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sequencing data with transIndel
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Abstract

Background: Insertions and deletions (indels) are a major class of genomic variation associated with human disease.
Indels are primarily detected from DNA sequencing (DNA-seq) data but their transcriptional consequences remain
unexplored due to challenges in discriminating medium-sized and large indels from splicing events in RNA-seq data.

Results: Here, we developed transIndel, a splice-aware algorithm that parses the chimeric alignments predicted by a
short read aligner and reconstructs the mid-sized insertions and large deletions based on the linear alignments of split
reads from DNA-seq or RNA-seq data. TransIndel exhibits competitive or superior performance over eight state-of-the-
art indel detection tools on benchmarks using both synthetic and real DNA-seq data. Additionally, we applied
transIndel to DNA-seq and RNA-seq datasets from 333 primary prostate cancer patients from The Cancer
Genome Atlas (TCGA) and 59 metastatic prostate cancer patients from AACR-PCF Stand-Up- To-Cancer (SU2C)
studies. TransIndel enhanced the taxonomy of DNA- and RNA-level alterations in prostate cancer by identifying recurrent
FOXA1 indels as well as exitron splicing in genes implicated in disease progression.

Conclusions: Our study demonstrates that transIndel is a robust tool for elucidation of medium- and large-sized indels
from DNA-seq and RNA-seq data. Including RNA-seq in indel discovery efforts leads to significant improvements in
sensitivity for identification of med-sized and large indels missed by DNA-seq, and reveals non-canonical RNA-splicing
events in genes associated with disease pathology.
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Background
Advances in DNA-seq and RNA-seq have provided in-
sights into the human genome and transcriptome in
health and disease states, including cancer. DNA-seq data
is often used as the primary source of mutational informa-
tion while RNA-seq data is used to measure gene expres-
sion. Only in rare instances are DNA-seq and RNA-seq
data analyzed together in an integrated fashion. However,
there is an increasing recognition that integrated analysis
of DNA-seq and RNA-seq data provides a more complete
understanding of the molecular genetic state of the cells
being studied. For example, integrated analysis of DNA-
seq and RNA-seq data could be used to determine
whether DNA variants are expressed, identify alterations

in genomic DNA when altered DNA fragments escape hy-
brid capture in whole exome sequencing applications, or
identify non-canonical RNA splicing events that are
caused by underlying DNA alterations [1].
Although computational tools have been developed to

detect single nucleotide variants, small indels (< 10 bp),
and structural variations (or gene fusions) from RNA-
seq data [2–7], the field currently lacks an effective
method to predict indels, especially for mid-sized and
large indels, from RNA-seq data. Detecting indels in
RNA-seq data is challenging for three reasons. First,
RNA-seq aligners fail to map short reads which contain
mid-sized insertions and large deletions, as these will be
marked as splicing junctions [8]. Second, existing indel
callers were developed to predict indels from DNA-seq
data, so utilization with RNA-seq data results in ex-
tremely high false positive rates of medium- and large-
size indel calls due to inability to account for splicing
events [8]. Third, it is difficult to distinguish genomic
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indels from non-canonical splicing events, including
microexons and exitrons [9].
To address this critical gap, we developed transIndel,

an algorithm that flexibly detects indels from DNA-seq
or RNA-seq data. TransIndel parses the chimeric align-
ments predicted by a short read aligner and reconstructs
the mid-sized insertions and large deletions based on
the linear alignments of split reads. When analyzing
RNA-seq data, transIndel uses several filters to distin-
guish deletions with RNA splicing events. In this study,
we validated the performance of transIndel for detection
of small and large indels using simulated DNA-seq data
and a 50× whole genome sequencing data set. We ap-
plied transIndel to large-scale prostate cancer DNA-seq
and RNA-seq data sets and reported novel recurrent
FOXA1 indels and exitron splicing events.

