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Abstract

Background: Small RNA (sRNA) sequences are known to have a broad impact on gene regulation by various
mechanisms. Their performance for the prediction of hybrid traits has not yet been analyzed. Our objective was to
analyze the relation of parental sRNA expression with the performance of their hybrids, to develop a sRNA-based
prediction approach, and to compare it to more common SNP and mRNA transcript based predictions using a
factorial mating scheme of a maize hybrid breeding program.

Results: Correlation of genomic differences and messenger RNA (mRNA) or sRNA expression differences between
parental lines with hybrid performance of their hybrids revealed that sRNAs showed an inverse relationship in
contrast to the other two data types. We associated differences for SNPs, mRNA and sRNA expression between
parental inbred lines with the performance of their hybrid combinations and developed two prediction approaches
using distance measures based on associated markers. Cross-validations revealed parental differences in sRNA
expression to be strong predictors for hybrid performance for grain yield in maize, comparable to genomic and
mRNA data. The integration of both positively and negatively associated markers in the prediction approaches
enhanced the prediction accurary. The associated sRNAs belong predominantly to the canonical size classes of
22- and 24-nt that show specific genomic mapping characteristics.

Conclusion: Expression profiles of sRNA are a promising alternative to SNPs or mRNA expression profiles for hybrid
prediction, especially for plant species without reference genome or transcriptome information. The characteristics
of the sRNAs we identified suggest that association studies based on breeding populations facilitate the identification
of sRNAs involved in hybrid performance.
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Background
A key objective of modern crop breeding is to generate
hybrids to increase yield by exploiting heterosis, as well
as take advantage of a uniform F1 population. The
generation of large numbers of inbred lines does not
constitute a bottleneck through the application of
doubled-haploid technology [1], but it is economically
not feasible to phenotype the hybrids resulting from all
possible inbred line combinations. In addition, neither

the parental per se performance nor the genetic distance
between the parental genomes are perfect predictors for
the selection of optimal inbred line combinations [2].
Thus, the selection process needs to be supported by
prediction approaches based on genomic markers (e.g.
AFLP, RFLP, SSR or SNP) [3, 4], transcriptome profiles
[5–10], metabolomic [9–11] or phenomic [12] markers
as predictors, that are assessed in the parental inbred
lines.
Epigenetic variations have been suggested to be im-

portant components for complex traits such as crop
yield [13]. Genome-wide epigenetic states, such as DNA
methylation or chromatin modifications, affect pheno-
types including complex traits, such as yield, without
any changes to the genome sequence [14]. It has been
shown that hybrids of Arabidopsis ecotypes and rice
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subspecies showed substantial epigenetic variations at
the level of DNA methylation, histone modifications and
small RNAs (sRNAs) [15, 16]. Arabidopsis hybrids of
near-isogenic but epigenetically diverse parents exhibit
substantial heterosis for various traits [17]. Artificial se-
lection from an isogenic plant population over multiple
generations resulted in plants with superior phenotypic
performance, which could be stably inherited over gen-
erations [18]. These results suggest that epigenetics has
the potential to enhance future plant breeding as well as
to provide useful markers [18, 19]. Non-coding sRNAs
have been shown to be key regulators of epigenetic
states [19] and sRNA expression levels undergo drastic
changes after hybridization [20–22]. The mechanisms of
trans-chromosomal methylation and demethylation have
been associated with small RNA expression level differ-
ences between parental inbred lines [23]. These relations
suggest that parental sRNAs play a major role in setting
genome-wide changes in the epigenetic landscape
through hybridization. In turn, parental sRNAs are likely
to reflect these changes to a certain extend and thus we
assume that they might be promising markers for the
prediction of hybrid traits.
Our objective was to investigate the predictiction of

hybrid performance (HP) for grain yield (GY) using par-
ental sRNA expression profiles. We used next-
generation sRNA sequencing data of whole 7-day-old
seedlings of 21 elite maize inbred lines from which 98
(7 × 14) hybrid crosses were generated. A previous study
revealed high prediction accuracy with distance mea-
sures based on trait-associated mRNAs [5]. Here, we de-
veloped this association approach further by integrating
the identification of negatively trait-associated markers
in addition to positively associated markers. We intro-
duce a distance measure, which combines the positively
and negatively associated markers in one measure and
two prediction approaches, based on simple or multi-
variate linear regression (MLR). We used the new associ-
ation approach to identify SNPs, mRNAs or sRNAs
associated with HP for GY and compared prediction ac-
curacies of the various marker types by cross-validation.
Further, we characterized the sRNA population that
showed an association with HP for GY concerning size
distribution, genomic location and relation to genomic
features.

Methods
Plant material and phenotyping
The plant material for this association study represents a
half-diallel mating scheme of of 21 maize inbred lines (7
Flint and 14 Dent) from the breeding program of the
University of Hohenheim, Germany, with 98 hybrids
resulting from the factorial mating scheme of Dent by
Flint lines [24]. The set of Flint lines is composed by

four lines with European Flint background (F037, F039,
F043, F047) and three with Flint/Lancaster background
(L028, L035, L043). The Dent lines include eight lines
with an Iowa Stiff Stalk Synthetic (S028, S036, S044,
S046, S049, S050, S058, S067) and six with an Iodent
background (P033, P040, P046, P048, P063, P066). Field
trials were conducted to collect the phenotypic data at
five locations for the inbred lines in 2003 and 2004 and
at six locations for the hybrids in 2002 [5, 25]. Field data
for GY were measured in Mg ha− 1 with adjustment to
155 g kg− 1 grain moisture (Additional file 1: Table S1).
For transcriptome expression analysis and sRNA se-

quencing all 21 inbred lines were grown under con-
trolled conditions (25 °C, 16 h day, 8 h night, 70% air
humidity) for seven days, the whole seedlings including
roots were flash-frozen in liquid nitrogen. Five biological
individuals of the same genotype were pooled before
RNA isolation.

