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Abstract

Background: In plants, long non-protein coding RNAs are believed to have essential roles in development and stress
responses. However, relative to advances on discerning biological roles for long non-protein coding RNAs in animal
systems, this RNA class in plants is largely understudied. With comparatively few validated plant long non-coding
RNAs, research on this potentially critical class of RNA is hindered by a lack of appropriate prediction tools and
databases. Supervised learning models trained on data sets of mostly non-validated, non-coding transcripts have been
previously used to identify this enigmatic RNA class with applications largely focused on animal systems. Our approach
uses a training set comprised only of empirically validated long non-protein coding RNAs from plant, animal, and viral
sources to predict and rank candidate long non-protein coding gene products for future functional validation.

Results: Individual stochastic gradient boosting and random forest classifiers trained on only empirically validated
long non-protein coding RNAs were constructed. In order to use the strengths of multiple classifiers, we combined
multiple models into a single stacking meta-learner. This ensemble approach benefits from the diversity of several
learners to effectively identify putative plant long non-coding RNAs from transcript sequence features. When the
predicted genes identified by the ensemble classifier were compared to those listed in GreeNC, an established plant
long non-coding RNA database, overlap for predicted genes from Arabidopsis thaliana, Oryza sativa and Eutrema
salsugineum ranged from 51 to 83% with the highest agreement in Eutrema salsugineum. Most of the highest ranking
predictions from Arabidopsis thaliana were annotated as potential natural antisense genes, pseudogenes,
transposable elements, or simply computationally predicted hypothetical protein. Due to the nature of this tool, the
model can be updated as new long non-protein coding transcripts are identified and functionally verified.

Conclusions: This ensemble classifier is an accurate tool that can be used to rank long non-protein coding RNA
predictions for use in conjunction with gene expression studies. Selection of plant transcripts with a high potential for
regulatory roles as long non-protein coding RNAs will advance research in the elucidation of long non-protein coding
RNA function.
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Background
Long non-protein coding RNAs (lncRNAs) represent a
diverse and functionally important class of RNAs [1],
and have been classically defined as transcripts longer
than 200 nucleotides with little protein-coding poten-
tial [2]. Previously thought to be transcriptional noise,
there is now evidence of their involvement in the devel-
opment, disease, and stress responses of plants [3, 4];
however, these transcripts are also found throughout all
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kingdoms of life. LncRNA transcripts often lack sequence
conservation within close relatives, and the evolution of
these transcripts remains poorly understood, but there
exists growing evidence of positional and structural
conservation that may indicate selection on transcript
function [5].
Unlike other non-coding RNAs, the mechanisms and

functions of lncRNAs can range wildly – from epigenetic
regulation, as exemplified by mouse Xist and human XIST
[6, 7], to small RNA target mimics, as seen with IPS1
and ath-miR399 in Arabidopsis thaliana [8]. COLDAIR, a
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lncRNA associated with flowering, functions by remod-
eling chromatin and alters expression of the FLC locus
[9]. A recent review by Ma et al. [10] suggests that
most known lncRNAs regulate transcription, both in cis
and trans, while others can affect translation, splicing,
post-translational regulation or are classified as “other
functional mechanisms.” Due to such a wide range of func-
tionality, lncRNAs are typically classified by their position
to protein coding genes as intergenic (also referred to as
lincRNAs), natural antisense, or intronic [1, 10].
Notably, lncRNAs can not only be functional in their

long RNA form, but also act as small RNA precur-
sors and sources of small regulatory peptides [11–13]
although extensive translation of lncRNAs has been dis-
puted [14]. Adding to the complexity of these RNAs,
some transcripts do not meet the arbitrary length cut-
offs set by the classical definition for lncRNAs, such as
BC1 in mice (152nt) [15]. Even with recent developments
in sequencing technologies, lncRNAs remain difficult to
identify due to low, and condition-dependent and tissue-
dependent expression levels [16]. Demonstrating mini-
mal homology with close relatives [5], current research
suggests these transcripts undergo fast and unclear evo-
lution making functional predictions challenging. This
lack of distinct rules for predicting and identifying lncR-
NAs is a likely contributor to the lack of validated
plant lncRNAs.
Currently, many lncRNA prediction softwares that are