Implementation
The transIndel pipeline
TransIndel is intended for paired-end or single-end read
data with reads of at least 75 bp. It takes aligned short
read data in BAM format as input. The alignment is per-
formed by BWA-MEM [10] for either DNA-seq or
RNA-seq as this aligner supports soft clipping at the 5′
or 3′ end of reads and reports chimeric alignments with
an ‘SA’ tag in the alignment records. The aligned reads
are then passed through a series of processing stages. 1)
Preprocessing: the input BAM is parsed and multiple
quality filters are applied, including removal of multi-
mapped reads (indicated by an “XA” tag in their BAM
records), low-quality (MAPQ in the BAM record is less
than a user specified cutoff, 60 by default) and secondary
alignments (flagged by 0 × 100 in their BAM records). 2)
Extracting reads: the chimeric reads are extracted if a)
they are labeled with an “SA” tag; b) there is only one al-
ternative hit reported as part of this chimeric alignment
and c) mapping quality of this alternative hit exceed a
user specified cutoff (60 by default). 3) Classifying linear
alignments: each of the two linear alignments in a
chimeric alignment is classified into one of the three
types based on their CIGAR strings: left part mapped
but right part soft clipped, left part soft clipped but right
part mapped and others. 4) Indel reconstruction: an
indel is detected based on the chromosome, location,
strand and type of the two linear alignments in a
chimeric alignment and the CIGAR string of this
chimeric alignment is redefined as a linear alignment
which has included the inferred indel event. Details are
described in the section “Indel reconstruction.” After
those steps, a new BAM file with a corrected CIGAR
string is generated. The indels are detected at nucleotide
sites using SAMtools pileup function [11] implemented
by a Python module called pysam (http://pysam.readthe-
docs.io/). When calling the indels at each loci from the

newly created BAM file, we only utilize reads with map-
ping quality score ≥ 15 and require at least 2 reads to
support the variant allele. The identified indels are fi-
nally reported in VCF format. However, the output
BAM file from transIndel can be passed into an existing
variant caller such as VarDict [12] for germline or som-
atic indel calling as well. In our analyses of TCGA data,
we used VarDict to estimate the VAF of FOXA1 indels.

Indel reconstruction
Here we named the types of linear alignments as MS,
SM, and O where MS stands for the alignments whose
left part mapped but right part soft clipped (e.g. 40M60S
as the CIGAR string); SM stands for the alignments
whose right part mapped but left part soft clipped (e.g.
40S60M as the CIGAR string) and O stands for the
alignments that were not included in the MS or SM
class. The indels are inferred based on the genomic loca-
tion and types of the two linear alignments in a chimeric
read as described below and Fig. 1. For the two linear
alignments, one is the representative alignment which is
reported as the read alignment (denoted by RL) and the
other is the alternative alignment which is reported by
the SA tag (denoted by AL).

For RNA-seq data, transIndel reports a candidate dele-
tion if they meet the following two criteria: 1) the break-
points of deletions are not overlapped within a user
specified range (default 20 bp) of annotated splice sites
defined in a user specified GTF file (in this study, we
used the hg19 GTF file from UCSC genome browser
Refseq gene track), and 2) the four bases at the break-
points are not the known splicing motifs (GU-AG, GC-
AG and AU-AC).

Performance comparison with simulated and real data
We compared transIndel’s performance with seven
widely used indel detection methods (Pindel v0.2.5,
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GATK HaplotypeCaller v3.4.46, Platypus v0.8.1, Scalpel
v0.4.1, Delly v0.7.6, FermiKit v0.13, and NovoBreak v1.1.3)
in both simulated and real DNA sequencing data. Simu-
lated data were generated as described previously [13]. In
general, three sequencing coverage are provided at 10×,
20× and 50×. At the 50× coverage, we simulated paired-
end reads at four different sizes: 2X50bp, 2X75bp,
2X100bp and 2X200bp. For other coverage depths, we
only chose 2X100bp as the read length. The performance
of each tool on the simulation data was measured by pre-
cision and recall as defined previously [13].
NA12878 WGS raw fastq files were obtained from Euro-

pean Nucleotide Archives with the accession number
ERA172924. Paired-end reads were aligned to the GRCh37
human reference using BWA-MEM v0.7.10 with default
parameters and then duplicate reads were removed using
Picard MarkDuplicates v1.68 (http://broadinstitute.github.
io/picard/). We required transIndel to predict the indels in
NA12878 with the minimal VAF 0.05 and minimal indel
length 1 bp. Default settings were used for all other tools
except Scalpel, which was used with –-window 600 when
running it for WGS data as recommended by the Scalpel
manual (http://scalpel.sourceforge.net/manual.html). The
GIAB call set V2.19 was downloaded from NCBI (ftp://ftp-
trace.ncbi.nih.gov/giab/ftp/release/NA12878_HG001/
NISTv2.19/). GATK was not used when comparing differ-
ent algorithms to this truth set because it was primarily de-
rived from GATK-based analyses. NovoBreak was not used
for NA12878 data set since it is a somatic variant caller.
The large deletion reference data set was downloaded from
1000 Genomes Phase 3 structural variation call set (ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_
map/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz).
We extracted 1310 deletions detected in NA12878 sam-
ples. GATK and Scalpel’s results were not shown as there
were zero large deletions called.
The real tumor data set was downloaded from dbGaP

