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Abstract

Background: The maturation and successful acquisition of developmental competence by an oocyte, the female
gamete, during folliculogenesis is highly dependent on molecular interactions with somatic cells. Most of the
cellular interactions identified, thus far, are modulated by growth factors, ions or metabolites. We hypothesized that
this interaction is also modulated at the transcriptional level, which leads to the formation of gene regulatory
networks between the oocyte and cumulus cells. We tested this hypothesis by analyzing transcriptome data from
single oocytes and the surrounding cumulus cells collected from antral follicles employing an analytical framework
to determine interdependencies at the transcript level.

Results: We overlapped our transcriptome data with putative protein-protein interactions and identified hundreds
of ligand-receptor pairs that can transduce paracrine signaling between an oocyte and cumulus cells. We
determined that 499 ligand-encoding genes expressed in oocytes and cumulus cells are functionally associated
with transcription regulation (FDR < 0.05). Ligand-encoding genes with specific expression in oocytes or cumulus
cells were enriched for biological functions that are likely associated with the coordinated formation of transzonal
projections from cumulus cells that reach the oocyte’s membrane. Thousands of gene pairs exhibit significant linear
co-expression (absolute correlation > 0.85, FDR < 1.8 × 10− 5) patterns between oocytes and cumulus cells. Hundreds
of co-expressing genes showed clustering patterns associated with biological functions (FDR < 0.5) necessary for a
coordinated function between the oocyte and cumulus cells during folliculogenesis (i.e. regulation of transcription,
translation, apoptosis, cell differentiation and transport).

Conclusion: Our analyses revealed a complex and functional gene regulatory circuit between the oocyte and
surrounding cumulus cells. The regulatory profile of each cumulus-oocyte complex is likely associated with the
oocytes’ developmental potential to derive an embryo.
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Background
During folliculogenesis, the interaction between an oocyte
and the surrounding somatic cells evolves with the release
of the oocyte from quiescence, through ovulation and
fertilization, to zygote formation. As folliculogenesis pro-
gresses and a cavity is formed in the follicle, the somatic
cells surrounding the oocytes, namely, granulosa cells,
differentiate into cumulus and mural granulosa cells [1],
and the cumulus-oocyte complex (COC) is formed. The

proximity between the cumulus cells and the oocyte favors
bidirectional communication, which is paramount for the
acquisition of developmental competence by the oocyte.
In the microenvironment of an antral follicle, the cellular

communication between oocytes and cumulus cells is com-
plex, and both sides have active regulatory roles. The cu-
mulus cells support meiotic arrest and cytoplasmic
maturation of the oocyte, for example, by exporting cyclic
AMP [2], calcium [3], other metabolites [4, 5] and un-
known signals that control transcription in the enclosed
oocyte [6]. The oocyte secretes growth factors that promote
cumulus cell differentiation and proliferation [4] and main-
tain their differentiated state, preventing their transition to
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mural granulosa cells [7]. Most of these compounds are
exchanged through gap junctions that connect their mem-
branes [8]. Macromolecules, such as RNAs [9, 10], can also
be transported from cumulus cells to oocytes; nonetheless,
the specific functions and mechanism of transport are not
yet understood.
The transcriptome profile of cumulus cells [11–19]

and oocytes [20–24] reflects the developmental potential
for successful fertilization and embryo formation. Never-
theless, little is known regarding the connection between
the genes expressed in oocytes and cumulus cells. In this
study, we aimed to determine the gene regulatory net-
works in COCs in two dimensions: (i) within each com-
partment and (ii) between oocytes and the surrounding
cumulus cells. The results provide evidence that the
communication between oocyte and cumulus cells in the
follicle is complex, involving signaling through several
ligand-receptor pairs and regulation of thousands of
genes and is functionally relevant for the acquisition of
oocyte developmental competence.