available to researchers, such as PLEK [17], lncRScan-
SVM [18], and COME [19], usemachine learningmethods
trained on data consisting of lncRNA transcripts yet to
be empirically validated. Without empirical validation,
many of these predicted lncRNA transcripts could have no
regulatory function and could be produced due to spuri-
ous transcription because of the low fidelity of RNApolII
[20]. In addition, CPAT [21] and CPC2 [22] are popular
softwares used to identify non-coding transcripts. These
softwares are successful at quickly predicting the protein-
coding potential of mRNA sequences, but are not specific
to lncRNAs and are unsuitable for identifying those lncR-
NAs that may code for small peptides. Additionally, since
the majority of lncRNA research is on animals, software
packages for lncRNAs prediction often use only animal
training datasets. While the exact functions of most plant
and animal lncRNAs remain poorly understood, there are
known differences in biogenesis and mechanisms of other
non-coding RNAs, such as miRNAs [23]. As such, ignor-
ing the few plant lncRNA transcripts with known func-
tion could hinder the potential of future plant lncRNA
predictors.
Depending on the source, lncRNA databases can also

fall victim to biases toward animal systems and non-
validated transcripts as they are often model organ-
ism specific with a preference for humans, and rarely

differentiate between validated and predicted lncRNA
transcripts. These biases can be seen in the popular
lncRNA databases, LNCipedia and NONCODE [24, 25].
Outputs from lncRNA software often result in thou-

sands of unranked predictions leaving the researcher to
choose the most likely candidates for empirical valida-
tion. In combinationwith an RNASeq experiment that can
result in tens of thousands of transcripts, filtering through
thousands of lncRNA predictions can be difficult and
time consuming for a researcher. Objectively ranking pre-
dictions in combination with gene expression estimates
can help researchers complete functional validation of
lncRNAs more efficiently.
Recently, ensemble methods have become popular for

approaching difficult biological problems typically solved
by machine learning [26, 27]. Ensemble models work by
combining multiple learners into a single model which
helps to avoid over fitting and encourages generalization
of the classifier. In addition to improved classification,
ensemble methods also remove the difficulty in choos-
ing the “best” model as all models can be used in a single
classifier. Each individual classifier used in the construc-
tion of the overall ensemble model will have its own
classification strengths, resulting in stronger and more
accurate predictions when these classifiers are used in
combination.
Here we describe a lncRNA predictor constructed using

an ensemble of machine learning models developed for
and tested on plant transcript sequences. We compared
accuracy of this meta-learner trained onmultiple machine
learning models to the prediction ability of individual ran-
dom forest and gradient boosting models making up the
meta-learner. All models were trained on empirically val-
idated lncRNAs to ensure only true lncRNA transcripts
were used in each model’s training sets. We found the
most successful method to be a stacking meta-learner
constructed from eight stochastic gradient boosting mod-
els. This approach offers multiple advantages over those
currently available as this machine learning approach
prevents predictions from being constrained to the arbi-
trary classic definitions of lncRNAs, such as ignoring
transcripts with high coding potential of small open
reading frames (ORFs). In addition, our method numer-
ically scores each prediction to help researchers focus
their validation efforts on highly ranked lncRNA predic-
tions. Finally, this approach uses the Diamond algorithm
[28] that allows for efficient and fast sequence align-
ment in protein databases, an essential feature for lncRNA
prediction.

Methods
Overview of classifiers
Multiple machine learning approaches to lncRNA predic-
tion were compared to find the most accurate plant tran-
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script classifier. Ensemble approaches were chosen due to
the diversity of RNAs in the lncRNA category as these
approaches are ideal for heterogeneous data. Ensemble
models typically follow three main approaches: bagging,
boosting, and stacking. Bagging (bootstrap aggregating)
relies on creating n models on bootstrapped training
data, and averages predictions of all models for a final
group prediction. This protocol is used in the ran-
dom forest method. With boosting, such as in gra-
dient boosting, one iteratively trains n learners, with
each iteration attempting to reduce prediction error.
The predictions are summed for a final classification.
Finally, a stacking generalizer refers to training a new
learner, for example by logistic regression, on the out-
put of multiple learners. This is commonly referred to as
meta-learner.
This study used all three approaches to ensemble meth-

ods, firstly by evaluating the lncRNA prediction accuracy
of individual stochastic gradient boosting and random
forest models. These individual models were then also
combined into four ensemble classifiers explained fur-
ther in the proceeding sections: 1. Arithmetic mean of
scores, 2. Geometric mean of scores, 3. Majority vote,
4. Logistic regression meta-learner, and were evaluated
similarly.