(Study ID: phs001223.v1.p1) which included targeted
paired-end DNA sequencing data sets from 42 prostate

cancer specimens [14]. These specimens had been vali-
dated by PCR for multiple genomic rearrangement
events, including deletions, duplications, inversions, and
translocations in the androgen receptor (AR) gene. We
obtained all samples that were validated to harbor dele-
tion events and applied transIndel to those samples for
testing with minimal VAF set to 1%.

Tumor exome and transcriptome data sets and
processing
We downloaded tumor and matched normal exome BAM
files of 333 TCGA primary prostate adenocarcinoma
(PRAD) samples from the Cancer Genomics Hub (CGHub;
accessed November 2015). BAM files were converted to
FastQ files and realigned to hg19 using BWA-MEM. PCR
duplicate reads were removed using Picard MarkDupli-
cates. The molecular subtypes to which patients had been
assigned by the original TCGA study [15] were obtained
from cBioPortal (http://www.cbioportal.org/study.do?can
cer_study_id=prad_tcga_pub). Somatic indels reported by
the original literature were obtained from the Broad Insti-
tute FireBrowse portal (http://firebrowse.org/?cohort=
PRAD). We obtained the tumor and matched normal ex-
ome and tumor poly(A) captured RNA-seq raw FastQ files
and somatic indels reported in the original literature of 59
metastatic CRPC specimens from the AACR-PCF SU2C
study from dbGap with accession number of phs000915.
v1.p1. FastQ files were aligned to hg19 using BWA-MEM
and PCR duplicate reads were removed using Picard Mark-
Duplicates. mRNA expression RPKM values were obtained
from cBioPortal (http://www.cbioportal.org/study?id=
prad_su2c_2015). The exome and RNA-seq BAM files of
the LNCaP cell line were obtained from CGHub (accessed
November 2015) under The Cancer Cell Line Encyclopedia
(CCLE) project. We converted the BAM files to FastQ files
and realigned to hg19 using BWA-MEM followed by du-
plicated read removal. TransIndel was applied to tumor ex-
ome and RNA-seq data to call indels, requiring at least 2
supporting reads with VAF ≥ 10% and minimal indel size

Fig. 1 Conceptual overview of transIndel algorithm. Deletions and insertions are recovered from representative and alternative alignments of chimeric
reads. Size of the indels are determined based on the difference of target offset and read length

Yang et al. BMC Genomics  (2018) 19:270 Page 3 of 11

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
http://scalpel.sourceforge.net/manual.html
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/release/NA12878_HG001/NISTv2.19/
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/release/NA12878_HG001/NISTv2.19/
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/release/NA12878_HG001/NISTv2.19/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz
http://www.cbioportal.org/study.do?cancer_study_id=prad_tcga_pub
http://www.cbioportal.org/study.do?cancer_study_id=prad_tcga_pub
http://firebrowse.org/?cohort=PRAD
http://firebrowse.org/?cohort=PRAD
http://www.cbioportal.org/study?id=prad_su2c_2015
http://www.cbioportal.org/study?id=prad_su2c_2015


≥10 bp. Overlap of indel calls between DNA-seq and
RNA-seq was deemed positive if the detected indels
had identical genomic coordinate, type and size of vari-
ants. For WES data, indels were called separately from
tumor and normal samples using transIndel. Somatic
indels were determined with two criteria: 1) a simple
subtraction method [16] was applied to remove the
indels that were detected in the normal samples or 2)
split reads were found mapped to the breakpoints of
the tumor exome indels in the matched normal exome
BAMs. We limited our analysis to the indels that com-
pletely resided within a RefSeq gene. The functional an-
notations of indels were produced by Ensemble Variant
Effect Predictor (http://useast.ensembl.org/Tools/VEP)
and UCSC Variant Annotation Integrator [17].

