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GC bias lead to increased small amino
acids and random coils of proteins in cold-
water fishes
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Abstract

Background: Temperature adaptation of biological molecules is fundamental in evolutionary studies but remains
unsolved. Fishes living in cold water are adapted to low temperatures through adaptive modification of their biological
molecules, which enables their functioning in extreme cold. To study nucleotide and amino acid preference in
cold-water fishes, we investigated the substitution asymmetry of codons and amino acids in protein-coding DNA
sequences between cold-water fishes and tropical fishes., The former includes two Antarctic fishes, Dissostichus
mawsoni (Antarctic toothfish), Gymnodraco acuticeps (Antarctic dragonfish), and two temperate fishes, Gadus morhua
(Atlantic cod) and Gasterosteus aculeatus (stickleback), and the latter includes three tropical fishes, including Danio rerio
(zebrafish), Oreochromis niloticus (Nile tilapia) and Xiphophorus maculatus (Platyfish).

Results: Cold-water fishes showed preference for Guanines and cytosines (GCs) in both synonymous and
nonsynonymous codon substitution when compared with tropical fishes. Amino acids coded by GC-rich codons are
favored in the temperate fishes, while those coded by AT-rich codons are disfavored. Similar trends were discovered in
Antarctic fishes but were statistically weaker. The preference of GC rich codons in nonsynonymous substitution tends
to increase ratio of small amino acid in proteins, which was demonstrated by biased small amino acid substitutions in
the cold-water species when compared with the tropical species, especially in the temperate species. Prediction and
comparison of secondary structure of the proteomes showed that frequency of random coils are significantly larger in
the cold-water fish proteomes than those of the tropical fishes.

Conclusions: Our results suggested that natural selection in cold temperature might favor biased GC content in the
coding DNA sequences, which lead to increased frequency of small amino acids and consequently increased random
coils in the proteomes of cold-water fishes.
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Background
Temperature adaptation is a fundamental issue in evolu-
tionary biology. Genomic adaptation, especially modifica-
tion of sequence and structure of the biological molecules,
including DNAs and proteins, are necessary for improving
their functionality under extreme temperature. Genomic
GC content and its relationship with temperature adapta-
tion have been studied for a long time but are still under

debate. Comparison of cold- and warm-blooded vertebrate
genomes showed an increment of GC heterogeneity in
warm-blooded species [1–5]. On the other hand, both polar
and temperate fishes showed a GC level significantly higher
than that of tropical and sub-tropical fishes [6–8]. Studies
on prokaryotes indicated that hyperthermal species have
higher GC contents than mesothermal species [9–11]. But
a generalized relationship was questioned by other studies
[12, 13]. Based on these observations, different proposals
have been raised to explain how GC content could affect
environmental adaptation. For example, as GC content re-
flects the degree of hydrogen bonding in DNA double heli-
ces, an early study proposed that higher GC contents lead
to an increased thermal stability in DNA chains under high
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temperature [14]. Recently, some hypotheses focused on
possible regulatory mechanisms of GC-rich regions. Vino-
gradov proposed that increase in GC content may lower
the energy barrier of the B-Z conformation transition in
DNA isochore and facilitate response to environmental
stress [15]; Galtier et al. hypothesized that increased GC
could promote the genome evolution and adaptation to the
environment [16], while a recent study indicated mRNA
level was positively correlated with GC content in the third
nucleotide site of codons, indicating an important role of
GC content in regulating gene expression level [17]. For
coding DNA sequences (CDS), the genetic code defines
how DNA sequences are translated into amino acids. GC
bias in CDS has been shown to lead to an overall bias in
the amino acid composition of proteins in some compara-
tive genomic studies [18–21]. But these studies did not ad-
dress whether ambient temperature could shape the GC
content in DNA and amino acid preferences of proteins.
Proteins are sensitive to temperature change. Rates of