Individual stochastic gradient boosting and random forest
models
Data
Positive data remained constant in each training set
and consisted of a total of 436 unique, validated
lncRNA sequences downloaded from two separate
lncRNA databases: 1. lncRNAdb v2.0 (http://lncrnadb.org)
on November 25, 2016 and 2. lncRNAdisease (http://
www.cuilab.cn/lncrnadisease) on February 15, 2017.
These sources for lncRNA sequences include all avail-
able validated lncRNAs, but are heavily populated by
animal systems and include only six plant lncRNA
sequences.
Negative data for each training set consisted of

sequences from four different species: Homo sapiens,
A. thaliana, Mus musculus, and Oryza sativa. H. sapiens
andM. musculus sequences were included in the negative
data of the training set as these species are the source for
the majority of validated lncRNAs. H. sapiens sequences
were downloaded from Ensembl (http://www.ensembl.
org) on December 19, 2016, A. thaliana from Araport
v11 (https://araport-dev.tacc.utexas.edu) on December
16, 2016, M. musculus from Ensembl on March 28, 2017
and O. sativa from Ensembl on March 28, 2017. These
data are made available in Additional file 2. To ensure
that lncRNA, tRNAs, and rRNAs were removed from
the negative training data, these types of sequences were
downloaded from RNAcentral v6 (http://rnacentral.org)

on March 28, 2017, using search terms available in
Additional file 1 and were then removed from the dataset.
Eight different training sets with different combinations
of negative data from multiple species were used to con-
struct eight different models and are described in Table 1.
Sets denoted “A” and “B” remained constant throughout
the training sets and were randomly chosen from the tran-
script sequences of each species. These training datasets
were used in both random forest and gradient boost-
ing methods, for a total of 16 preliminary models. The
variety of training datasets was used to maximize model
diversity, a requirement for the proceeding ensemble
models.

Feature extraction and selection
Eleven features were chosen for use inmodel construction:

1 mRNA length
2 ORF length
3 GC%
4 Fickett score
5 hexamer score
6 alignment identity in SwissProt database
7 length of alignment in SwissProt database
8 proportion of alignment length and mRNA length

(alignment length:mRNA length)
9 proportion of alignment length and ORF length

(alignment length:ORF)
10 presence of transposable element
11 sequence percent divergence from transposable

element

Features were extracted using a combination of custom
Python scripts and known software (CPAT [21] used for
features 4 and 5, Diamond [28] used for features 6, 7, 8, 9,
RepeatMasker [29] used for features 10 and 11).

CPAT model creation and application As no publicly
available plant CPAT model exists, two logit models
were built using coding and non-protein coding RNA
sequences from A. thaliana and O. sativa. Non-coding
lncRNA, miRNA, snRNA, and snoRNA sequences from
each species were downloaded from the Plant Non-coding
RNA Database on September 26, 2016 (A. thaliana,
5062 sequences total) and July 14, 2017 (O. sativa,
4718 sequences total) [30]. Protein coding transcript
sequences from each species were downloaded from
Phytozome v11 [31] on August 3, 2016. In order to
supply a balanced training set, 5938 A. thaliana and
5283 O. sativa protein coding sequences were ran-
domly selected for a total of 11,000 A. thaliana tran-
scripts and 10,000 O. sativa transcripts for CPAT model
construction.
A. thaliana CPAT models were used for predictions in

all species but A. thaliana itself, which used O. sativa
CPAT models. Fickett and hexamer values from CPAT

http://lncrnadb.org
http://www.cuilab.cn/lncrnadisease
http://www.cuilab.cn/lncrnadisease
http://www.ensembl.org
http://www.ensembl.org
https://araport-dev.tacc.utexas.edu
http://rnacentral.org
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Table 1 Negative training data sets in individual models, and corresponding accuracy, sensitivity, specificity and AUC values

Training dataset Negative data AUC Accuracy Specificity Sensitivity

GB RF GB RF GB RF GB RF

1 3000 H. sapiens (set A) 0.940 0.943 0.962 0.956 0.988 0.990 0.548 0.404

1000M.musculus (set A)

3000 O. sativa (set A)

2 3000 H. sapiens (set A) 0.943 0.944 0.960 0.953 0.988 0.989 0.576 0.461

3000 O. sativa (set A)

3 3000 H. sapiens (set A) 0.961 0.962 0.973 0.970 0.990 0.992 0.693 0.592

1000M.musculus (set A)

3000 A. thaliana (set A)

4 3000 H. sapiens (set A) 0.962 0.966 0.972 0.967 0.990 0.990 0.725 0.640

3000 A. thaliana (set A)

5 3000 H. sapiens (set B) 0.955 0.959 0.965 0.958 0.991 0.980 0.608 0.530

3000 A. thaliana (set B)

6 4500 H. sapiens (set A + 1500 seq) 0.961 0.967 0.979 0.979 0.995 0.995 0.633 0.571

4500 A. thaliana (set A + 1500 seq)

7 3000 H. sapiens (set A) 0.963 0.967 0.976 0.971 0.993 0.992 0.700 0.603

4500 A. thaliana (set A + 1500 seq)

8 2000 H. sapiens (2000 from set A) 0.964 0.965 0.968 0.965 0.988 0.990 0.695 0.619

1000M.musculus (set A)

3000 A. thaliana (set A)

Training datasets of random forest (RF) and gradient boosting (GB) individual models are described. The positive training dataset, 436 validated lncRNAs, remained constant
throughout all training datasets. Specificity, sensitivity, accuracy and AUC values were found using 10-fold cross validation of all training data

results were used as features in machine learning model
construction.