Results
Transcriptome profiling of single oocytes and
corresponding cumulus cells
We profiled the transcriptomes of 16 individual COCs
collected ex vivo from bovine ovaries (Bos taurus). In
each COC, we chemically dissected the outer layer of
cumulus cells (outerCCs), the layers of cumulus cells
closest to the zona pelucida (innerCCs), and the oocyte
(Fig. 1a). Using the SMART-Seq2 approach, we gener-
ated over 390.4 million paired-end reads, with an aver-
age of 10.6, 6.2 and 7.4 million fragments obtained for
single oocytes, innerCCs and outerCCs, respectively.
Overall, we quantified the transcript levels of 19,847
genes, and we carried out analytical procedures for the
genes presenting fragments per kilobase per million
(FPKM) > 0.5 in more than eight samples (Additional file 1:
Figure S1). Overall, we detected the transcripts of 10,327,
6088 and 10,459 genes in oocytes, innerCCs and outerCC
cells, and a total of 12,482 genes were robustly quantified
in COCs.

Distinct functional transcriptome profiles of single
oocytes and corresponding cumulus cells
Principal component analysis of the transcriptome data
confirmed the expected distinction between the transcript
profiles of oocytes and cumulus cells (P < 2.81 × 10− 28,
Fig. 1b, 1000 randomizations, Additional file 1: Figure S2).
Surprisingly, however, the second major source of
variability (~ 28%) derived from the cumulus samples
separated most of the innerCCs and outerCCs into two
distinct groups (P = 2.81 × 10− 28, Fig. 1b, Additional file 1:
Figure S2). Examination of the genes expressed in each of
the three sample types collected from COCs showed that

5431 genes were expressed in oocytes and cumulus cells,
while 1957, 1450 and 6 genes were exclusively expressed in
oocytes (i.e. bone morphogenetic protein 4, bone
morphogenetic protein 6, bone morphogenetic protein 15,
folliculogenesis specific bHLH transcription factor, growth
differentiation factor 9, Y-box binding protein 2), outerCCs
(i.e. androgen receptor, cell adhesion molecule 4, estrogen
receptor, fibroblast growth factor 11, insulin receptor) and
innerCCs (i.e: olfactory receptor 6C74, olfactory receptor
12D2, and the potential novel genes: ENSBTAG000
00038961, ENSBTAG00000045654, ENSBTAG000000468
68, ENSBTAG00000046958), respectively (Fig. 1c, see
Additional file 2 for full gene list with average expression
data). The clustering of the two distinct groups of cumu-
lus cells (outerCCs and innerCCs) was a strong indication
of distinct functions associated with their spatial proximity
to the oocyte.
We then used a co-expression framework and per-

formed Gene Ontology (GO) enrichment testing of gene
clusters [25] to reveal the functional patterns of gene co-
regulation in each of the three sample types collected. In
oocytes, there were 2222 co-expressed genes forming 26
clusters with significant enrichment of several GO terms
(FDR < 0.2, Additional file 1: Figure S3, Additional file 3:
Tables S1-S2). The biological function with the greatest
number of annotated genes was “regulation of transcrip-
tion” (69 genes in clusters 12, 31, 111 and 331, i.e. SALL4,
SFPQ, SIX3, SMAD4, YBX1, ZNF34) followed by “transla-
tion” (54 genes in clusters 5, 234, 405 and 416, i.e. AIMP2,
EIF1, EIF2B2, EIF3I, EIF3K). In innerCCs, we identified
1222 expressed genes forming six clusters with significant
enrichment of GO terms (FDR < 0.2, Additional file 1:
Figure S4, Additional file 3: Tables S3-S4). Eighty-one
genes in cluster four were annotated with the biological
process “translation”. The second most-represented term
was “oxidation-reduction process” in cluster 178, with ten
annotated genes. In outerCCs, we identified 3990
expressed genes distributed in 34 clusters with significant
enrichment of GO terms (FDR < 0.2, Additional file 1:
Figure S5, Additional file 3: Tables S5-S6). There were 92
genes in clusters 1, 37, 53 and 5504 annotated with the
term “oxidation-reduction process”. Sixty-five genes in
clusters 22, 32, 94 and 160 were associated with “transla-
tion”. The next most-represented function was related to
transport, with 31 genes distributed among the terms
“transport,” in cluster 22, and “vesicle-mediated transport”
and “ER to Golgi vesicle-mediated transport,” in cluster 6.
The results indicated distinct regulatory gene wiring of
cumulus cells that are closer to or farther from the oocyte,
which likely reflects their functional relevance to oocyte
maturation during folliculogenesis.
Quantitative comparison of gene levels between sam-