SNP data
SNP data were generated with the Illumina MaizeSNP50
chip [26] in the study of Frascaroli et al. [4].

Microarray transcriptome expression data generation and
analysis
Microarray gene expression data was generated on the
46 k maize oligo nucleotide array [27]. RNA-probe syn-
thesis and microarray analysis are described in the study
of Thiemann et al. [28]. All expression data has been de-
posited in the NCBI GEO under accession number
GSE17754.

Small RNA isolation, sequencing and sequencing data
processing
Small RNA isolation, sequencing experiments as well as
sequencing data processing and normalization are de-
scribed in the study of Seifert et al. [22]. All sequence
data has been deposited in the NCBI GEO under acces-
sion number GSE51662. Details on the sRNA sequen-
cing data are given in Additional file 2: Table S2.

Identification of discriminative markers
Polymorphic SNPs, where nucleotides of at least one line
differed from the remaining lines, were considered as
discriminative markers. For mRNA, differential expres-
sion is defined as described for microarray analysis for at
least one inbred line combination. For sRNA, differential
expression between inbred lines is defined as a mini-
mum expression of the lower expressed parent of 0.5
rpmqn and a two-fold expression change towards the
higher expressed parent. In case the expression of the
lower parent is below 0.5 rpmqn, the higher parent
needs to have at least an expression of 1 rpmqn to con-
sider a sRNA as differentially expressed.
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Correlation of genomic and mRNA/sRNA expression
differences with hybrid performance
The euclidean distances De (1) were calculated for all
three data types (SNP, mRNA, sRNA) as the sum of
marker differences for all markers that are differential in
at least one inbred line combination. The differences for
the data types are calculated for the combination of the
inbred lines i and j, with ds(i,j) being the expression dif-
ference for a specific sRNA, mRNA, or SNP.

De i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

s¼1

ds i; jð Þ
s

ð1Þ

The expression difference ds for sRNA and mRNA ex-
pression data cs between the lines i and j is calculated as
follows:

ds i; jð Þ ¼ cs ið Þ−cs jð Þð Þ2 ð2Þ
The difference ds for SNP data with cs being the actual

sequence between the lines i and j is calculated as
follows:

ds i; jð Þ ¼ 0 if cs ið Þ ≠ cs jð Þ
1 if cs ið Þ ¼ cs jð Þ

�

ð3Þ

Marker trait association
Associations of markers with the traits HP for GY were
established analogous to Frisch et al. [5] by separating
the hybrids into classes of low and high trait values (L,
H) with equal size and binomial testing. For each indi-
vidual marker (SNP, mRNA, sRNA) the number of hy-
brids with differential marker (sequence, expression)
between the inbred parents was counted for both classes
L and H as oL and oH respectively. With the null hy-
pothesis that differential expression occurs with the
same probability for both classes, the probability Ps (4)
of a marker being associated to the trait was estimated
via the binomial distribution probability function. This
function depends on the number of hybrids whose in-
bred lines exhibit differential expression for the given
sRNA in the classes L and H:

Ps ¼
X

n

k¼kmin

Binn;p kð Þ with n ¼ oH þ oLð Þ; p ¼ 0:5

ð4Þ
with

n ¼ oH þ oLð Þ ð5Þ
and setting equal probability for association with L and

H by p = 0.5. The parameter kmin depending on positive
(6) or negative (7) association:

kmin ¼ oL if oL > oH ð6Þ
kmin ¼ oH if oL <¼ oH ð7Þ

All markers with p-values lower than the probability
threshold after adjustment for multiple testing via FDR
correction at 0.05 [29] were considered as associated to
the specific trait (HP for GY). The certainty of the asso-
ciation against random artifacts was tested by permuta-
tion analyses (100 runs) of the datasets by randomly re-
assigned hybrid trait values to the hybrids.

Calculation of distances for trait associated markers
We calculated trait-associated marker binary distances
for two inbred lines i and j and a defined set of n
markers as follows:

Db i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

X

n

s¼1

xs

s

ð8Þ

with xs being set to 1 for differential markers between
the two inbred lines and 0 otherwise.
To integrate the opposing binary distances for posi-

tively and negatively associated markers in one distance
measure, we developed the combined binary distance
which integrates the binary distance for npos positively
associated markers Db,pos and nneg binary distance for
negatively associated markers Db,neg for the two inbred
lines i and j as follows:

Db;com i; jð Þ ¼ Db;pos i; jð Þ � npos þ 1‐Db;neg i; jð Þ� � � nneg
npos þ nneg

ð9Þ

Prediction of hybrid performance
The prediction of HP was performed after Frisch et al.
[5] using a linear regression model. In contrast to Frisch
et al. [5] both positively and negatively associated
markers were integrated by using the combined binary
distance (Formula 9) as follows:

Y i; jð Þ ¼ β0 þ β0 � Db i; jð Þ ð10Þ
Additionally a HP prediction based using multivariate

linear regression (MLR) was performed as follows:

Ym i; jð Þ ¼ β0 þ β1 � Db;pos i; jð Þ þ β2 � Db;neg i; jð Þ
þ β3 �mf i; jð Þ þ β4 �md i; jð Þ ð11Þ