Diamond alignment in SwissProt database Diamond
v0.8.34 [28] was used to quantify transcript sequence
alignments to curated protein sequences in the SwissProt
database [32] downloaded February 1, 2017 from http://
www.uniprot.org/downloads. We ran Diamond in “more-
sensitive” mode as we aligned full transcript sequences
to the SwissProt database rather than RNASeq reads.
Options for each Diamond run were as follows: -e
0.001, -k 5, -matrix BLOSUM62, -gapopen 11,
-gapextend: 1, -f 6 qseqid pident length qframe qstart
qend sstart send evalue bitscore.

RepeatMasker RepeatMasker [29] was used to extract
information on transcription element related features.
The software was run on transcript sequences using
default settings, and with -species set to Eukaryota.

Stochastic gradient boosting and random forest model
construction and hyper-parameter selection
Once features were extracted, models were constructed
using Python’s scikit-learn package [33]. Eight separate
models were constructed using both gradient boosting

and random forest approaches, for a total of 16 models
differing in negative training data or machine learning
algorithm (Table 1). All transposable element related fea-
tures were removed after performing recursive feature
elimination as they were found to be uninformative and
reduced the accuracy of models.With the 9 remaining fea-
tures, a nested 4-fold cross-validation grid search was per-
formed for 30 trials in gradient boosting hyper-parameter
selection with possible hyper-parameters:

• learning_rate: 0.02, 0.04, 0.06, 0.08, 0.1
• max_depth: 4, 6, 8, 10
• subsample: 0.2, 0.4, 0.6, 0.8, 1
• n_estimators: 100, 500, 1000

Random forest hyper-parameters remained constant
through all models with the only change from default
parameters being n_estimators = 5000 and
min_samples_leaf = 20.
Models were evaluated by sensitivity, specificity, accu-

racy area under the curve (AUC) values using 10-fold
cross validation and the caret R package [34].

Ensemble learner construction
As gradient boosting and random forest models 1-8 were
trained using eight different negative training sets, 3000

http://www.uniprot.org/downloads
http://www.uniprot.org/downloads
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randomly selected Zea mays protein coding sequences
were used as negative data in the construction and/or
testing of each ensemble model for consistency through
models. Z. mays was chosen as no training set contained
sequences from this species and the genome is well anno-
tated. Z. mays transcripts were downloaded from Ensem-
blPlants on April 27, 2017. Two separate values were used
for the creation of each ensemble model – scores sij and
predictions pij where i represents model number and j
transcript. Scores can take any number between 0 and 1,
while predictions are binary and indicate if the transcript
was or was not predicted as a lncRNA. A score greater
than or equal to 0.5 would indicate the transcript is pre-
dicted as a lncRNA and would have a prediction value of
1. Ensemble models were constructed for random forest
and gradient boosting models separately in order to avoid
potential correlation of predictions. The four ensemble
approaches included both algebraic combiners and vot-
ing methods as non-trainable methods, and a stacking
generalizer as a meta-learner.
The four ensemble methods are described as follows

and are illustrated in Fig. 1:

1 Arithmetic Mean

1
n

n∑

i=1
sij (1)

Where n = 8, the number of individual models
combined into the ensemble approach. The
ensemble decision is made from taking the
arithmetic mean of each score sij from models 1-8 for
each gene j. The arithmetic mean of scores will act as
a new ensemble score, and prediction will be made as
described previously.

2 Geometric mean
( n∏

i=1
sij

) 1
n

(2)

Where n = 8, the number of individual models
combined into the ensemble approach. The
ensemble decision is made from taking the geometric
mean for each score sij from models 1-8 for each
gene j. The geometric mean of scores will act as a
new ensemble score, and prediction will be made as
described previously.

3 Majority vote

1
n

n∑

i=1
pij (3)

Where n = 8, the number of individual models
combined into the ensemble approach. The
ensemble decision depends only on final predictions
and is decided on which label (0 or 1) receives the

largest vote. The final prediction is made depending
on the value of the majority vote score.

4 Logistic regression
This meta learner is trained on a training dataset of
3000 known Z. mays protein coding sequences as
negative data and the 10-fold cross validation
prediction outputs of known lncRNAs as positive
data.

Voting, arithmetic mean, and geometric mean ensem-
ble models were evaluated by directly comparing scores
of predictions to the known outcomes of validated lncR-
NAs and 3000 Z. mays protein coding sequences. The
logistic regression stacking generalizer was evaluated by
10-fold cross validation. Accuracy, sensitivity, specificity,
Matthews correlation coefficient (MCC), and AUC values
were calculated using a custom R script and the R package
caret [34].