most biochemical reactions are 2–3 folds slower for every
10 °C decreased in temperature because of the decreased
kinetic energy. Many proteins are structurally modified to
maintain proper levels of functionality under extreme
temperature conditions. For example, in a comparative
study on 16 protein families, Gromiha et al. found that the
increase in shape (location of branch point in side chain) of
amino acid increases the themostability of proteins [22].
Studies on protein structure and activities of muscle-
specific A4-lactate dehydrogenases (A4-LDHs) in polar
fishes showed that these proteins have increased catalytic
rates when comparing with their orthologs from fishes liv-
ing at higher temperatures, which allows them to maintain
similar substrate affinity at the freezing temperatures [23].
Further studies showed that amino acid substitutions in this
enzyme leads to local secondary structure change, which
increases the flexibility of the enzyme and lowers the energy
barrier of the reaction in Antarctic fishes [23, 24]. Other
comparative studies on microtubule [25], malate dehydro-
genase [26], RTX lipase [27] and phosphoglycerate kinase
[28] also showed that proteins from polar species demon-
strated higher structural flexibility. Comparative genomic
studies on prokaryotes revealed that psychrophiles prefer
amino acids with tiny/small or neutral side chains, which
contribute to higher flexibility by having more coils and less
helices in the secondary structure [29–31]. Despite many
studies on temperature adaptation of individual enzymes,
genomic studies on amino acid bias in cold adaptation in
vertebrates are still scarce.
Being ectothermal vertebrates, fishes have developed

comprehensive mechanisms to adapt to broad ranges of
thermal conditions and colonized almost all of the aquatic
habitats on the Earth, from tropical regions to the Polar Re-
gions. Freezing water temperatures in the Polar Regions
pose a challenge for the survival of fishes. The Arctic

regions vary among different locations. Furthermore, sea-
sonal shifts and daily fluctuations occur in the lower Arctic
and subarctic latitudes [32]. Temperate fishes living in these
regions, including cod (Gadus morhua) and stickleback
(Gasterosteus aculeatus), can tolerate the temperature fluc-
tuation [33, 34]. In contrast, water temperatures of the Ant-
arctic region are highly cold stable, ranging from − 1.9 °C in
the high Antarctic latitudes to + 3 °C in the low Antarctic
latitudes [35, 36]. At high Antarctic latitudes, temperatures
seldom deviate from freezing throughout the life span of
the local fish species [37, 38]. Antarctic notothenioids
adapted to such extreme cold conditions and form a steno-
thermal fauna that has a poor capacity to tolerate elevated
body temperature [39]. Various molecular responses have
been described in cold adaptation in Antarctic fish, such as
acquisition of antifreeze glycoproteins (AFGP) [40] and
functional diversification of Zona Pellucida proteins [41],
loss of heat shock response [42] and remodeling of the
haematopoietic programs [43]. The diversity of the thermal
adaptation makes fishes good models for studying molecu-
lar mechanisms of temperature adaptation.
As more and more fish genomic data are available, it is

now possible to investigate the effects of ambient
temperature on codon and amino acid evolution in fish ge-
nomes. Substitutional asymmetry based on the homologous
sequence alignment of species pairs have proven reliable in
genome evolution studies [9, 44–46]. To investigate how
cold temperature may influence evolution of codon and
amino acid preferences in fishes, we compared protein cod-
ing sequences between cold-water fishes and tropical fishes
using substitutional asymmetry analysis. Gasterosteus acu-
leatus (three-spin stickleback) from Bear Paw Lake in
Alaska, and Gadus morhua (Atlantic cod) were taken as
temperate fish models in this study. Dissostichus mawsoni
(Antarctic toothfish) and Gymnodraco acuticeps (Antarctic
dragonfish) were taken as Antarctic stenothermal fish
models. Three tropical fishes were taken as references in
this study, including Danio rerio (zebrafish), Oreochromis
niloticus (tilapia) and Xiphophorus maculatus (Platyfish).
We found increased GC content in codons in cold-adapted
fishes, which leads to increased ratios of small amino acids
and random coils in proteomes of the polar fishes.