Four predictors were included in the MLR, including
the binary distances of positively associated markers
Db,pos, as well as negatively associated markers Db,neg.
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The third predictor mf represents the fraction of differ-
ential positively associated markers npos(i,j) of all differ-
ential associated markers, given by the sum of npos(i,j)
and differential negatively associated markers nneg(i,j),
between the two lines the two lines i and j:

mf i; jð Þ ¼ npos i; jð Þ
npos i; jð Þ þ nneg i; jð Þ ð12Þ

The fourth predictor md represents the dominance of
positively or negatively differential associated markers
between the lines i and j, given as npos(i,j) and nneg(i,j),
to the difference of the positively and negatively associ-
ated markers (npos, nneg) defined as follows:

md i; jð Þ ¼ npos i; jð Þ−nneg i; jð Þ
npos−nneg þ 0:1

ð13Þ

The denominator is incremented by 0.1 to avoid div-
ision by zero, if the sets of positively and negatively asso-
ciated markers are equally large. This predictor includes
information about the number of differential associated
markers in relation to all associated markers.
We performed three different prediction scenarios as

described by Schrag et al. [3]. In the scenario of type-0
prediction none of the two parents were used in test-
crosses, whereas for type-1 prediction one of the two
parents has been used, for type-2 prediction test-cross
data for both parental inbred lines is available. For all
prediction types (type-2, type-1, type-0) 3 Flint and 5
Dent lines were chosen randomly to form the estimation
set. In the type-1 prediction one of the two heterotic
groups was randomly selected to define the lines with
known test-cross data. All lines not selected in the
estimation set were used as validation set to assess the
prediction accuracy as the Pearson correlation coeffi-
cient of observed and predicted values for HP for GY.
The prediction accuracy was determined in 100 cross-
validation runs.

sRNA differential expression analysis between heterotic
groups
We used DESeq2 [30] to call differentially expressed
sRNAs in support of the threshold-based differential
sRNA expression results from 7 Flint × 14 Dents inbred
lines without biological replication. We explored the dif-
ferential expression between the Dent and Flint heterotic
groups by setting three genetically most related lines
within the groups, according to the genomic grouping of
Frisch et al. [5], as replicates and analyzed two different
sets (Set1: Flint: F039, F043, F047; Dent: S036, S050,
S058 / Set2: Flint: L024, L035, L043; Dent: P033, P040,
P066). The sRNAs of each set were filtered for se-
quences with a summed read count from all replicates of
10 or higher. The differential expression was tested

using DESeq2 [30] individually for each set with lines
assorted by the heterotic groups. All sRNAs with FDR <
5% were considered as differentially expressed.
We analyzed the differentially expressed sRNAs for

known miRNA sequences as well as overlap with hybrid
performance associated-sRNAs (hpa-sRNAs) that we
identified by marker-trait association analysis. The frac-
tions of differentially expressed hpa-sRNAs of the two
sets were compared to the fractions of threshold-based
differential hpa-sRNAs from the 9 corresponding inbred
line combinations.

sRNA enrichment analyses
The p-values for enrichment and depletion of HP for
GY associated sRNAs of specific sequence length were
computed by bootstrap analysis as described in Seifert
et al. [22].

Reference genome mapping of sRNAs and annotation
analysis
The mapping of sRNAs to the B73 reference genome
(AGPv4; July 2017) [31] as well as annotation analysis
were perfomed as described in Seifert et al. [22].

Results
Correlation of genomic, mRNA and sRNA expression
differences with hybrid performance
For all three data types (SNP, mRNA, sRNA) we corre-
lated the sum of differences between inbred line combina-
tions with HP for GY to test for relations of parental
differences and HP for GY. All individual features with
differences between at least one inbred line combination
of Flint and Dent lines were included in the analysis. In
total, 32,330 (55.9%) SNPs, 12,414 (28.6%) of the mRNAs
and 178,753 (0.6%) of the sRNAs were included in the
analysis. The correlation of SNP differences and mRNA
differences between inbred line combinations with HP for
GY in their hybrids resulted in moderate (r = 0.474, p = 8.
110 × 10− 7, Fig. 1a) and weak (r = 0.343, p = 5.5 × 10− 4,
Fig. 1b) positive correlations, respectively. The correlation
of sRNA expression differences between inbred parents
and HP for GY in their hybrids results in a moderate
negative correlation (r = − 0.518, p = 4.675 × 10− 8, Fig. 1c)
opposing to the correlations for SNP and mRNA, showing
that differing information are covered by sRNA
expression profiles.

Association of differential data types with hybrid
performance
To account for the different directions of overall correl-
ation between parental variation of the various data
types and hybrid performance, we analyzed the number
and direction of associated variation. Consistent to the
correlation analysis, all individual features of the data
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types were included in the analysis showing differences
between at least one pair of Flint and Dent inbred lines.
The association of SNPs with HP for GY results in 5191
associated SNPs, representing 16.1% of the candidate
SNPs. These associated SNPs are almost equally distrib-
uted into positively (54.3%) and negatively (45.7%) asso-
ciated SNPs. There were 729 mRNAs significantly
associated with HP for GY, representing 5.9% of all can-
didate mRNAs. In contrast to the associated SNPs, there
is a clear major fraction of 82.17% transcripts with posi-
tive association with HP for GY. The distribution of
7142 sRNAs associated with HP for GY, representing a
subset of 4.0% of the candidate sRNAs, showed a larger
fraction of positively associated sRNAs (61.9%). We
named the sRNAs, which showed a significant associ-
ation with HP for GY based on the full set of inbred
lines (5% FDR, binomial test), hybrid performance
associated-sRNAs (hpa-sRNAs). The numbers as well as
fractions of positively and negatively associated markers
for all three data types (SNP, mRNA, sRNA) are listed in
Table 1. To control against random associations by
chance alone, we performed permutation tests, shuffling
the hybrid trait values. These tests resulted in the loss of
all associations - all 100 permutations by far did not
reach the significance level required to call any associ-
ated marker for all three data types (Fig. 2).