Comparison of predicted lncRNAs to GreeNC and
annotation exploration
Transcript sequences of O. sativa and Eutrema salsug-
ineum were downloaded from Phytozome v10.3 and
A. thaliana from TAIR10 for direct comparison to
GreeNC. LncRNAs predictions by GreeNC ofA. thaliana,
O. sativa and E. salsugineumwere downloaded on June 19,
2017. Annotations from each species were downloaded
from Phytozome v12, with extra A. thaliana annotation
downloaded from Araport v11.

Results
Individual random forest and stochastic gradient boosting
model construction
Feature selection
Researchers have proposed that specific characters in
transcript sequences can be useful in lncRNA classi-
fication. For example, lncRNAs can be translated into
short peptides [11–13], however most validated lncR-
NAs remain functional in their RNA form with little
protein coding potential. The potential for a transcript
to be translated into a protein can be predicted by
codon bias, often measured by Fickett score, and hex-
amer usage bias [21]. Mammalian lncRNAs are known to
have a lower GC content than protein-coding RNAs [35],
and this feature has been used as a defining feature for
A. thaliana lncRNA prediction in the past [36]. Trans-
posable elements (TEs) are also known to be sources for
plant lncRNAs [3]. Based on these studies, 11 features
were originally chosen for use in lncRNA classification:
mRNA length, ORF length, GC%, Fickett score, hexamer
score, alignment identity in SwissProt database, length
of alignment in SwissProt database, proportion of align-
ment length and mRNA length (alignment length:mRNA
length), proportion of alignment length and ORF length
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Fig. 1 Illustration of ensemble methods. An illustrative example of all four ensemble methods: arithmetic mean, geometric mean, majority vote and
the stacking generalizer. Real examples from three different genes are given: gene A represents AT5G44470 a predicted protein, gene B represents
At43G09922.1 IPS1 a known lncRNA, and gene C represents At2G18130.1 a known protein coding gene, AtPAP11. Note the final stacking generalizer
score of gene B compared to the individual model scores for the gene

(alignment length:ORF), presence of transposable ele-
ment, and sequence percent divergence from transposable
element. Using recursive feature elimination as described
in the “Methods” section, features that related to trans-
posable elements were removed since inclusion of these
features in classifiers decreased prediction accuracy and
thus were deemed uninformative for this training data.
After feature elimination, nine features were chosen for
implementation in individual random forest and gradi-
ent boosting models: mRNA length, ORF length, GC%,
Fickett score, hexamer score, alignment identity, length
of alignment, alignment length:mRNA length, and align-
ment length:ORF.

Individual model configuration andmodel evaluation
Gradient boosting and random forest models were con-
structed using eight different negative training datasets for
a total of sixteen models (Table 1). Empirically validated
lncRNA transcripts were downloaded from databases
as described in “Methods” section. To ensure optimal
performance of each gradient boosting classifier, proper
calibration of multiple hyper-parameters is required.
As such, hyper-parameter tuning (learning_rate,
max_depth, subsample, and n_estimators) for
each gradient boosting model was completed by grid
search and 30 iterations of 4-fold nested cross valida-
tion with results summarized in Table 2. All random
forest models were constructed with the same hyper-

parameters; all options were left as default other than
n_estimators=5000 and min_samples_leaf = 20.
After training calibrated models, gradient boosting

and random forest models were evaluated individu-
ally by 10-fold cross validation by accuracy, specificity,
sensitivity and AUC measures for model validation
(Table 1). All models performed at or above accu-
racy, specificity and AUC measures of 0.94, how-
ever, sensitivity values ranged from 0.40 to 0.725
(Table 1). Because of this wide range of sensitivity

Table 2 Gradient boosting hyper-parameters chosen by grid
search for each model

GB Model # Learning rate Maxdepth Subsample n estimators

1 0.04 10 0.6 100

2 0.04 10 0.6 100

3 0.04 10 0.6 100

4 0.02 8 0.6 100

5 0.02 10 0.6 100

6 0.02 10 0.6 100

7 0.04 10 0.6 100

8 0.04 10 0.6 100

Hyper-parameters were chosen by grid search using 30 iterations of 4-fold nested
cross validation. The given hyper-parameters corresponded to models with the
highest accuracy values of all given hyper-parameter combinations
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values, four alternative ensemble approaches using com-
bined random forest and gradient boosting models were
explored.