Methods
Sequencing and data collection
Two Antarctic notothenioids D. mawsoni and Two G.
acuticeps were captured from McMurdo Sound and Prydz
Bay near the China Zhongshan Station, respectively. Tis-
sues were dissected from anesthetized specimens and kept
frozen at − 80 °C until use. For sequencing the transcrip-
tomes of D. mawsoni and G. acuticeps, mixed tissue sam-
ples were homogenized and the mRNA was extracted
using Oligotex mRNA Isolation Kit (Qiagen, CA, USA).
The quantity of total RNA was determined using a Qubit
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fluorometer (Life Technologies). The quality of RNA was
assessed by measuring RINs using Bioanalyzer Chip RNA
7500 series II (Agilent). 3μg of total RNA from each sam-
ple was used to prepare mRNA-Seq library with TruSeq™
RNA Sample Prep Kit (Illumina), following the manufac-
turer’s instructions. Library quality control was performed
with a bioanalyzer Chip DNA High Sensitive (Agilent).
Each library had an insert size of 300-400 bps, and 2X
100 bps paired-end sequences were generated using Hiseq
1500 (Illumina). After removing adaptor sequences and
filtering out sequences with unknown nucleotides or low
quality (quality scores< 20), De Novo assembly of the
reads was performed using Trinity with default settings.
The resultant data were processed with CD-HIT-EST to
eliminate redundancy.
The protein sequences and the corresponding coding

DNA sequences (CDS) of the following fish genomes were
downloaded from ensembl database: G. morhua (gad-
Mor1.72), G. aculeatus (BROADS1.72), D.rerio (Zv9.72),
X.maculatus (Xipmac4.4.2.72) and O.niloticus (Orenil1.0.
72). Sequences with unidentified nucleotides or amino
acids were excluded for further analysis. Information
about Geographical distribution and habitat temperature
of fishes were retrieved from www.fishbase.org.

Phylogenetic tree reconstruction
Mitogenome sequences of fishes investigated in this
study were downloaded from NCBI database, the 13
protein-coding genes were aligned using the program
CLUSTAL, MEGA7 [45] was used to choose the best
nucleotide substitution model. According to the low-
est BIC (Bayesian Information Criterion) scores and
the number of parameters, The GTR + G + I was se-
lected for the concatenated nucleotide sequence align-
ment of the 13 protein-coding genes. Maximum
likelihood method was applied for phylogenetic tree
reconstruction using MEGA7.

Identification orthologous gene pairs
To investigate substitutional asymmetry of each
cold-water fish against tropical fishes, we identified
putative orthologous gene pairs between cold-water
fish and each of the tropical fishes using BLASTP
bidrectional best hit (BBH) approach with a cutoff e-
value of 10− 5. The pairwise alignments of putative
orthologous sequences, which were retrieved from
BBH hits with the length more than 20 amino acids
and similarity more than 50%, were further analyzed
for substitutional asymmetry in codon and amino
acid usage. Considering substitution, we refer only to
the fact that we analyzed the nucleotide and amino
acid changes between the putative orthologous sites
of the putative orthologous sequences.

Evaluation of GC bias in polar fishes
Pairwise alignments of the CDS were achieved by reverting
the protein alignments to corresponding CDS alignments
using program pal2nal.pl [47]. Nucleotide substitutions
were classified as nonsynonymous substitutions and syn-
onymous substitutions, based on whether or not a substitu-
tion results in an amino acid change. For both situation,
the counts that G/C in cold-water fish are substituted by
A/T in tropical fish (s1) and the counts that A/T in cold-
water fish are substituted by G/C in tropical fish (s2) were
calculated for each species pair, and the ratio between these
two counts (s1/s2) were taken as GC bias ratio in cold-
water fish. If the bias ratio is above 1, it would indicate that
GC is preferred by the polar fish in the species pair.
Relative Synonymous Codon Usage (RSCU) of the CDS

dataset for each species was calculated using the program
CodonW 1.4.2 (http:// codonw.sourceforge.net/) [48] to
further investigate codon usage bias for each amino acid.
To evaluate GC bias in codon usage, we summed the nor-
malized frequencies of GC-rich codons and GC-poor co-
dons respectively, which code for the same amino acid,
and the bias was calculated by dividing the sum of GC-
rich codons by that of GC-poor codons.