Correlation of marker distances with hybrid performance
We performed separate correlations for all predictors
with HP for GY. The five predictors are the binary

distances for positively associated markers (Db,pos),
negatively associated markers (Db,neg), the combined
binary distance (Db,com) and the two additional predic-
tors mf and md, which represent additional informa-
tion about the size of Db,pos and Db,neg. In addition,
the correlation strength of the MLR was tested. For
both SNPs and sRNAs the binary distance based on
Db,neg result in stronger correlations (r = − 0.801 and r
= − 0.831) than on Db,pos. The opposite result was ob-
tained for mRNA data, where the correlation for Db,pos

was stronger (r = 0.819) than for D
b,neg

(− 0.794). The
predictor mf results in equally strong correlations as
for the positively associated markers for SNP and
sRNA markers but stronger correlations for mRNA
markers (r = 0.846). In comparison md does not results
in superior correlations to the stronger binary distance
Db,neg for SNPs and sRNAs or Db,pos for mRNAs.
Whereas the combined binary distance (Db,com) per-
forms for SNPs and mRNAs equally good as the best
correlation of the other four predictors, the correl-
ation for the MLR outperforms all five predictors with
a slight increase for SNPs (r = 0.804) but distinct in-
creases for both mRNAs (r = 0.861) and sRNAs (r = 0.
857). The results show that the negatively associated
markers as binary distance (Db,neg) are highly related
to HP for GY and the combination of information on
positively and negatively associated markers in Db,com

or the MLR for all three data types always outperform
correlations based on Db,pos alone. All correlation re-
sults are listed in Table 2.

Fig. 1 Correlation r of hybrid performance for grain yield with parental differences for SNP (a), mRNA (b) or sRNA (c) data

Table 1 Number of positively/negatively associated markers (SNP, mRNA, sRNA) with HP for GY. Fraction of positively or negatively
associated markers of all markers are given in brackets

Data type Associated markers pos. associated markers neg. associated markers

SNP 4941 2687 (54.381%) 2254 (45.618%)

mRNA 729 599 (82.167%) 130 (17.833%)

sRNA 7142 4423 (61.929%) 2719 (38.071%)
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Prediction of hybrid performance for grain yield
We evaluated marker-based predictions in 100 cross-
validation runs by randomly selecting a subset of 5 Dent
and 3 Flint inbred lines as estimation sets. Three predic-
tion schemes were distinguished to evaluate the predic-
tion accuracy of sRNA vs. SNP or mRNA marker-based
prediction of HP. For type-2 prediction both parents,
type-1 one parent and type-0 none of the parents have
been evaluated in test-crosses. The three prediction
types are schematically shown in Fig. 3. We preformed
predictions based on binary distances of positively
(Db,pos) or negatively (Db,neg) associated markers, the
combined binary distance (Db,com) as well as a MLR-
based prediction.
Overall the type-2 prediction performs best for all

three data types. The drop of prediction accuracy is
mild from type-2 to type-1 prediction, but drastically
from type-1 to type-0 prediction for all three data
types (Additional file 3: Figure S1A-C).
For all three data types the MLR-based prediction re-

sulted in the highest mean prediction accuracies for all
three data types for type-2 prediction, as well as for
type-1 prediction using mRNAs as markers. For type-1

prediction using SNP and sRNA as markers, as well as
for type-0 prediction for SNP and sRNAs the predictions
using the combined binary distance (Db,com) revealed the
highest mean prediction accuracies. The type-0 predic-
tion for mRNAs performed best using the binary dis-
tance of positively associated mRNAs (Db,pos, Table 3).
For type-2 predictions, with test-cross information

from both parents, the MLR-based prediction using
sRNAs as markers outperformed all the other prediction
methods (Fig. 4a, Table 3). The standard deviation of the
MLR-based predictions, using mRNAs as markers, re-
sulted in a smaller standard deviation than for sRNAs
(Table 3). The boxplots generated from the 100 cross-
validation runs show that only a few outliers were gener-
ating a bias in the standard deviation (Fig. 4a). With
test-crosses from only one parent (type-1) the combined
binary distance (Db,com) using sRNAs as markers per-
formed best (Fig. 4b, Table 3). The prediction without
tested parents was strongest using the positively associ-
ated mRNAs (Db,pos) and showed the least variation. The
type-0 predictions based on positively associated (Db,pos)
SNPs or the combined binary distance (Db,com) gener-
ated from positively and negatively associated SNPs

Fig. 2 Permutation analysis with shuffled hybrid trait values with SNP, transcriptome (mRNA), or sRNA data. The lowest p-values of each permutation
run (black violin plot) and of the actual genotype-trait allocation (red dot) are represented. The dotted line indicates the threshold to reach significance
at 5% FDR

Table 2 Correlation of marker-based distances for all associated markers with HP for GY

Correlation coefficient (r)

Data type Binary distance for
pos. Associated
(Db,pos)

Binary distance for
neg. Associated
(Db,neg)

Fraction of pos. to all
associated markers (mf)

Dominance of pos. vs.
neg. Associated
markers (md)

Combined
binary distance
(Db,com)

Multivariate linear
regression (predictors:
Db,pos, Db,neg, mf, md)

SNP 0.787 − 0.801 0.788 0.793 0.797 0.804

mRNA 0.819 −0.794 0.846 0.801 0.84 0.861

sRNA 0.796 −0.831 0.800 0.811 0.818 0.857
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revealed higher mean prediction accuracies, but had a
remarkably higher variation and did not result in predic-
tions in all cross-validation runs (Fig. 4c, Table 3).