Compilation of cancer related genes
A total of 2225 candidate cancer related genes were
compiled from the literature, publicly available screening
panels, and analysis of publicly available data sources
(Additional file 1: Dataset S1). This list included 1279
tumor suppressor genes, 147 oncogenes and 799 cancer-
associated genes.

Experimental validation
LNCaP (ATCC, #CRL-1740) cells were obtained from
American Type Culture Collection (ATCC). ATCC
ensures authenticity of these human cell lines using short
tandem repeat analysis. Aliquots of cell culture superna-
tants from cells in active culture were evaluated regularly
for mycoplasma contamination using a PCR-based
method as described [18]. All cell line experiments were
performed within 2–3 months of resuscitation of frozen
cell stocks prepared within 3 passages of receipt from
ATCC. Total RNA was purified from LNCaP cells seeded
in 6 cm dishes in complete medium. RNA was purified
using the Reliaprep RNA Cell Miniprep System (Promega,
catalog #Z6011) according to manufacturer instructions.
RNA was eluted in nuclease free water and stored at −
80 °C. Genomic DNA was purified with the Nucleospin
kit for genomic DNA according to manufacturer instruc-
tions (Macherey Nagel catalog #740952.250). The concen-
tration of genomic DNA and total RNA was assessed
using a NanoDrop spectrophotometer.
RNA was diluted to 250 ng/μL in nuclease free water.

Reverse transcription (RT) was performed on 1 μg total
RNA with the GoScript Reverse Transcription System
(Promega catalog #A5001). RT was performed with ei-
ther random hexamers or oligo dT primers. Standard
PCR was performed using Taq polymerase with 50 ng
input cDNA or genomic DNA and ZBTB18 gene spe-
cific primers designed to flank the 112 bp deletion found
in LNCaP (: Forward: 5′-agctggaaaaacagtagccagc-3′, Re-
verse: 5′-catcacaggaagcctctttctcca-3′). PCR products

were subjected to agarose gel electrophoresis on a 1.5%
agarose gel in 1X TAE buffer.
PCR products were cloned into the pCR-II TOPO vec-

tor using the TOPO TA Cloning Kit (Invitrogen catalog
#45–0640) for downstream Sanger sequencing. Plasmid
DNA was isolated using the IBI High Speed Miniprep
kit. Sanger sequencing was performed using the kit
manufacturer supplied M13-FWD (− 20) primer, 5’-
GTAAAACGAGGGCCAG-3′.

Results
Indel detection model
The core component of the transIndel algorithm is the
ability to infer large deletions and medium-sized inser-
tions from chimeric alignments. Reads with small indels
can be represented as a single linear alignment to the
reference genome and hence can be used to detect
indels from the direct evidence of the alignment by
available indel callers. However, as the indel size in-
creases, short read aligners such as STAR [19] fail to
map reads with those indels linearly in a single record.
Instead, it detects large deletions as splicing junctions
(Additional file 2: Figure S1a). Conversely, a chimera-
aware aligner such as BWA-MEM [10] aligns short reads
in a chimeric alignment, which consists of two linear
alignments with each of the hits marked by soft-clipping
in the alignment file that may account for half of the
soft-clipped reads (Additional file 2: Figure S1b). By le-
veraging the alignment details for those chimeric reads,
it is possible to reconstruct the linear alignment with
mid-sized insertions and large deletions from the initial
short read alignment and provide a redefined alignment
output for downstream indel detection.
First, transIndel searches chimeric alignments from

BAM files generated by BWA-MEM and selects those
containing two linear alignments that do not have large
overlaps but align on the same chromosome and strand.
Second, the type and size of indels are determined by
comparing the differences between target offset and read
length (Fig. 1). In the case of deletions, the target offset
is larger than the read length. In cases of mid-sized
novel sequence insertions or tandem duplications, the
target offset is shorter than the read length.

