAs.
Definitive confirmatory experiments are warranted.
Confirmation of these findings would provide a defini-
tive mechanistic anchor for the use of these miRNAs as
biomarkers in pancreatic injury as well as a definite
function for them in pancreatic cells.

Fig. 7 Impact of RNA Quality Bias on Results of mRNA and miRNA
Co-Sequencing during Pancreatic Injury. This figure reflects fewer
differentially expressed miRNAs and mRNAs and consequently fewer
miRNA-mRNA pairs (see Fig. 1) when data were corrected for RNA
quality bias
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A potential bias in the study results based on a differ-
ence in RNA quality between treated and control ani-
mals (supplemental data) must be recognized.
Visualization of control and treated RNA RIN scores
suggested a difference between treatment groups. This
quality difference based on treatment was identified
using t-tests at each time point and the authors insti-
tuted statistical adjustments to counter bias as suggested
by Romero et al., 2014 who indicated that using de-
graded samples can provide valuable data as long as
there are not differences in RNA quality associated with
treatment groups. Unfortunately, in this case, RNA qual-
ity was associated with treatment and some correction
seemed appropriate. However, given a paucity of data
and experience regarding correction, whether the appli-
cation of these measures was an appropriate action is
uncertain. Any validation of the correction in the large
network analysis is difficult. In the specific cases of miR-
216a-5p and miR-217-5p, the alignment of NGS
described genes/pathways with the observed histopath-
ology implies that the correction method eliminated in-
formation of a critical relationship in acinar cell injury
response. While inequity in RNA quality between treat-
ments would intuitively suggest a bias in differential ex-
pression meriting correction (a step not taken in most
literature reports), the practical results in this case
would suggest that correction was too harsh and re-
moved genes (and miRNAs) with subtle but biologically
meaningful differential expression arguing against cor-
rection. If this debate is to be settled, a better under-
standing of the impact and the boundaries of RNA
quality bias on gene expression data is required as is
additional knowledge of the physiological basis for RNA
quality differences between the treatment groups ob-
served in this study. In the present study, RIN was iden-
tified as significantly higher in caerulein treated animals
at 24 and 48 h post-treatment. Intuitively there seems to
be a biological basis for this pattern. As a part of re-
sponse to injury, the buffering capacity and inactivation
of enzymes in the pancreas is likely to be enhanced and
to protect against degradation with the evidence of this
protection being more evident in harvested samples as
reactions are increasingly quenched at later time points.
Further study is required to test this hypothesis.

Conclusions
In conclusion, this study employed NGS, standard false
discovery < 0.05, statistical parameters for differential ex-
pression, a novel delayed correlation analysis method,
sequence based target prediction, and literature verifica-
tion to define potential miRNA-mRNA interactions
reflecting acute pancreatic cellular injury, evolution and
resolution of changes in tissue morphology, and cell
outcome (survival or death). Two candidate miRNA

biomarkers of pancreatic injury, miR-216a-5p and miR-
217-5p, were, thus, strongly linked to mRNA for genes
previously associated with autophagy and apoptosis. The
morphological changes observed in tissues in this study
were autophagy and apoptosis. This study provides a
theoretical mechanistic anchor for these miRNAs as bio-
markers of pancreatic cellular injury, describes their po-
tential function in pancreatic cells, and demonstrates an
enhanced approach to extract function from genetic
time series data.

Methods
Experimental design
As previously reported in greater detail [6], sixty male
Sprague Dawley rats were randomly sorted into two ex-
perimental groups (treated and control) of thirty each.
The groups received three subcutaneous injections one
hour apart of either 50 μg/kg concentration caerulein
(treated) or an equal volume of Dulbecco’s Phosphate
Buffer (control). Six rats from each treatment group
were then sacrificed at each of 5 time points; 1, 3, 6, 24,
and 48 h after the final injection. At sacrifice, blood and
pancreas were collected from each rat. A portion of each
pancreas was placed in RNAlater (Life Technologies,
Carlsbad, CA) for RNA isolation and NGS investigation
and a separate portion of each pancreas was placed in
buffered formalin for histopathology evaluation. The
histopathology findings along with details of the animal
study methods were published earlier [6]. Subsequently,
NGS data were generated from the retained RNAlater
samples and a functional interpretation of that data is
presented here. Blood was allowed to clot and serum
was separated and retained for miRNA extraction and
subsequent quantification via RT-qPCR. Serum RT-
qPCR quantification and tissue NGS derived tissue
quantification of the miRNAs were compared to assess
the serum-tissue relationship.