ples revealed hundreds of differentially expressed genes
(FDR < 0.01, Fig. 1d, Additional file 1: Figure S6) and
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further supported the distinction of the transcriptome
profiles between oocytes and cumulus cells and between
cumulus cells at different positions relative to the oocyte.
Compared with their expression in cumulus cells, ap-
proximately 92% of the genes expressed in oocytes pre-
sented significant differential expression (9489/10,327,
FDR < 0.01, Fig. 1d). We selected five genes that were
overexpressed in oocytes and have previously been

associated with developmental competence in oocytes
(ENY2, FSD1, GHR, METTL18 and MYF6) to validate the
RNAseq results. The qPCR results showed that all the
genes presented higher expression levels in oocytes than
in cumulus cells (P < 0.05, Additional file 3: Table S7).
We further performed co-expression analysis of the

transcript levels of these 9489 genes in oocytes and iden-
tified 31161 genes forming 16 and 19 clusters of co-

a
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Fig. 1 Transcriptome heterogeneity between oocytes and surrounding cumulus cells. (a) Depiction of the experimental design and the sequenced
samples. (b) Principal component analysis of 12,482 genes quantified in oocytes (red), innerCCs (green) and outerCCs (blue). (c) Overlap of genes
expressed in oocytes (red), innerCCs (green) or outerCCs (blue). (d) Differentially expressed genes determined from the pairwise comparisons of the
three sample types (FDR < 0.01). (e) Co-expression analysis of genes expressed in oocytes showing differential expression compared those in cumulus
cells (CC). The blue heatmaps depict the average expression in oocytes and CCs; the center heatmap depicts the topological overlap of correlated
expression; and the vertical bars show the annotation of GO biological processes (BP) and molecular functions (MF) enriched in the corresponding
gene cluster. The squares below the heatmap provide a link between cluster number, the corresponding biological process or molecular functions
and genes presented in the supplementary (Additional file 3: Tables S8-S9)
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expressed genes enriched (FDR < 0.2) for GO terms.
There were 165 genes across five co-expression clusters
(3, 11, 114, 257, 399) associated with the regulation of
transcription (FDR < 0.2, Fig. 1e, Additional file 3: Tables
S8 and S9). The second most-represented term was “pro-
teolysis,” with 45 annotated genes in cluster 3, followed by
“cellular response to DNA damage stimulus,” with 32 and
three genes in clusters 3 and 146, respectively. The fourth
most-represented term was “negative regulation of apop-
totic process,” with 30 genes annotated in cluster 3. The
results showed that the functional differences between
oocytes and cumulus cells are mostly related to the regula-
tion of transcription, proteolysis and apoptosis.

Road map of ligands and receptors between oocytes and
surrounding cumulus cells
The signaling between the oocyte and cumulus cells is
bidirectional and is mediated in part by ligands and
receptors [26]. We examined the expression of genes en-
coding ligand-receptor pairs supported by experimental
evidence compiled from four protein-protein interaction
databases. Using Ensembl gene homology annotation for
human, mouse, pig, rabbit and rat, we identified 247,064
unique protein-protein interactions (PPIs) with corre-
sponding cow Ensembl genes.
After integration of the transcriptome data with the PPI

network, we identified 5226 and 192 genes expressed in
COCs corresponding to ligand and receptor proteins, re-
spectively, with the potential to form 14,011 interactions
(Table 1, see Additional file 4 for detailed annotation of
this dataset). Among the interacting proteins previously
validated experimentally we identified in our dataset
GDF9 - BMPR2, INHA-ACVR1, INHA-ACVR2B, indicat-
ing the validity of our approach.
Using the expression data for these genes encoding

ligands and receptors, we distinguished the following
categories of potential ligand-receptor interactions be-
tween oocytes and cumulus cells: 12,671 autocrine or
paracrine, 804 autocrine and 536 paracrine (Table 1). The
PPIs inferred for COCs formed a scale-free network
(R2 = 0.65, P = 0.014, 1000 bootstrap simulations) with
ten genes (APP, CCT2, CCT3, DLG4, EGFR, HSPD1,
NTRK1, RPGRIP1L and TRAF6), accounting for ~ 18% of
the ligand-receptor interactions (Fig. 2a).
Functional interrogation of the genes expressed in