Calculating amino acid bias ratios in polar fishes
Amino acid substitutions were classified by the two amino
acids involved in substitution (20 amino acids result in
20*19 = 380 amino acid substitution types in total). To in-
vestigate amino acid bias in cold-water fishes, we calcu-
lated bias ratios for each amino acid following the same
idea as GC bias ratio calculation. For each species pair, we
calculated the count that an amino acid in the cold-water
fish is substituted by other amino acids in the tropical fish,
and the count that the amino acid in the tropical fish is
substituted by other amino acids in the cold-water fish.
The ratio between the two counts is defined as the bias ra-
tio of the amino acid in the polar fish.
The same strategy was also applied to study the proper-

ties of amino acids in cold-water fishes. We collected some
related properties from the amino acid index database
AAindex [49], including molecular weight, size, graph, po-
larity and hydrophobicity (Additional file 1), and analyzed
their bias in the substitution. For example, to study bias of
molecular weight in cold-water fishes, we calculated the
counts that an amino acid with a smaller molecular weight
in the polar fish is substituted by an amino acid with larger
molecular weight in the tropical fish and vice versa, and cal-
culated ratios between the two frequencies as the molecular
weight bias ratios.

Secondary structure prediction
To investigate secondary structure preference in different
fishes, we predicted the secondary structure for protein se-
quences using PSIPRED with default parameters [50]. The
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secondary structure elements were classified as helices,
strands and random coils by this software. The predicted
secondary structure element sequences were aligned based
on their corresponding protein sequence alignments. As
PSIPRED prediction accuracy is about 70–80%, for each
pairwise alignment, we kept the sites with prediction confi-
dence scores above 5 for both putative orthologous sites to
filter out sites with unreliable prediction. Further analysis of
the secondary structure bias followed the same procedure
as for amino acid substitution analysis.

Statistics
All the statistical tests were performed using R and
Excel. When testing whether substitution is biased or
unbiased for a group of data, one sample t-test was car-
ried out to examine if the bias ratio has statistically
significant difference from 1, two sample t-test or paired
t-tests were carried out when comparing bias ratios be-
tween two groups when applicable. Furthermore, to test
substitution asymmetry for each species pair, we used
tests of goodness-of-fit under a chi-square distribution
to compare the numbers of substitutions in both direc-
tions. Linear regression analysis was applied to investi-
gate the relationship between GC bias ratios and
averaged GC content for codons coding for the same
amino acid. Spearman’s rank correlation coefficients
were calculated to examine the relationship between GC
content of codons and their bias ratios for nonsynon-
ymous substitutions in polar fishes.

Results
RNA sequencing, data retrieval and sequence alignment
of the homologous fragements
We sequenced mRNA of D. mawsoni and G. acuticeps
using Hiseq 1500 (Illumina). The total numbers of reads
were 29,275,193 and 58,422,615 for D. mawsoni and G.
acuticeps. There were 112,705 contigs assembled, with
average contig size of 1030 bp for D. mawsoni; for G.
acuticeps, there were 94,141 contigs were assembled,
with average contig size of 745 bp.
The contigs of D. mawsoni and G. acuticeps, together

with the sequences downloaded from Ensembl website,
were analyzed to investigate substitutional asymmetry
between polar fishes and tropical fishes. Information of
the fishes covered in this study is summarized in Fig. 1
and Additional file 2. The sizes of alignments showed
that transcriptome sequencing of the two Antarctic
fishes provided us data size comparable to other fish ge-
nomes (Additional file 2).

GC bias in polar fishes is linked to amino acid
substitution bias
To study GC bias in cold-water fishes, we calculated GC
bias ratios between the cold-water fish and the tropical fish

for each species pair. As shown in Fig. 2, all the bias ratios
are above 1, indicating that GC is preferred in all cold-
water fishes for both synonymous and non-synonymous
substitution when compared with tropical fishes, which is
consistent with previous comparative studies on fish ge-
nomes [6–8]. To compare the numbers of substitutions in
both directions, we also applied chi-squared test, which also
showed that GCs are increased in the cold-water fish for all
species pairs (Additional file 3: Tables S3 and S4). Figure 2
also showed that synonymous substitutions are more biased
than non-synonymous ones (one-tailed pairwise t-test, df =
5, P-value< 0.01). Furthermore, Bias ratios in temperate
fishes are more deviate than in Antarctic fishes for both
synonymous and non-synonymous substitutions (one-tailed
t-tests, df = 5, P-values< 0.01).
We further examined bias ratios for individual codons.