Ensemble classifier construction
To take advantage of the predictive strengths of each
random forest and gradient boosting model, ensemble
learners for all random forest and all gradient boosting
models were constructed. As ensemble classifiers function
by combining “diverse” learners [37], only models con-
structed from different training sets were used in each
ensemble classifier to maintain diversity in predictors.
In other words, ensemble classifiers were constructed
from all eight random forest models and a separate set
of ensemble classifiers were constructed from all eight
gradient boosting models.
Four types of ensemble classifiers were constructed: a

majority vote model, arithmetic means of scores model,
geometric means of scores model, and a stacking ensem-
ble model constructed from a logistic regression of model
outputs (Fig. 1 and “Methods” section for details).
A final training set comprised of 3000 known Z. mays

protein coding genes and validated lncRNAs was cre-
ated. This Z. mays training data set was used for training
the logistic regression classifier because random forest
and gradient boosting models were trained on differ-
ent data sets (see “Methods” section). For consistency,
all four ensemble methods were also evaluated using
these data. The arithmetic mean, geometric mean, and
majority vote methods were evaluated by comparing
ensemble method outputs to true labels, and 10-fold
cross validation scores were used to evaluate the logis-
tic regression stacking model. Accuracy, specificity, and
AUC values were similar for all ensemble approaches;
therefore, the best performing ensemble method was
largely determined by both sensitivity andMCCmeasures

(Table 3). Using these values as methods of evaluation,
the stacking model constructed from gradient boost-
ing model outputs was found to be the best perform-
ing model and was used for the remainder of the
study.

Comparison of meta-learner to GreeNC predictions
To assess the overlap of predictions to another plant
lncRNA resource, the lncRNAs predicted by the stack-
ing generalizer were compared to an established lncRNA
database, GreeNC [38]. This database uses a transcript fil-
tering method, rather than a machine learning approach,
where transcripts must meet the criteria of a classic
lncRNA in order to be identified as putative lncRNAs.
To be considered a lncRNA in the GreeNC database,
the transcript must: be larger than 200nt, have an ORF
smaller than 120aa, not have a hit in the SwissProt
database or be considered non-coding by the Coding
Potential Calculator [39], and not be already classi-
fied as another class of functional RNA as identified
by Rfam.
Transcript sequences of O. sativa, and E. salsugineum

were downloaded from Phytozome v10.3 and A. thaliana
sequences from TAIR10 to enable direct comparison to
the GreeNC protocol. In total, 1310, 856 and 198 lncR-
NAs were predicted from A. thaliana, O. sativa, and
E. salsugineum respectively, of which 872 (66.6%), 444
(51.9%), and 164 (82.8%) have been previously predicted
by GreeNC (Fig. 2). Comparing number of predicted
lncRNAs using this method to GreeNC, 1700, 4381,
and 1471 fewer lncRNAs are identified in A. thaliana,
O. sativa and E. salsugineum using the stacking method.
Another 438, 412 and 34 putative lncRNAs were iden-
tified using the stacking learner that have not been
predicted by GreeNC in A. thaliana, O. sativa, and
E. salsugineum.

Table 3 Evaluation measures of random forest (RF) and gradient boosting (GB) ensemble models

ML model type Ensemble type AUC MCC Accuracy Sensitivity Specificity

RF

Vote 0.834 0.725 0.944 0.594 0.995

Arithmetic mean 0.963 0.661 0.941 0.562 0.996

Geometric mean 0.963 0.706 0.941 0.555 0.997

Logistic regression 0.835 0.765 0.952 0.665 0.994

GB

Vote 0.887 0.797 0.958 0.702 0.995

Arithmetic mean 0.945 0.786 0.956 0.681 0.996

Geometric mean 0.940 0.750 0.949 0.601 0.999

Logistic regression 0.883 0.822 0.963 0.745 0.994

Statistics for vote, arithmetic mean, and geometric mean models were calculated using outputs of models compared to true labels. Logistic regression evaluation statistics
were calculated using the scores found by 10-fold cross validation of O. sativa training data and validated lncRNA sequences
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Fig. 2 Counts of predicted lncRNAs in A. thaliana, E. salsugineum and
O. sativa from the gradient boosting stacking generalizer method and
GreeNC database. Counts of predicted lncRNAs in this work from all
three species were also compared to predictions recorded in GreeNC.
Overlapping predictions of the two methods are represented as
shaded bars. The percentages above each bar represent the percent
of the total predictions by each method that are shared

Current annotation of top ranking lncRNAs in A. thaliana,
E. salsugineum, andO. sativa
Using the prediction scoring system of this stacking
method, the current annotation of the highest ranking
lncRNAs from each species was explored. Due to the
nature of a logistic regression-type ensemble method,
transcripts with similar features will have identical predic-
tion scores. As such, multiple prediction score ties exist in
the top ranking transcripts of each species (See Additional
file 3 for distribution of lncRNA scores). Using a cut-
off of the top three unique prediction scores, annotations
of 256, 17 and 94 transcripts in A. thaliana, E. salsug-
ineum, and O. sativa were identified as “top scoring” due
to these multiple ties. The majority of predicted lncRNAs
in A. thaliana were annotated by TAIR as potential nat-
ural antisense lncRNAs, pseudogenes, and transposable
element related genes (Table 4). Only one transcript from
E. salsugineum’s top predictions, and two transcripts from
O. sativa’s top predictions have annotation in Phytozome
v12.