Validation on synthetic and real data
We compared the performance of transIndel with seven
existing indel detection algorithms (GATK Haplotype-
Caller [20], Pindel [21], Scalpel [22], Platypus [23], Fer-
mikit [24], Delly [25] and NovoBreak [26]) on a
synthetic data set. This comparison showed that Delly,
Pindel and transIndel robustly detected large deletions
from low (10×) to high (50×) coverage data with sizes
ranging from100bp to 1 kbp (Fig. 2). Fermikit performed
the best for detecting large insertions as it is the
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only one among these tools carrying out global
assembly for indel detection. When examining mid-
sized and small indels (< 100 bp), Pindel had the
highest recall and precision, followed by transIndel
(Additional file 3: Figure S2). Delly did not perform
as well as Pindel or transIndel in terms of small
indels (< 20 bp) (Additional file 3: Figure S2).
To assess performance with real DNA-seq data, we

applied each tool to a 2X100bp, 50× coverage whole gen-
ome sequencing (WGS) data set from human individual
NA12878. We compared the indel predictions against two
reference call sets. One was available from the Genome in
a Bottle (GIAB) Consortium, which identified mostly
small indels less than 20 bp [27]. The other reference set
was composed of mid-sized and large deletions > 50 bp
provided by 1000 Genomes Phase 3. We computed the
precision, recall (i.e., sensitivity), and harmonic mean of
precision and recall (F-measure). We observed that tran-
sIndel achieved the highest sensitivity for detecting small
indels (Fig. 3a-b). For large deletion detection, transIndel
displayed the best performance (measured by F1 score)
relative to other structural variation detection algorithms
including Delly, Pindel, Platypus, Fermikit as well as our
previously developed indel caller, ScanIndel. (Fig. 3c).
Next, we applied transIndel to detect 10 validated

large deletions (> 1 kb) within the androgen receptor
(AR) gene locus from prostate cancer specimens [14].
TransIndel achieved 100% sensitivity with estimated

variant allele frequency (VAF) ranging from 3% to 93%
(Additional file 4: Table S1). Notably, we found our cal-
culated VAFs based on SAMTools pileup were lower
than the reported VAFs in the original study. For ex-
ample, a 3433 bp deletion from site A of patient C-6 had
a 30% VAF but estimated as 47% by SHEAR originally.
Since SAMTools directly used chimeric reads with
recovered indels to calculate the VAF which may only
account for partial variant depth, it was likely to under-
estimate the VAF. To make the prediction more accur-
ate, we applied VarDict to predict the VAF of this
deletion. VarDict enables accurate estimation of the VAF
for indels by performing supervised and unsupervised
local realignment of soft-clipped reads [12]. Interestingly,
we found VarDict did not detect this deletion using the
BWA-MEM generated BAM file (Additional file 5:
Figure S3a), but with the redefined BAM file from tran-
sIndel, VarDict identified this deletion with 85% VAF,
suggesting transIndel improved the sensitivity of existing
tools for indel detection (Additional file 5: Figure S3b).

Application to whole-exome data of primary and
metastatic prostate cancer
To test whether transIndel could enhance indel detec-
tion in a large dataset relevant to human disease, we first
applied transIndel to whole exome sequencing (WES)
data of 333 tumor and matched-normal primary prostate
cancer (PC) sample pairs from The Cancer Genome

Fig. 2 Benchmarking of transIndel for large indels against existing indel detection tools using 100 bp simulated reads. Recall (upper panels) and
precision (lower panels) were evaluated for transIndel, GATK HaplotypeCaller, Pindel, Platypus, Scalpel, Delly, FermiKit and NovoBreak. Smoothed
histograms (100 bp bins) showed the comparison on simulated data of 10×, 20× and 50× mean coverage for detecting 1000 deletions and 1000
insertions, one each from the size range of 1 bp to 1 kb. Precision was not calculated if a zero denominator was given by the method
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Atlas (TCGA) study [15] and 59 metastatic castration-
resistant prostate cancer (mCRPC) and matched-normal
sample pairs from the AACR-PCF Stand-Up-To-Cancer
(SU2C) study [28]. Since existing algorithms can reliably
detect SNVs and small indels less than 10 bp (Additional
file 3: Figure S2), we focused on indels equal to or larger
than 10 bp. In addition, we set the minimal VAF to 10%
to keep our approach consistent with thresholds applied
in initial analyses of these WES data [15, 28]. We noted
that the size of deletions initially called by transIndel
varied significantly, with many falling into the structural
variation category scale, rather than the indel scale. We
therefore further limited our study to indels that were
contained within a single gene only. With these filtering
thresholds, we detected 1043 somatic indels in PC and
2034 somatic indels in mCRPC. The size range of dele-
tions observed in PC and mCRPC were 10 to 27,293 bp
and 10 to 113,612 bp, respectively and the size range of
insertions in PC and mCRPC were 10 to 66 bp and 10
to 85 bp, respectively. Compared to the indel detection
methods employed in the original TCGA and SU2C
studies, transIndel detected more medium- and large-
sized indels (Fig. 4a,b). Among these newly detected
indels, we found that ten patients in the TCGA cohort
harbored deletions in FOXA1 with sizes larger than
10 bp. FOXA1 mutations define one of the 7 distinct
molecular subtypes of PC, yet nine of these patients
had been assigned to a molecular subtype other than
FOXA1 molecular subtype (Additional file 6: Table
S2). Re-assignment of the nine patients positive for