Differential expression of sRNAs between heterotic
groups
Our prediction models used distance measures, which
integrate parental expression variation to a distinct value
for the respective hybrids. In our factorial mating
scheme the parents of each hybrid always belong to a
different heterotic group. To support the differential
sRNA expression between the parental lines we used
DESeq2 [30, 32] as an alternative statistical approach

and set three genetically most related lines of each heter-
otic group as replicates. Two sets of inbred lines were
analyzed by DESeq2. Overall, the number of DESeq2-
based differential expressed known microRNAs (miR-
NAs) was very low. In one set 5 miRNAs (zma-
miR164b-3p, zma-miR156k-5p, zma-miR2118b, zma-
miR397a-5p, zma-miR397b-5p) were called differential,
whereby the latter two have identical sequences. The
second set revealed no differentially expressed miRNAs.
The number of hpa-sRNAs called by DESeq2 and the
number of differentially expressed hpa-sRNAs between
the respective lines based on our initial threshold-based
approach are shown in Table 4 for the two sets of inbred

Fig. 3 Prediction types (a) type-2 prediction, both parents have test crosses; (b, c) type-1 prediction, only one of the parental groups has test
crosses; (d) type-0 prediction, none of the parents has been tested

Table 3 Mean Prediction accuracies and standard deviation for marker-based predictions (SNP, mRNA, sRNA) of HP for GY. In case
not all 100 cross-validation runs resulted with associated markers in the estimation set and thus a prediction was not possible, the
numbers of successful predictions is given in brackets

Prediction accuracy

Marker
type

Prediction
type

pos. Associated marker distance
(Db,pos)

neg. Associated marker distances
(Db,neg)

Combined marker distance
(Db,com)

Multivariate linear
regression

SNP type-2 0.767 ± 0.111 0.798 ± 0.068 0.773 ± 0.103 0.799 ± 0.079

SNP type-1 0.720 ± 0.113 0.675 ± 0.254 0.726 ± 0.124 0.681 ± 0.198

SNP type−0 0.53 ± 0.241 (80) 0.455 ± 0.397 (33) 0.562 ± 0.253 (78) 0.044 ± 0.334 (39)

mRNA type-2 0.712 ± 0.073 0.634 ± 0.119 0.787 ± 0.065 0.824 ± 0.054

mRNA type-1 0.670 ± 0.086 0.534 ± 0.177 0.720 ± 0.077 0.735 ± 0.108

mRNA type−0 0.498 ± 0.174 0.115 ± 0.295 (98) 0.460 ± 0.207 0.325 ± 0.263

sRNA type-2 0.82 ± 0.082 0.803 ± 0.099 0.837 ± 0.074 0.843 ± 0.084

sRNA type-1 0.731 ± 0.109 0.697 ± 0.172 0.753 ± 0.100 0.712 ± 0.189

sRNA type−0 0.368 ± 0.331 0.269 ± 0.321 0.440 ± 0.302 0.116 ± 0.396
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lines. Although the absolute numbers of differentially
expressed hpa-sRNAs vary, the relations of positively
and negatively hpa-sRNAs between the two sets of in-
bred lines coincided for both approaches.

Genomic characterization of sRNAs associated with HP for
GY
The high accuracy of sRNA-based predictions supports
a functional relationship of the associated sRNAs with
hybrid performance. First, we analyzed the size distribu-
tion of positively and negatively hpa-sRNA in relation to
the whole set of sRNA sequences. Both classes of hpa-
sRNAs are enriched for sRNAs with length of 22-nt and
24-nt (p < 0.05, bootstrap analysis, Fig. 5), which repre-
sent accepted functional size classes in maize [33]. Next,
we tested positively and negatively hpa-sRNAs of canon-
ical size classes (21-, 22-, and 24-nt) for homology to
rRNAs, tRNAs, or miRNAs and found minor fractions
between 0.07% and 10.18% of ha-sRNA overlapping with
the first two sequence classes; no known microRNA was
among hpa-sRNAs (Additional file 4: Table S3).
The genome-wide distribution of hpa-sRNAs overall

resembles the distribution of all sRNA of the inbred line
population. In contrast to all 24-nt hpa-sRNAs and 22-
nt positively hpa-sRNAs, we identified the 22-nt

negatively hpa-sRNAs as enriched in pericentromeric re-
gions (p < 0.05, bootstrap analysis, Fig. 6). Their actual
distribution is inversely correlated with the recombin-
ation rate on 8 out of the 10 maize chromosomes, ran-
ging from − 0.37 for chromosome 5 to − 0.92 for
chromosome 3 (Table 5).
Finally, we explored the relationship of hpa-sRNAs

to the annotated maize genome, subdivided into gen-
erally annotated features: 1) transcribed, protein cod-
ing sequences (gene); 2) TE or repeats (repeats); and
3) sequences without one of the previous annotations
(intergenic). Whereas the majority of the 24-nt
sRNAs map solely to intergenic regions of the gen-
ome, the 22-nt sRNAs map predominantly to multiple
annotations (Fig. 7).