As shown in Additional file 4: Table S5, for synonymous
substitutions, the bias ratios of codons displayed a binomial
model: if the third position of the codon is G/C, the bias ra-
tio for cold-water fishes is above 1 in most cases; otherwise,
it is mostly below 1. These results indicate that cold-water
fishes prefer G/C as the third nucleotide of the genetic
codes. The only exception is TTG, which is disfavored in all
cold-water fishes. Consistent with these results, chi-squared
tests of the distributions also showed that GC-rich codons
are preferred in cold-water fishes (Additional file 5: Table
S7 and S8). We also investigated codon usage bias by
calculating Relative Synonymous Codon Usage (RSCU) of
the whole CDS dataset for each species. As shown in
Additional file 6: Table S9, when compared with tropical
fishes, cold-water fishes prefer GC-rich codons to AT-rich
codons for synonymous codons in most cases.
To investigate the GC bias in nonsynonymous substitu-

tions, we classified the standard genetic codes into four
groups (0 to 3) based on the number of GCs present in
the genetic codes, as shown in Additional file 4: Table S6,
and tested the correlations between the GC content and
their GC bias ratios in nonsynonymous substitutions for
each species pairs using sperman’s rank correlation coeffi-
cient. As shown in Additional file 7: Table S10, the bias ra-
tios are correlated with the GC content in the genetic
codes, indicating that GC-rich codons are favored in cold-
water fishes. As nonsynonymous substitution will lead to
amino acid change, we further investigate how GC bias
may affect amino acid bias in cold-water fishes. We plot-
ted the averaged GC content of genetic codes encoding
the same amino acid against their GC bias ratios in nonsy-
nonymous substitution for each species pair. As shown in
Fig. 3, in terms of amino acids, GC bias ratios are posi-
tively correlated with the averaged GC content of the co-
dons in nonsynynomous substitution (the coefficient of
determination > 0.86, df = 18 for each species pair), indi-
cating that cold-water fishes favors amino acids that coded
by GC rich codons.
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Amino acid substitution bias
To investigate the overall preference of the amino acid sub-
stitution in fishes, for each cold-water fish, we calculated
the bias ratios of each amino acid against the three tropical
fishes, and test its deviation from unbiased substitutions (as-
suming the bias ratio to be 1) using one sample t-test with
degree of freedom (df) equal to 2, the results are

summarized in Fig. 4. The results suggest that substitutions
of most amino acids are biased when comparing the tem-
perate fishes with the tropical fishes. The amino acids that
coded by the GC-rich codons, including Glycine (encoded
by GGN), Alanine (GCN), Proline (CCN), Arginine (CGN)
and Tryptophan (TGG) are favored, while most amino acids
that coded by the AT-rich codons, including Isoleucine

Fig. 1 Fishes investigated in this study

Fig. 2 GC to AT bias ratios between the polar fish and the tropical fish for each species pair. All GC to AT bias ratios are above 1, indicating that
GC is preferred in polar fishes in both synonymous and nonsynonymous substitutions
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(ATY), Phenylalanine (TTY) and Glutamine (CAA) and Ly-
sine (AAR) are disfavored in G. morhua. Interestingly,
though Isoleucine is disfavored, Leucine, who has similar
biochemical property to Isoleucine but partially coded by
GC-rich codons, is favored in G. morhua. Furthermore,
small amino acids with molecular weight less than 117 Da
are mostly favored except Serine (AGN), while amino acids
with medium size range from 119 to 147 Da are mostly

disfavored in G. morhua. Similar result was also present in
G.aculeatus. Antarctic fishes showed similar trend but not
significant in most cases. Glycine is the only amino acid that
is favored in all the cold-water fishes, and Glutamine is the
only common one disfavored in all the cold-water fishes.
When Chi-squared test is applied to test the distribution of
amino acid between the species pairs, we found that Glycine
and Procine are the two common amino acids favored in all

Fig. 3 Relationship between GC to AT bias ratios and average GC percentages of codons for each amino acid