FOXA1 indels from the non-FOXA1 molecular sub-
type to the FOXA1 molecular subtype of PC would
increase the proportion of this group from 3% to 5%
of all PC cases (Fig. 4c).
To ensure we did not miss any additional FOXA1

indels in the TCGA cohort, we leveraged VarDict to esti-
mate the VAF of our detected indels and also applied
Delly, Pindel, Scalpel, GATK, Platypus and Fermikit for
detection. We found none of these tools could identify
all ten FOXA1 deletions. Moreover, no additional mid-
sized and large indels were found in FOXA1 by these
tools (Additional file 6: Table S2).

Application to RNA-seq data of mCRPC
To validate our findings from WES data and evaluate
effects of detected genomic indels on transcriptome
structure, we applied transIndel to RNA-seq data from 59
mCRPC samples in the SU2C cohort. RNA-seq raw reads
were aligned with BWA-MEM and transIndel was used to
infer candidate indels. Deletion candidates were subjected
to several filters to discriminate genomic deletions from
RNA splicing events, including removal of deletions
neighboring canonical splicing motifs or annotated splice
sites (Fig. 5a). This pipeline identified genomic deletions
that were misclassified as splicing junctions (Add-
itional file 7: Figure S4a-d) and genomic insertions that
were missed (Additional file 7: Figure S4e-h) by the STAR
algorithm, which is a component of GATK best practice
for indel discovery in RNA-seq (https://software.broadin
stitute.org/gatk/best-practices/rnaseq.php). Compared to

a b c

Fig. 3 Benchmarking of indels detection using NA12878 whole genome sequencing data. a Performance measured by recall, precision and F1
score of small insertions (< 20 bp) detected in Genome in a bottle (GIAB) truth set of small indels in genome NA12878. b Performance of small
deletions (< 20 bp) detected in GIAB truth set of small indels in genome NA12878. c Performance of large deletion (> 50 bp) detection against
1000 Genome Phase 3 deletion call set in genome NA12878
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WES, transIndel called more indels from RNA-seq data,
and these were more abundant in untranslated regions
(UTRs), splicing regions, and coding exonic regions (Fig.
5b). This situation likely occurred because the exome cap-
ture kits used for WES are primarily designed to capture
the protein-coding regions in the genome (~ 2% of human
genome), whereas RNA-seq also covers UTRs and
retained introns in the transcriptome (~ 5% of human
genome) [29]. Indeed, we found the largest proportion of
detected indels from RNA-seq data were intronic indels
(Additional file 8: Figure S5).
A surprising result was that WES indel calls over-

lapped with indels discovered in RNA-seq to a very lim-
ited extent (Fig. 5b). To investigate the reasons for this
low degree of overlap, we examined differences in WES
and RNA-seq read coverage at locations corresponding
to the 2034 WES indels (Additional file 9: Figure S6a)

and 6734 RNA-seq indels (Additional file 9: Figure S6b).
These results indicated that coverage difference between
WES and RNA-seq at the locations of predicted indels
was the main reason for this low overlap in indel calls.
As anticipated, the fraction of indels in coding exons was

markedly higher in the overlap between WES and RNA-seq
than in either dataset alone (Fig. 5b). Interestingly, the VAFs
of the 71 common indels called from WES and RNA-seq
data showed weak correlation (r = 0.31;p = 0.0079). Linear
regression analysis indicated that indels called from RNA-
seq data were present at higher VAF than those same indels
called from WES data (Fig. 5c). This is likely due to ineffi-
cient hybridization-based capture of DNA fragments har-
boring medium- to large-scale indels, which is a standard
step in WES workflows. An example of this scenario is
shown for FOXA1 in Figure S7 (Additional file 10). We
found the WES didn’t cover FOXA1 well between aa240–