Discussion
Correlation of genomic and mRNA/sRNA expression
differences with hybrid performance
We tested the correlation of genomic (SNP) and expres-
sion (mRNA, sRNA) differences between inbred lines
with HP for GY in their hybrid offspring. It has already
been shown that the genetic distance per se is not a suf-
ficient predictor to determine HP or the extent of heter-
osis of an inbred line combination [2]. This finding

Fig. 4 Prediction accuracy for SNP, mRNA and sRNA based prediction of hybrid performance for grain yield for (a) type-2 prediction, (b) type-1
prediction, (c) type-0 prediction

Table 4 Differential expression of hpa-sRNAs between the heterotic groups. Range and mean numbers of threshold-based differen-
tial hpa-sRNAs from the 9 inbred line combinations are given

DESeq2 # DE hpa-RNAs Threshold-based # DE hpa-sRNAs

Set# and inbred lines positively negatively positively negatively

Set1
Flint: F039, F043, F047
Dent: S036, S050, S058

20 672 35–220
mean 140.67

868–1928
mean 1375.56

Set2:
- Flint: L024, L035, L043
- Dent: P033, P040, P066

829 0 1956–2284
mean 2086.56

25–217
mean 119.78
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holds true for the correlation of genomic differences in
terms of SNPs between inbred lines with HP for GY
(Fig. 1a), which resulted in a significant but moderate
correlation. The correlation of mRNA differences with
HP for GY resulted in a weak positive correlation and
did not lead to improved results compared to genomic
differences based on SNPs. Although the correlation of
sRNA differences with HP for GY resulted in a slightly
better correlation than for the SNP-based genetic dis-
tance, the notable difference is the inversion of the cor-
relation. In contrast to SNP and mRNA expression
differences, where increased differences coincided with
higher HP for GY, the opposite was found for sRNAs ex-
pression differences. This overall negative correlation in
the investigated population suggests, that less sRNA ex-
pression differences between the inbred parents might
result in higher HP for GY. The inversed correlation
suggests sRNAs to integrate different information, re-
lated to HP for GY, than provided by the genomic code
(SNP) or the gene expression information (mRNAs).
sRNAs have been shown to have functional roles in
post-transcriptional gene regulation [34–36] as well as
on the transcriptional level by modulating the epigenetic
landscape [37, 38] after the hybridization of two distinct
parental genomes. Additionally to the direct involvement
of sRNAs in regulatory processes, they are themselves
subjected to the transcriptional activity of the loci they
are generated from and thus capture epigenetic and
transcriptional information on genome-wide scale [32].
Hence, we assume that sRNAs are suitable markers to
capture relations of parental differences with HP for GY

by integrating information on genome-wide regulatory
processes on top of genomic information represented by
SNPs, as well as processes downstream of mRNA tran-
scription represented by mRNA data.

Association of differential data types with hybrid
performance
To identify SNP, mRNAs or sRNAs with strong relation
of parental differences and HP for GY, we employed an
association approach based on the method described in
Frisch et al. [5] with a modification to consider not only
for positively associated markers, but as well for those
who have a negative association with the trait of interest.
The introduction of negative association was suggested
by the negative correlation of parental sRNA expression
differences with HP for GY (Fig. 1c). For all three data
types negatively associated features were found. Whereas
the sets of associated SNPs and sRNAs contain substan-
tial fractions of negatively associated markers, mRNAs
are predominantly positively associated (82.2%) with HP
for GY. Contradictory to the correlation of sRNA ex-
pression differences with HP for GY, the negatively asso-
ciated sRNAs with HP for GY represent only a minor
fraction (38.1%). This may have two probable reasons,
which are not mutually exclusive: The quantitative effect
of negatively associated sRNAs on the phenotype might
be stronger than for positively associated sRNAs, or
negatively associated sRNAs may exhibit more extreme
expression differences than positively associated sRNAs,
thus dominating the correlation. It should be noted
that in contrast to the correlation analyses of sRNA
expression differences, the associations are not based
on the actual quantitative differences but on about
the frequency of differential expression. This property
avoids the negligence of low expressed or overesti-
mation of highly expressed sRNAs or mRNAs, since
expression levels do not reflect protein levels or func-
tional importance [39, 40].
The large numbers of associated individual markers of

all three data types likely reflect HP for GY being a
highly complex trait, which is most likely affected by
many genomic loci each with small contributions to the
phenotype. Considering as many components as possible
that have an effect on HP for GY should thereby in-
crease the prediction of this trait. In terms of breeding
we assume that actively selecting against constraining el-
ements, which are likely represented by negatively asso-
ciated SNPs, mRNAs or sRNAs, might result in higher
HP for GY.