COCs encoding ligands and receptors with the potential
to form PPIs revealed dozens of genes with significant
enrichment in GO terms related to the “regulation of
transcription” (N = 499), “protein phosphorylation,”
“apoptotic process” and “protein transport” categories
(FDR < 0.05, Fig. 2b, Additional file 3: Table S10). We
then focused on the 156 ligand-encoding genes that
were exclusively expressed in cumulus cells with corre-
sponding receptor-encoding genes exclusively expressed

in oocytes (Fig. 2c). These 156 ligand-encoding genes
were enriched for “cell adhesion,” “signal transduction,”
and “cell migration,” among other biological processes
(FDR < 0.1, Fig. 2d, Additional file 3: Table S11). We also
queried the 262 ligand-encoding genes that were exclu-
sively expressed in oocytes with corresponding receptor-
encoding genes exclusively expressed in cumulus cells
(Fig. 2e). Among the significantly enriched processes, we
noted “signal transduction,” “cell differentiation” and
“axon guidance” as the terms with largest numbers of
genes (FDR < 0.1, Fig. 2f, Additional file 3: Table S12).
Taken together these results support the notion that
ligand-receptor interactions are a major contributor to
the signaling between oocytes and cumulus cells.

Variation in gene expression associated with
developmental competence
The sampled COCs represented variable maturing stages of
antral follicles, and we hypothesized that physiological
changes in the growing antral follicles would result in
variable expression of genes functionally related to
developmental competence in oocytes and cumulus cells.
Focusing on the 6701 and 7168 genes expressed in all 16
analyzed oocytes and outerCCs, we observed median
coefficients of variance (CV) of 0.66 and 0.81, respectively.
Functional investigation of the top variable genes (N = 670
genes, CV > 1.2, 90th percentile) revealed a tendency for
enrichment (FDR = 0.3) of the GO terms “blastocyst devel-
opment” (CDK11A, ELF3, NEK2 and SMARCB1) and
“ATP synthesis coupled electron transport” (Fig. 3a). Inter-
rogation of the top variable genes in outerCCs (N = 359
genes, CV > 1.4, 95th percentile) highlighted several

Table 1 Summary of potential ligand-receptor interactions in
cumulus-oocyte complexes and corresponding genes expressed
in oocytes and cumulus cells annotated

Type of signaling Na

pairs
(PPIb)

N genes expressed

Ligand Receptor

Oocyte CC Oocyte CC

Autocrine/Paracrine 964 – – 131 134

Autocrine 52 – – 24 –

Autocrine 40 – – – 21

Autocrine/Paracrine 5489 2463 2463 93 93

Autocrine/Paracrine 546 268 – 81 81

Autocrine/Paracrine 860 – 397 86 86

Autocrine/Paracrine 1050 778 778 51 –

Autocrine/Paracrine 3762 2790 2790 – 42

Autocrine 146 114 – 35 –

Autocrine 566 – 442 – 31

Paracrine 200 – 156 39 –

Paracrine 336 262 – – 31
aN number, bPPI protein-protein interaction
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significantly enriched (FDR < 0.05) GO terms, with the top
three terms being “immune response,” “cell adhesion,” and
“cell division” (Fig. 3b, Additional file 3: Table S13).