Fig. 4 Indel detection on whole exome sequencing (WES) data. a The size distribution of detected indels (≥ 10 bp) by transIndel and the reported
indels in the TCGA and AACR-PCF-SU2C studies for primary and metastatic castration-resistant prostate cancer, respectively. b Venn diagram of
medium- and large-sized indels (≥ 10 bp) called by original TCGA and AACR-PCF-SU2C studies versus transIndel. c transIndel identified novel deletions
in FOXA1 from ten prostate cancer specimens that were missed by original TCGA study (lower panel)
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380, which might prevent detecting additional FOXA1 mu-
tations. These results suggest that detection of indels in
RNA-seq data using transIndel could complement WES for
detection and validation of genomic alterations, which is
crucial for clinical diagnostics.
Since WES and RNA-seq data are both expected to

display enrichment in exonic regions, we focused on the
indels discovered in coding exons. Surprisingly, we
found only 12 coding indels called from WES data that
overlapped with coding indels called from RNA-seq data
(Fig. 5d). Explanations for this surprisingly low overlap
could be that the genes impacted by indels were not
expressed (RPKM < 1), or gene expression was arising
from the unaffected, reference allele (Fig. 5d). Overall,

there were more coding indels called from RNA-seq
data. In several instances, manual inspection of WES
data indicated the presence of individual DNA-seq reads
supporting these indel events. However, these would
have ultimately been filtered out in the DNA-seq indel
calling pipeline due to low coverage (< 10×). Conversely,
many coding indels called from RNA-seq data appeared
to be RNA-only events, as there was no evidence of
corresponding DNA-levels events despite high WES
coverage in these regions. One explanation for this
phenomenon could be a type of non-canonical splicing
event, termed exonic introns (exitron) [30]. One of the
distinguishing features of exitrons is overrepresentation
of indel sizes that are multiples of three nucleotides [31].

a

d e f

b c

Fig. 5 Indel detection on RNA-seq data. a transIndel workflow of calling indels from RNA-seq data. b The composition of functionally important
regions for detected indels within annotated genes in WES and RNA-seq data from AACR-PCF-SU2C samples. c Comparison of the indel variant
allele fractions derived from RNA-seq and WES data from AACR-PCF-SU2C samples. The line shows a fitted linear regression model with 95%
confidence interval. d Overlap in coding indels detected from WES and RNA-seq data from AACR-PCF-SU2C samples. Over half of the indels
detected in WES data were not detected in RNA-seq data because of no RNA expression, or RNA expression from the un-affected, reference allele.
e Candidate recurrent exitron splicing events in tumor suppressor genes (TGS) and other cancer-related genes in metastatic castration-resistant
prostate cancer. f Validation of a 112 bp ZBTB18 exitron splicing event in RNA but not DNA from the LNCaP cell line. Genomic coordinates are
hg19. RT = reverse transcriptase, NRT = no reverse transcriptase. Reverse transcription reactions were primed with oligo-dT primers or random
hexamers as indicated
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Indeed, by comparing the size distribution of detected
exitron events with all RNA-seq indels, we found that
exitron events were enriched for indels with sizes that
were multiples of three (Additional file 11: Figure S8).
Although the transIndel pipeline for indel detection

from RNA-seq data included the removal of deletions
that could be splicing junctions, the catalog of alterna-
tive splicing events in prostate cancer, including exi-
trons, is incomplete. Remarkably, many of the detected
exitrons were recurrent within genes known to be al-
tered at high frequency in cancer (Fig. 5e). Over half of
the cancer genes displaying non-canonical exitron spli-
cing were known tumor suppressor genes (TSGs). We
also found that KMT2B, a known regulator of mCRPC
[32], displayed exitron splicing in 7% of mCRPC sam-
ples. To test the accuracy of these RNA-level calls, we
assessed their presence in the LNCaP cell line by analyz-
ing LNCaP WES and RNA-seq data using transIndel.
LNCaP cells displayed evidence for exitron splicing in
ZBTB18, which was the most frequent exitron splicing
events observed in mCRPC specimens. We performed
RT-PCR with LNCaP RNA and PCR with LNCaP DNA,
and confirmed by Sanger sequencing that ZBTB18 dis-
played bona fide exitron splicing at the RNA level only
(Fig. 5f ). ZBTB18 encodes a transcriptional repressor in-
volved in neural development. It has been reported as a
possible tumor suppressor as its expression reduces cell
proliferation [33]. Additionally, it has been reported that
the ZBTB18 exitron splicing expressed in both ERBB2-
positive breast cancer and normal breast tissues, but it
has higher percent of spliced in value in tumor com-
pared with normal samples [30].