Correlation of marker-based distances with hybrid
performance
The correlation of marker-based distances for associated
markers with HP for GY resulted in strong and very

Fig. 5 Enrichment of hpa-sRNAs for lengths of 22-nt and 24-nt. Size
distribution of positively/negatively hpa-sRNAs and random sets of
sRNAs. Enrichment analysis by bootstrapping (p < 0.001)
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strong correlations ranging in absolute values from 0.79
to 0.86. In general, we observed stronger correlations for
mRNA and sRNA than for SNP based distances. We as-
sume these higher correlations are caused by more infor-
mation being integrated in mRNA and sRNA expression
patterns in contrast to the pure genomic information
from SNPs. mRNAs contain SNP information which is
located in coding regions and might have effects on the
protein function, but in contrast to SNPs provide add-
itional information about transcriptional differences be-
tween the inbred lines. sRNAs are genome-wide
regulators of the epigenetic landscape and themselves
subject to the transcriptional activity regulated by the
epigenetic state of their region of origin [32]. It is

evident that only the combination of differing inbred
lines can generate a better performing hybrid than its
parents, by exploiting what is known as the heterosis ef-
fect [41]. Since both mRNAs and sRNAs harbor infor-
mation of additional levels on differences between
inbred parents, we expect them to have more explana-
tory and predictive power.
In a previous study, correlations of transcriptome data

with HP for GY were performed based on the same
mRNA dataset as in this study [5]. Our correlations with
binary distance based on positively associated mRNAs
(Db,pos) largely resemble the correlations with
transcriptome-based binary distance in of Frisch et al.
[5], but in contrast to the previous study our FDR

Fig. 6 Genome-wide distribution and enrichment of sRNAs. Genomic coverage of hpa-sRNAs (1), all sRNAs (2), genes (3), repeats (4), intergenic
regions (5) and recombination rates (6) throughout the B73 reference genome. Distribution of 22-nt sRNAs (7a), positively 22-nt hpa-sRNAs (7b),
negatively 22-nt hpa-sRNAs (7d), 24-nt sRNAs (8a), positively 24-nt hpa-sRNAs (8b), negatively 24-nt hpa-sRNAs (8d) on the B73 reference genome.
-log10 plot of enrichment probabilities of positively 22-nt hpa-sRNAs (7c), negatively 22-nt hpa-sRNAs (7e), positively 24-nt hpa-sRNAs (8c) and
negatively 24-nt hpa-sRNAs (8e). Peaks in green background zone show significant enrichment (p < 0.05). All distributions are shown in 1 Mb
resolution. Centromeres according to Jiao et al. [31] are indicated red in the rulers. Whole-genome visualization was created with Circos [43].
Annotations in (2) to (4) are according to genome assembly AGPv4.36
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adjusted p-value threshold was set to p < =0.05 instead
of p < =0.01. This relaxation of the conditions for marker
selection by binomial exact tests resulted in a slightly de-
creased correlation coefficient (0.82 instead of 0.86).
However, we applied the threshold of p < =0.05 to allow
for comparison of SNP, mRNA and sRNA data in the
present study. Within our analyses we demonstrated that
integrating negatively associated mRNAs increase the

correlation coefficients. Positively associated mRNAs
alone (Db,pos) resulted in r of 0.82, the combined binary
distance for both negatively and positively associated
mRNAs (Db,com) in r of 0.84, and the MLR in r of 0.86.
With increased correlation coefficients higher predictive
power is indicated.

Hybrid prediction
Correlations of the observed with predicted HP for GY
by 100 cross-validation runs, resulted in the expected
behavior for all three data types (SNP, mRNA, sRNA)
with stronger prediction accuracies for type-2 predic-
tions than type-1 predictions and the least performance
for type-0 predictions, for which test-cross data for both
parents were lacking. The results show for all three data
types that having one of the parents evaluated in test-
crosses (type-1) results in considerably higher predic-
tion accuracy with lower variability. The gained pre-
diction accuracy by having both parents evaluated in
test-crosses (type-2) is not as pronounced as it is be-
tween type-0 and type-1 prediction (Additional file 2:
Figure S1A-C).
We compared our prediction approaches with those

from a previous study that used the same mRNA data-
set, but considered positively associated mRNAs only
[5]. The statistics of our prediction using the binary

Table 5 Correlation coefficients of genomic hpa-sRNA distribu-
tions with the recombination rate separated by different classes
of hpa-sRNAs

positively
22-nt

negatively
22-nt

positively
24-nt

negatively
24-nt

chr1 0,960 −0,770 0,957 0,964

chr2 0,961 −0,840 0,964 0,958

chr3 0,914 −0,915 0,918 0,859

chr4 0,952 −0,903 0,934 0,730

chr5 0,930 −0,365 0,930 0,902

chr6 0,972 0,134 0,932 0,951

chr7 0,908 −0,883 0,956 0,954

chr8 0,614 −0,607 0,491 0,656

chr9 0,822 -0,904 0,808 0,808

chr10 0,880 -0,032 0,842 -0,424

Fig. 7 Relation of hpa-sRNAs to genomic features. Size distribution of hpa-sRNAs mapping to single or multiple annotated features of the maize
genome; 22-nt hpa-sRNAs map primarily to multiple annotations (repeat/intergenic, gene/repeat/intergenic), while 24-nt hpa-sRNAs map primarily
to single annotations (intergenic or repeat)
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distance of positively associated mRNAs (Db,pos) are
identical to the statistics of the approach using the
transcriptome-based binary distance of Frisch et al. [5]
and both resulted in comparable prediction accuracies.
Inclusion of information on negatively associated
mRNAs improved the prediction accuracy for type-2
and type-1 but not type-0 predictions. For type-0 predic-
tions the positively associated mRNAs (Db,pos) resulted
in highest prediction accuracies (Additional file 2: Figure
S1B). Importantly, both predictions that include the
negatively associated mRNAs, integrated in combined
binary distance (Db,com) or the MLR-based prediction re-
sulted in considerably less variation of the prediction ac-
curacy (Additional file 2: Figure S1B). These results
reveal, that the introduction of the negatively associated
mRNAs considerably increases the type-2 prediction ac-
curacy for HP for GY by mRNA expression profiles. For
type-1 prediction, where one of the parental lines has
been evaluated in test-crosses, the combined binary dis-
tance (Db,com) outperformed the binary distance for
positively associated mRNAs (Db,pos). This again high-
lights that information on negative contributions to HP
for GY are important for the prediction accuracy. That
type-0 predictions based solely on the binary distance of
positively associated mRNAs (Db,pos) could not be im-
proved by adding additional information about nega-
tively associated mRNAs (Db,com, MLR-based prediction)
suggests that information from related crosses, with
shared parental lines, are important to select most in-
formative individual markers.
Using SNP and sRNA as markers the MLR-based pre-