MicroRNA isolation, preparation, and sequencing
RNA extraction, purification, and quantification were con-
ducted in laboratories of the Division of Applied Regula-
tory Science at the White Oak Federal Research Center in
Silver Spring, MD. Pancreas tissue from 60 rats was
resected and preserved in RNALater (Life Technologies,
Grand Island, NY), and stored at − 80 C. Six random
batches of tissue samples were thawed, and 2.5 mg of
each sample were processed using miRNeasy Mini Kit
cat # 217004 (Qiagen, Valencia, CA). For equal load-
ing, 5–10 mg of tissue were homogenized in 700 uL
of Qiazol, for 5 min at 50 hz in a TissueLyser LT
(Qiagen), and then diluted in Qiazol to a final con-
centration of 3.57 mg/mL. Then, 2.5 mg of tissue in
700 uL of Qiazol were processed using the automated
purification of miRNA on a Qiacube (Qiagen), with
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the following protocol, “Purification of total RNA, includ-
ing small RNAs, from animal tissues & cells (aqueous
phase), version 2 (April 2010)” standard protocol, as de-
scribed in the miRNeasy Mini Handbook (1,073,008 07/
2012). Samples were eluted in 2 × 30 uL aliquots to
maximize yields. Mean yield per 2.5 mg of pancreas tissue
was approximately 150–200 μg RNA, determined by
Nanodrop spectrophotometer (Thermo Scientific,
Wilmington, DE). RNA quality RIN values were assayed
by a 2100 Bioanalyzer Instrument (Agilent Technologies,
Santa Clara, CA), using an Agilent RNA 6000 Nano Kit
(cat # 5067–1511).
The sequencing of both mRNA and miRNA samples

and initial quality control bioinformatic analysis were per-
formed by Quintiles, Inc. (Morrisville, NC). Briefly, total
RNA samples were converted into indexed cDNA libraries
using TruSeq Stranded Total RNA sample preparation kit
and TruSeq Small RNA sample preparation kit (Illumina,
San Diego, CA) respectively. The libraries were quanti-
tated by qPCR, normalized to 2 nM each, and sequenced
on an Illumina HiSeq platform. For mRNA libraries 2 × 50
bp Paired-End sequencing configurations were used, while
for small RNA libraries 1 × 50 bp Single End sequencing
configurations were used. Eight samples were indexed and
pooled together to be run on each lane, which were then
demultiplexed after sequencing.

NGS data analysis
Raw sequencing data (sra@ncbi.nlm.nih.gov; accession
number SRP095173) was returned to our laboratory
after going through Quintiles internal QC steps. In our
laboratory, the reads from mRNA samples were aligned
to the recently published [66] rat genome (ENSEMBL
assembly 5.0) and transcriptome (ENSEMBL release 79)
using START software version 2.4 [67] and then quanti-
fied using RSEM version 1.2.14 [68]. The reads from
small RNA samples were collapsed to unique sequences
and then aligned to miRBase [69] with Bowtie version 0.
12.9 [70]. Differential expression analysis for both
mRNA and miRNA were done using edgeR [71]. The
gene/miRNA counts from RSEM above were upper-
quartile normalized and fitted by a GLM with the group
(treatment and time points) effects and other confound-
ing factors as covariates. mRNAs or miRNAs that were
differentially expressed between treated and time-
matched control samples at any one of the five time
points with a false discovery rate (FDR)-value ≤ 0.05
based on the negative binomial model were retained as
differentially expressed and subjected to further analysis.
To enhance confidence in relationships and the re-

sultant conclusions, anti-correlation across time pro-
files was combined with computational target
prediction and experimentally based literature evidence
for a relationship. Similar approaches have been