Discussion
Herein, we have devised transIndel, a computational ap-
proach that allows the accurate identification of indels
from DNA-seq or RNA-seq. TransIndel is able to call
small indels from normal alignments and reconstruct
large deletions and mid-sized insertions from chimeric
alignments. When applied to RNA-seq data, transIndel
carries out subsequent filtering that accounts for anno-
tated RNA splicing events. By analyzing whole exome
DNA-seq data in TCGA and SU2C cohorts, we demon-
strated that transIndel is highly sensitive for discovering
mid-sized and large indels that were missed by these ori-
ginal studies. Applying transIndel to RNA-seq data
allowed us to validate expression of indels detected from
DNA-seq and discover large indels that were missed by
DNA-seq due to inefficient capture of DNA fragments
harboring these indels.
One major improvement of transIndel compared with

other indel callers is the ability to infer indels directly
from the initial alignment given by the short read
aligner. Most of the existing indel detect methods, such

as Pindel [21] and ScanIndel [13], rely on an ad hoc step
for realigning split reads to determine whether those
reads support an indel event or not. These realignment
steps are carried out either by a third-party aligner (e.g.
BLAT used by ScanIndel) or internal realignment algo-
rithms (e.g. pattern growth algorithms used by Pindel).
Although these realignment steps can help identify
indels that are not marked by the initial alignment, they
significantly increase the running time of those tools.
We realize that although there is not hard evidence for
the existence of indels within Compact Idiosyncratic
Gapped Alignment Report (CIGAR) strings, chimeric
alignments provide sufficient information to directly
identify an indel event by comparing the read length and
the target offset calculated from the split linear align-
ments in the chimeric alignment. Our benchmarks using
synthetic and real data have demonstrated that transIn-
del exhibited competitive performance with the tools
using realignment strategies for mid-sized and large
indel detection. The major advance achieved by elimin-
ating this realignment step is that transIndel can analyze
RNA-seq alignment data, which possess enormous num-
bers of split reads due to splicing, in a reasonable run-
ning time.
RNA-seq data has been used traditionally for measur-

ing gene expression levels, and identifying novel splicing
isoforms, non-coding RNAs, and gene fusions [34]. Re-
cently, RNA-seq data has been utilized to validate the
expression of single nucleotide variants (SNVs) identified
from DNA-seq data [2, 4]. To our knowledge, transIndel
is the first algorithm to enable evaluation of expressed
mid-sized and large indels in RNA-seq data. We found
that inclusion of RNA-seq data in indel discovery strat-
egies greatly increased sensitivity for detecting indels in
prostate cancer. This work complements a previous re-
port focusing on detection of point mutations and small
indels, which also found that analysis of RNA-data en-
hanced discovery of these variants over analysis of
DNA-seq data alone [4].
Currently, existing tools for detection of SNVs from

RNA-seq data require integrated analysis of DNA-seq
data with the intent of balancing sensitivity and specifi-
city [2, 4]. TransIndel is capable of detecting indels from
RNA-seq alone. This is expected to greatly enhance the
usability of RNA-seq data, as transIndel would enable
analysis of the large numbers of samples that have been
analyzed by RNA-seq for which matched DNA-seq data
are not available. However, one caveat noted in our
study is that transIndel annotates non-canonical exitron
splicing as deletions if DNA-seq is not available for
validation.
Overall, our work demonstrates the feasibility of indel

calling from RNA-seq data with high sensitivity and spe-
cificity. Recently, it has become more common for

Yang et al. BMC Genomics  (2018) 19:270 Page 9 of 11



clinical testing pipelines to employ both whole exome
DNA-seq and RNA-seq analyses. We anticipate that
transIndel will serve as a powerful tool that will em-
power the exploration of genomic indels from both
DNA-seq and RNA-seq data.

Conclusions
Our study demonstrates that transIndel is a robust tool
for elucidation of medium- and large-sized indels from
DNA-seq and RNA-seq data. Including RNA-seq data in
indel discovery efforts leads to significant improvements
in sensitivity for identification of indels missed by WES,
and reveals non-canonical RNA-splicing events in genes
associated with disease pathology.
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