dictions resulted in highest prediction accuracies for
type-2 predictions. The combined binary distance
(Db,com) based predictions outperformed all other ap-
proaches for type-1 predictions. Clearly, like for predic-
tions using mRNA expression profiles, the integration of
negatively associated markers facilitates a more precise
selection of the best inbred line combinations. This
holds true, as long as test-crosses for at least one of the
parents have been supplied in the estimation set of the
prediction model. In the case the estimation set is
composed solely by unevaluated lines (type-0), the MLR
prediction approach showed a poor performance. Thus
nor the information added in the two predictor variables
mf and md neither the separate binary distances for posi-
tively and negatively associated markers (Db,pos, Db,neg)
provide a gain of precision anymore. We assume that a
lack of germplasm in the estimation set with genomic
relation to the inbred line combinations that are sup-
posed to be predicted hampers the identification of the
predictors needed for accurate prediction. Although the
prediction accuracies for type-0 predictions were low
and highly variable for the negatively associated markers
(Db,neg), the predictions using the combined binary

distance (Db,com) performed similar or better than pre-
dictions based on positively associated markers (Db,pos)
alone. The prediction approach using the combined bin-
ary distance (Db,com) as predictor was thus shown to be
less susceptible to the composition of the estimation set.
Overall the prediction accuracies of the cross-

validation runs revealed that predictions based on sRNA
expression performed better than mRNA expression and
SNP profiles for both the combined binary distance
(Db,com) and the MLR-based predictions (Fig. 3a-c). Al-
though the combined marker-based predictions resulted
in a slightly lower performance in comparison to the
MLR-based prediction in type-2 predictions, overall, in-
cluding type-1 and type-0 prediction, the combined
marker-based distance resulted in a better and more
stable performance. Thus a MLR-based prediction might
be beneficial only for the selection of breeding lines with
a high number of tested lines or very closely related
breeding material.
The prediction models rely on differences between

parents of different heterotic groups. Our strategy to
measure RNA expression differences across the popula-
tion involved pooling of individually grown plants of
each inbred line to reveal genotypic effects and to aver-
age environmental effects and did not include biological
replicates. Thus we used simple thresholds to call differ-
entially expressed sRNAs for the identification of trait-
associates ones by binomial testing. By DESeq2 with re-
lated lines set as replicates we confirmed sRNA expres-
sion differences between the heterotic groups. In
addition, the high congruence in the relation of posi-
tively and negatively hpa-sRNAs called by the various
methods in two sets of inbred lines supported the valid-
ity of threshold based differential expression of sRNAs.
Further support for the validity of the threshold based
sRNA expression analysis may be derived from the ex-
pression analysis of known miRNAs. Consistently, no
known miRNAs where among the hpa-sRNAs and the
number of miRNAs identified by DESeq2 was very low.
Given that most miRNAs are developmentally or envir-
onmentally regulated [33] the low number of differen-
tially expressed miRNAs is in agreement with the
identical developmental stage and growth conditions of
the sampled seedlings.

Characteristics of sRNAs associated with hybrid
performance for grain yield in maize
Hpa-sRNAs are enriched for sRNAs with length of 22-nt
and 24-nt and thus mainly represent size classes with
implicated function in maize [33], which are likely to be
generated by different pathways of biogenesis [42]. Our
tests for homology of hpa-sRNAs to highly abundant
tRNAs and rRNAs do not provide evidence to support
direct relations of parental expression variations with
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hybrid performance for sRNA sequences derived from
these RNA classes.
The preferential mapping of 24-nt hpa-sRNAs to just

single features indicates that they may have restricted
spatial activity, primarily acting on specific loci at their
site of origin, whereas the high proportion of 22-nt hpa-
sRNAs mapping to multiple features point to their po-
tential of trans-regulatory action on functional genes
distant from the site of origin. Importantly both hpa-
sRNA classes have the potential of trans-allelic action in
the hybrid genome.

Conclusions
Hybrid prediction has the potential to both improve hy-
brid breeding by speeding up and enhance the selection
of most promising inbred line combinations and redu-
cing the requirement of expensive field trials. In this
study we developed a sRNA-based prediction approach
of hybrid traits. For this purpose we advanced an associ-
ation approach to identify also negatively - in addition to
positively - trait-associated markers. We propose two
prediction approaches, which integrate the information
about positively and negatively associated markers and
evaluated the prediction accuracy using sRNA as
markers in comparison with SNP and mRNA based pre-
dictions. We showed that sRNA-based predictions are
highly accurate when test-crosses are available for some
of the tested parents and that the integration of nega-
tively associated markers improve the prediction accur-
acies for all three analyzed data types (SNP, mRNA,
sRNA). The genomic characteristics of the hpa-sRNAs
we identified indicate a functional contribution of these
sRNAs to the formation of hybrid performance.
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