Co-regulated gene expression between the oocyte and
corresponding cumulus cells
Analysis of three samples from the same COC allowed us
to explore gene co-expression between oocytes and

cumulus cells. We calculated the biweighted correlation
(bicor) values for genes expressed in oocytes and innerCCs
and for genes expressed in oocytes and outerCCs. Several
pairs of genes showed significantly correlated expression
between oocytes and cumulus cells (empirical (e)
FDR < 0.001, 10,000 randomizations, Additional file 1:
Figure S7a). The numbers of genes showing a correlation
between oocytes and outerCCs or oocytes and innerCCs

a b
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Fig. 2 Ligand-receptor pairs in oocytes and surrounding cumulus cells. (a) Distribution of ligands or receptors among genes expressed in COCs according
to the degree of connectivity. (b) Biological processes enriched (FDR< 0.05) in ligands or receptors in coding genes expressed in COCs (see Additional file
3: Table S13 for full list of terms). (c) Ligand-encoding genes expressed in CCs with receptor-encoding genes expressed in oocytes. (d) Biological processes
enriched (FDR < 0.05) in ligand-encoding genes expressed in CCs with receptor-encoding genes expressed in oocytes. (e) Ligand-encoding genes
expressed in oocytes with receptor-encoding genes expressed in CCs. (f) Biological processes enriched (FDR < 0.05) in ligand-encoding genes expressed in
oocytes with receptor-encoding genes expressed in CCs. To improve readability, genes with average FPKM > 2 were plotted on panels c and e
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were not predictive of one another (P < 6 × 10− 05, Fisher’s
exact test, Additional file 1: Figure S7b). Furthermore,
there was little overlap between the genes when we
examined a specific correlation threshold (|bicor| > 0.85,
Additional file 1: Figure S7c), providing further support
for the hypothesis that the regulatory interaction is
influenced by the specific localization of the cumulus cells
relative to the oocyte.
We then focused on the 7034 pairs of genes expressed

in oocytes (N = 1781) and outerCCs (N = 3187) that pre-
sented a strong positive or negative correlation (|bicor| >
0.85, eFDR< 1.8 × 10− 5) and asked whether the genes
could be clustered according to their biological function.
We used the WGCNA approach to independently
cluster the 1781 and 3187 genes expressed in oocytes
and outerCCs, respectively. The 1781 genes expressed in
oocytes formed one co-expression cluster (N = 57 anno-
tated genes) enriched for “positive regulation of tran-
scription from RNA polymerase II promoter”. The 3187
genes expressed in outerCCs formed five co-expression
clusters enriched for biological processes (FDR < 0.05,
Fig. 4a), including “protein phosphorylation” in cluster 2;
“negative regulation of transcription from RNA polymer-
ase II promoter” and “positive regulation of transcription
from RNA polymerase II promoter” in cluster 3; “negative
regulation of transcription from RNA polymerase II pro-
moter,” “in utero embryonic development,” “translation,”
“cellular response to DNA damage stimulus,” “cell differen-
tiation” and “negative regulation of apoptotic process” in
cluster 7; “oxidation-reduction process” in cluster 9; and
“regulation of transcription, DNA dependent” in cluster 14.
There were 42,843 pairs of genes expressed in oocytes

(N = 819) and innerCCs (N = 4569) that presented a
strong positive or negative correlation (|bicor| > 0.85,
eFDR < 1.8 × 10− 5). Co-expression analysis of the 819

genes expressed in the oocytes formed three clusters
enriched for biological processes (FDR < 0.05, Fig. 4a):
“translation” and “mitochondrial translation” in cluster
1; “positive regulation of I-kappaB kinase/NF-kappaB
signaling” in cluster 2; and “transport” in cluster 4. The
selected genes expressed in innerCCs formed three co-
expression clusters enriched for biological processes
(FDR < 0.05, Fig. 4b): “translation,” “negative regulation
of transcription, DNA-templated,” and “positive regula-
tion of apoptotic process,” among others in cluster 2;
“protein phosphorylation” in cluster 4; and “regulation
of transcription, DNA-templated” in cluster 11.
The clustering of the genes with correlated expression