Novel lncRNAs identified by the stacking generalizer
Annotation of the predicted lncRNAs not previously iden-
tified by GreeNC from all three species were explored.
While all of the newly predicted lncRNAs from E. sal-
sugineum and O. sativa were annotated as homologs of
A. thaliana genes, 10 of 34 novel lncRNAs from E. salsug-
ineum and 11 of 412 novel lncRNAs from O. sativa were
annotated specifically as proteins. Of the newly predicted

lncRNAs from A. thaliana, 417 remain unannotated, with
only seven predicted as potential proteins.

Discussion
Our approach to lncRNA prediction by stacking with
logistic regression allows researchers to combine the
strengths of various machine learning models with-
out restricting predictions to arbitrary feature cutoffs
of a classic lncRNA definition. The flexible nature of
this lncRNA prediction tool allows the model to be
updated when additional lncRNAs are validated, helping
researchers focus on empirical validation of plant lncRNA
transcripts. As lncRNA research has previously primar-
ily focused on animal systems with a large emphasis on
humans and mice, this tools’ training sets may have a
human and mouse bias that is present out of necessity.
When more plant lncRNAs are added to the tool’s train-
ing set, the human and mouse lncRNA bias that may be
found in the model will be reduced. Acting as positive
feedback, as more plant lncRNAs are added to the model,
the predictions themselves will improve.
To help researchers choose the best lncRNAs for vali-

dation, the predictions are ranked. While softwares that
rank lncRNA predictions, such as COME [19], do exist,
they are trained on amajority of non-empirically validated
transcripts adding a potential bias towards non func-
tional transcripts. A combination of ranked predictions
and models trained only on true lncRNAs will help ensure
researchers focus on the most likely functional lncRNAs
A lower number of identified lncRNAs in compari-

son to other prediction methods, such as GreeNC, was
expected. Using a machine learning classification method,
lncRNA predictions were not constrained to arbitrary
criteria for this RNA classification. Instead, the classi-
fiers were trained on validated lncRNAs and are expected
to identify only true functional lncRNA transcripts. In
other words, although transcripts were subjected to less
rules for lncRNA identification, the stacking method is
expected to have higher accuracy. Further, this work

Table 4 Number of transcripts in annotation categories of top
ranking lncRNAs in the A. thaliana transcriptome

Annotation category Number of annotations

Natural antisense lncRNA 64

Pseudogene 75

Transposable element gene 10

Transposase 46

miRNA primary transcript 4

Hypothetical protein 5

Protein 8

Other 8
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was tested only on sequence information available from
Phytozome v10.3 in order to compare predictions directly
to GreeNC. Additional transcript sequences available in
public repositories, or from researchers’ own sequencing
libraries, would add to the number of putative lncR-
NAs and could be used to improve accuracy. Moreover,
COOLAIR and COLDAIR, known A. thaliana lncRNAs,
are not predicted by GreeNC because the database relies
on transcript sequences provided by Phytozome and these
transcript sequences were not available in the database at
the time of prediction. Our stacking generalizer method
for lncRNA prediction is not restricted to a single data
source, and allows researchers to calculate a lncRNA score
from any transcript sequence, not solely those available
from an online repository.
While we expect a lower number of putative lncRNAs

than other protocols, of interest is the lower proportion
of predicted lncRNAs E. salsugineum genome compared
to O. sativa or A. thaliana. A reason for the low lncRNA
discovery rate in E. salsugineum, could potentially be
that plants were not subjected to conditions sufficient
for observable lncRNA expression. For example, IPS1 [8]
and COLDAIR [9], two well studied A. thaliana lncRNAs,
are induced by phosphate or cold-related stresses respec-
tively. This hypothesis is supported by Derrien et al. [16]
who found human lncRNA expression to be at low lev-
els in a condition, tissue and developmental state specific
manner. It is also possible that there exists natural vari-
ation in the numbers of putative lncRNAs in different
species. Further investigation on the number of putative
lncRNA and their relationships to plant growth conditions
for transcriptome sequencing of multiple plant species is
currently underway.
Although the quantity of detected lncRNAs was low in