Fig. 4 Amino acid substitutional bias in polar fishes. The bias ratios of 20 amino acids and specific properties for polar fishes were calculated and
the significance of their difference from 1 were labelled with *: P-value< 0.05, **: P < 0.01
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cold-water fishes, and that Glutamine, Lysine, Asparagine
and Tyrosine are commonly disfavored in these fishes
(Additional file 8: Table S11).
As many small amino acids are preferred in cold-

water fishes, we further investigated the substitution
patterns on their properties related to the size. Both
chi-squared test and t-test indicated that amino acid
distribution are biased in cold-water fishes in terms
of molecular weight, residue volumes and graph shape
(Fig. 4 and Additional file 8: Table S12).
To investigate the possible connection between these

properties of amino acids and GC content of the codons
coding them, we calculated the correlation between
some related numerical property indices of amino acids
and averaged GC percentages for the standard genetic
codes encoding them, and found that their properties
are negatively correlated with GC content of their co-
dons to some degree (Pearson’s correlation coefficient =
− 0.43, − 0.39 and − 0.36, P-values = 0.06, 0.09 and 0.12
for “size”, “graph shape index” and “molecular weight”,
respectively), indicating that GC-rich codons tend to
code for small amino acids.
To further investigate if amino acid size is an adaptive

property in cold-water fishes, we also examined substitu-
tional asymmetry for amino acids that differ in size but
are coded by codons that are equally GC-rich. The bias ra-
tios are above 1.19 for both Antarctic and temperate
fishes, indicating that it is more frequently that amino
acids get smaller in substitution in cold-water fishes. Chi-
square tests for individual species pairs also confirmed this
trend in cold-water species (Additional file 9: Table S13).

Secondary structure substitution bias
As amino acid bias may lead to secondary structure
change, we investigated the effect of the amino acid sub-
stitution preference on the protein secondary structure
changes, we predicted the secondary structure of the
proteins and investigated secondary structure changes
among the pairwise aligned protein sequences. To keep
secondary structure prediction reliable, we filtered out
the sites with prediction confidence index less than 5,
which kept 61.39 ± 1.48% of the original prediction data
on average. The most striking secondary structure elem-
ent change in cold-water fishes is increase of the coils,
as shown in Fig. 5a, Additional file 10: Table S14. tem-
perate fishes show significantly more coil increase when
compared with Antarctic fishes (6.22 ± 3.27% increase
for Arctic fishes and 3.69 ± 2.28% increase for Antarctic
fishes, one-tailed t-test, df = 5,P-value = 0.076).
Since temperate fishes prefer small amino acids than

tropical fishes, we also investigated the effect of molecular
weight on secondary structure distribution. As shown in
Fig. 5b and Additional file 10: Table S15, when only the
orthologous s sites with smaller amino acids in cold-water

fishes than that in tropical fishes are considered, all spe-
cies pairs show increase of coils and decrease of helix and
beta-sheets, indicating that smaller amino acids contribute
to increase of random coils in cold-water fishes.

Discussion
DNA and proteins are basic building blocks of life,
elucidating how these molecules adapt to temperature
is important for understanding mechanisms of
evolution. In this study, we investigated preferences of
codons and amino acids in cold-water fishes by com-
paring the putative orthologous gene segments with
those of tropical fishes. We found that GC content is
increased in protein coding regions in cold-water
fishes, which lead to biased amino acid composition
in cold-water fishes, including preference of small
amino acids. These changes in turn explain the in-
crease of random coils in the secondary structure ele-
ments, leading to the increase of structural flexibility
of proteins in cold-water fishes.
Codon usage is shaped by many factors. A variety of

hypotheses are proposed to explain mechanisms driving
codon bias among organisms, some factors are neutral,
such as mutational bias, DNA repair mechanisms; while
others are selective, including adaptation for optimal
translation, and amino acid substitution related to pro-
tein functionality. In this study, Increased GC content
was found in both Synonymous and non-synonymous
substitutions in cold-water fishes when comparing with
tropical fishes, which is consistent with previous com-
parative studies on fish genomes [6–8]. Furthermore,
our analysis showed that GC content of the standard
genetic codes and size of amino acids are correlated, in-
dicating that GC bias in codons may lead to increase of
small amino acids in cold-water fishes. Our amino acid
substitution analysis confirmed that small amino acids
are preferred in cold-water fishes, and that random
coils are increased in these species when comparing
with tropical fishes. Tiny and small amino acids tend to
form random coils in protein secondary structure and
increase the structural flexibility, and they are preferred
in cold-adapted proteins [23–28, 51]. Consistent with
these observations, our results indicates that small
amino acid preference lead to increase of coils in pro-
tein secondary structure and cause increase of protein
structure flexibility in cold-water fishes.
Although temperate fishes and Antarctic fishes showed