previously published [11, 12] using fewer time points
than those described within the present work. For each
mRNA or miRNA in the differential expression list, the
fold changes of expression levels between the treated and
time-matched control samples across all five time points
were analyzed by the R (http://www.r-project.org) package
Mfuzz (http://mfuzz.sysbiolab.eu) to identify clusters of
distinct time profiles following injury presented in Figs. 2
and 3. Targetscan version 7.0 [72] was queried to compile
a list of computationally predicted target genes for each
miRNA. All predicted targets whether evolutionally con-
served or not were initially considered as target candi-
dates. The predicted targets were further filtered through
miRTarBase, a database collecting experimentally verified
miRNA target genes [10]. Finally, a novel method to iden-
tify anti-correlation between time-shifted profiles was de-
veloped to capture possible delayed target gene expression
changes in response to regulatory miRNAs. As a first step,
for each miRNA or mRNA, a time series of expression
data using the log2-transformed fold change between
treated and control samples across the 5 time points was
established. A differencing step was then applied to all
time series by calculating the difference between two con-
secutive data points, resulting in differenced time series
each with 4 data points. The Pearson correlation coeffi-
cients were calculated between time-matched differenced
time series data from a miRNA and its target (called time-
matched differenced coefficients in this method), and
those miRNA/target pairs that showed a correlation coef-
ficient greater than 0 were removed to ensure the
remaining data were enriched with true miRNA/target
pairs. As a last step, the differenced mRNA time series
data were shifted (postponed) in relation to the miRNA
series, resulting in a shifted match between the 1st, 2nd,
and 3rd data points in the differenced miRNA time series
and the 2nd, 3rd, and 4th data points in the corresponding
mRNA time series, respectively. Pearson correlation coef-
ficients were calculated between these time-shifted time
series. The anti-correlation score of any miRNA/mRNA
pair was defined as the minimum of the time-matched
and time-shifted differenced coefficients. Any miRNA/
mRNA pairs with an anti-correlation score less than − 0.7
were reported as the final regulatory miRNA/target pairs.
Pathway enrichment analysis was performed using
ReactomeFIViz (http://wiki.reactome.org/index.php/Reac
tomeFIViz), a Cytoscape (http://www.cytoscape.org)
plugin for the Reactome Functional Interaction Database.

Additional files

Additional file 1: Figure S1. This figure shows the quality of extracted
RNA as measured by RIN for the control and caerulein treated animals
throughout the experimental time course. ANOVA (p < 0.05) revealed
that higher quality RNA was retrieved from control rats at 6 hours and
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from caerulein treated rats at 48 hours after treatment; RIN = RNA
Integrity Number (a measure of RNA quality); Pt =Point (hours); Trx =
caerulein treated. (PDF 61 kb)

Additional file 2: Figure 2. Correlation between RNA quality and
miRNA(gene) counts. For each miRNA, the correlation coefficient
between the vector of read counts and RINs across all samples was
calculated. The distribution of these coefficients were plotted. Before
removing RIN bias (Left), there are a number of miRNAs whose read
counts are positively correlated with the sample qualities (coefficient >
0.5). After removing RIN bias (Right), all miRNAs have a count‐RIN
coefficients < 0.5, suggesting the abundance of miRNAs is no longer
correlated with RNA qualities. Num = number; RIN = RNA Integrity
Number (a measure of RNA quality). (PDF 48 kb)

Additional file 3: mRNA-miRNA Anti-Correlation Values. List of values
describing anti-correlation between mRNA and miRNA pairs. (TXT 24 kb)

Additional file 4: Table of Raw Values for Serum and Tissue Levels of
MicroRNA Biomarkers. Table of individual animal values for microRNA
biomarkers in the serum and in pancreatic tissue that demonstrated no
serum to tissue correlation. (TXT 3 kb)

Additional file 5: Differentially Expressed miRNAs Following Correction
for RIN Bias. List of miRNAs that were differentially expressed between
treated and controls during at least one time point during the
experimental time course following application of a statistical correction
for treatment related difference in RNA quality. (TXT 74 kb)

Additional file 6: Differentially Expressed mRNAs Following Correction
for RIN Bias. List of mRNAs that were differentially expressed between
treated and controls during at least one time point during the
experimental time course following application of a statistical correction
for treatment related difference in RNA quality. (TXT 4114 kb)

Additional file 7: mRNA-miRNA Anti-Correlation Values Following
Correction for RIN Bias. List of values describing anti-correlation between
mRNA and miRNA pairs following application of a statistical correction for
treatment related difference in RNA quality. (TXT 19 kb)
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