E. salsugineum, the quality of putative lncRNAs in all three
species is high, demonstrating that this tool can accurately
classify transcripts no matter size or quality of input tran-
script sequence data. When exploring the annotations of
the top scoring predictions in A. thaliana, the majority
of transcripts were annotated as potential natural anti-
sense lncRNA, pseudogenes, transposable elements, small
RNA primary transcripts, or remain computationally pre-
dicted as hypothetical proteins (Table 4). Pseudogenes
remain poorly understood, however there is evidence of
pseudogene derived lncRNAs regulating their parental
genes [40], making pseudogene derived lncRNAs targets
of potential regulatory interest. Transposable elements are
another known source of lncRNAs, particularly in verte-
brates [41] and long intergenic non-protein coding RNAs
in plants [3]. This study did not find evidence that fea-
tures related to transposable elements were helpful at
predicting plant lncRNAs as the addition of transposable
related features decreased the quality of lncRNA predic-
tions. However, exploration of the training data used for

model creation indicates that only 19 of the 436 (4.4%) val-
idated lncRNAs show evidence of transposable element
association. Of this minor group of transposable ele-
ment associated lncRNAs, none were from plant species.
Nonetheless, the tool did not favour lncRNAs that are
not associated with transposable elements, as the tool
remained successful at identifying these types of tran-
scripts. Additionally, as novel lncRNAs are validated and
added to this tool, an update to the models’ feature selec-
tion stepmay be required, andmay lead to future inclusion
of transposable element associated characters. However,
by not including transposable element information, the
computational time for data preprocessing before tran-
script classification is significantly reduced to minutes
from days as RepeatMasker is no longer needed.
Features of secondary RNA structure have previously

been used in other RNA classifiers, such as nRC [42] and
GraPPLE [43], that are used to classify RNAs into func-
tional categories. These classifications include RNAs such
as miRNAs, tRNAs, rRNA, ribozymes, and riboswitch
domains, all of which have conserved secondary struc-
tures. Rather than using sequence homology, commonly
used with protein coding genes, structural homology has
previously been used in lncRNA functional prediction,
and identification [5]. However, a lack of secondary struc-
ture conservation in animal lncRNAs with conserved
sequences (e. g. HOTAIR, ncSRA and Xist) was recently
observed [44]. As structural conservation may not be as
pervasive in lncRNA classification as previously thought,
we did not include structural features in our ensemble
learner. A lack of structural features allows the predictor
to identify a wide variety of lncRNAs and does not limit
the predictor to the structures of the small number of
validated plant lncRNAs available. An additional test was
completed to ensure our predictor, lacking structural fea-
tures, did not merely distinguish non-coding transcripts
from protein coding genes. By comparing the results of the
ensemble learner to predicted CPAT protein coding prob-
abilities [21], our ensemble method was able distinguish
between other CPAT-predicted non-coding transcripts
and likely lncRNAs (Additional file 4: Table S2). A por-
tion of putative lncRNAs in all three plant species are
also predicted to be protein coding and may encode small
regulatory peptides.
High quality lncRNA predictions from this method

require sequences from fully processed transcripts and
cannot be predicted directly from genomic sequences.
Nevertheless, potential lncRNA sequences of interest are
typically more accessible by transcriptome sequencing
rather than complete genome sequencing, which remains
technically challenging for crop plants with large and/or
polyploid genomes. This tool is flexible and can be used
to identify lncRNAs from all transcriptional units of an
organism, or to check the lncRNA score of a single
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transcript. Furthermore, as mentioned in their summary,
Kang et al. [22] suggest that researchers should now con-
sider working on uncovering the biological implications of
lncRNAs rather than solely using computational tools for
transcript classification. We agree that future work should
centre around using software to also further knowledge
on these types of transcripts. Due to the diversity of
these transcripts, there is increasing need for classifica-
tion of lncRNAs into categories based on mechanism and
function, as well as continuation of empirical validation,
particularly for plants. Once validated, not only can novel
lncRNAs mechanisms be explored, but their features can
be added to this tool for further improvement in lncRNA
prediction.

Conclusion
For this machine learning based tool for lncRNA predic-
tion, we have used only empirically validated lncRNAs for
training. Although lncRNAs from multiple species were
used, our tool identified putative plant lncRNAs with high
scores. Ranking of lncRNA predictions should improve
the confidence by which gene products meriting valida-
tion are selected for empirical testing. The machine learn-
ing structure and its open source availability allows for the
flexible inclusion of validated lncRNAs as our knowledge
of this class of RNA improves. An important considera-
tion of this tool is that it is not constrained by precon-
ceived rules that may or may not appropriately classify
lncRNAproperties. As Kung et al. [1] suggest, setting rules
for the detection of these non-conforming transcripts
could be detrimental due to the diversity in functional-
ity, structure, expression and mechanism of these tran-
scripts. Accordingly, our stacking generalizer model based
on gradient boosting models will facilitate lncRNA iden-
tification without imposing arbitrary rules for lncRNA
detection.
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