some common features in our study, GC content bias and
small amino acid content in the two temperate fishes are
much more biased than that of Antarctic fishes when both
of them are compared with tropical fishes. The difference
may result from their adaptation to the different ambient
environment. Temperate fishes are exposed to temperature
fluctuations, while the Antarctic fishes are highly
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stenothermal polar fishes. A comparative study on Myoglo-
bin (Mb) showed that Mb from the eurythermal fish mack-
erel has increased flexibility comparing with its orthologs
from stenothermal species [52]. Furthermore, Arctic eury-
thermal fish Zoarces viviparus has higher GC content and
small amino acid content than a closely-related Antarctic
stenothermal fish Pachycara brachycephalum [53], which is
consistent with our results. These studies, together with our
study, indicates that high GC content leads to increased
content of small amino acids and increased protein flexibil-
ity in temperate fishes, which may be required for adapting
to cold and fluctuating temperature in these regions.

Conclusions
In summary, our data indicated that protein flexibility is in-
creased in cold-water fishes by having higher GC content
in protein coding regions, which may be an important evo-
lutionary mechanism for cold adaptation in cold-water
fishes. It will be of great interest to know how temperature
exerts pressure on GC bias in DNA, at least in protein cod-
ing regions. Many questions need to be addressed in future
studies. For example, what genes are mostly affected by GC
biased codon substitution? What molecular mechanisms
are underlying this kind of substitution? As three of the
cold-water species are marine, and sticklebacks are

b

a

Fig. 5 Secondary structure changes for all species pairs. Pane a shows the percentages of secondary structure elements net changes in
total secondary structure changes for each species pair. Pane b shows the effect of molecular weight on secondary structure change.
When only the orthologous sites with smaller amino acids in polar fishes than that in tropical fishes are considered, coils are increased
and helices are decreased for all species pairs
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primarily marine or anadromous, while all three tropical
species are freshwater, we could not exclude the possibility
that salinity may play a role in shaping GC content. Fur-
thermore, many factors may be responsible for the bio-
logical molecule preference of a genome, and different
strategies may be developed by different organisms to cope
with temperature adaptation. As the species pairs are not
phylogenetically independent in this study due to availabil-
ity of genomes of suitable species, which may introduce
some bias in our results, more studies are needed to clarify
the relationship between biological molecule preference
and temperature adaptation.

Additional files

Additional file 1: Table S1. numerical indices of physicochemical and
biochemical properties of amino acids. (XLSX 11 kb)

Additional file 2: Table S2. Summary of the fishes investigated in this
study. (DOCX 14 kb)

Additional file 3: Table S3. GC/AT synonymous substitution counts
between cold-water and tropical species. Table S4. GC/AT nonsynon-
ymous substitution counts between cold-water and tropical species.
(XLSX 16 kb)

Additional file 4: Table S5. Codon usage bias ratios for synonymous
substitutions between codons ending with G/C and those ending with A/T.
Table S6. Codon usage bias ratios for nonsynonymous substitutions
between codons ending with G/C and those ending with A/T. (XLSX 32 kb)

Additional file 5: Table S7. Codon substitution for synonymous
substitutions between codons ending with G/C and those ending with A/T.
Table S8. Codon substitution for nonsynonymous substitutions between
codons ending with G/C and those ending with A/T. (XLSX 58 kb)

Additional file 6: Table S9. Statistics from condonw analysis. (XLSX 22 kb)

Additional file 7: Table S10. Sperman’s rank correlation coefficient
between codon bias ratio and GC content of codons. (XLSX 12 kb)

Additional file 8: Table S11. Amino acid substitution between cold-
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