revealed patterns across genes with different functional-
ities (Fig. 4 a, b). For example, cluster 1 formed by oocyte
genes showed mostly negative correlations with outerCC
genes in clusters 2 (bicor= − 0.19), 3 (bicor= − 0.4),
7 (bicor= − 0.32) and 1 (bicor4 = − 0.12) but presented a
balanced distribution of positive and negative correlations
with cluster 9 (bicor= 0.04) (Additional file 1: Figure S8a).
The correlations formed by genes expressed in oocytes
and innerCCs mostly showed negative associations be-
tween oocyte genes in cluster 2 and innerCC genes in
clusters 2, 4 and 11 (bicor= − 0.6, bicor= − 0.46, and bicor=
− 0.46, respectively). By contrast, clusters 1 and 4 formed
by oocyte genes mostly showed positive correlations with
clusters 2, 4 and 11 formed by innerCC genes (bicor= 0.58,
bicor= 0.53, bicor= 0.5, bicor= 0.39, bicor= 0.29, bicor= 0.3,
respectively, Additional file 1: Figure S8b). These results
highlight patterns of co-expression that potentially resem-
ble the functional regulatory roles between oocytes and
cumulus cells.
The network formed from the co-expression results

highlighted genes that are likely regulatory hubs between
oocytes and cumulus cells. Among the interactions be-
tween oocytes and outerCCs, FHOD3, SUGP2, ZFP36,
SRRD, ANKRD10, RRP8, NOL7 and HOOK2 expressed in
oocytes, PAXIP1 expressed in outerCCs, and CEBPG
expressed in both oocytes and outerCCs were the top ten
genes with the highest degrees of connectivity (Fig. 4c).
Among the interactions between oocytes and innerCCs,
the GFER, MRPL57, GPR137B, MAP1LC3A, MIER1,
MAGIX, COMMD9, C4orf48, A1BG and HOXD4 genes
expressed in oocytes presented the highest degrees of
connectivity (Fig. 4d). These results suggest the existence
of key genes with major regulatory functions in COCs.

Discussion
The understanding of how cells interact within a micro-
environment is key for the comprehension of a physio-
logical process at the systems levels. The complexity of the
molecular interactions between the oocyte and the sur-
rounding cumulus cells in the follicular microenvironment

a b
ELF3 NEK2

SMARCB1

CDK11A XAB2

COII

ND4L

ND5

ND4

Fig. 3 Variability in gene expression in COCs associated with
biological functions. Coefficients of variation for genes expressed in
all samples of oocytes (a) and outerCCs (b). Genes associated with
specific categories are indicated with colored dots (P-value). The
green line indicates the coefficient of variation threshold used to
identify highly variable genes
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Fig. 4 (See legend on next page.)
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during folliculogenesis has yet to be fully appreciated. In
this study, we diligently sampled the oocytes and surround-
ing cumulus cells of single COCs and generated RNA se-
quencing data from three sample types from multiple
COCs. We used this dataset to gain the following insights
into important factors in the communication between
oocytes and cumulus cells: (i) cumulus cells positioned
closer to or farther from the oocyte are likely to have a
distinct interaction with the oocyte; (ii) similarly to the re-
ported for somatic cells in humans [27], there are several
potential ligands and receptors that can mediate regulatory
signaling between oocytes and cumulus cells; and (iii) the
association between the transcript levels of genes expressed
in oocytes and cumulus cells strongly indicates that the
interaction between oocytes and cumulus cells is partly
modulated by gene regulatory mechanisms. The underlying
mechanisms of gene regulation and how the cross-
modulation of transcript levels contributes to the fate of an-
tral follicles currently remain unknown.
The oocyte accumulates a rich variety of transcripts

and proteins through folliculogenesis. The results of
co-expression analyses in oocytes showed that coordi-
nated regulatory mechanisms drive the transcription and
accumulation of 2222 gene products. Our results high-
light dozens of genes with transcriptional regulatory
functions (N = 69) or functions related to translation
(N = 54). These genes likely play central roles in the
modulation of embryo genome activation [28].
The mechanisms that control gene expression in cu-

mulus cells during the growth of antral follicles are not
yet understood. Nevertheless, our results showing coor-
dinated expression of several genes related to “transla-
tion” and “oxidation-reduction process” in cumulus cells
are indicative that such genes are regulated by gonado-
tropins [29, 30] or insulin [29]. These results provide
support for hormonal regulation as a mechanism that
modulates gene expression in cumulus cells. Of note, the
distinct patters of gene co-regulation between innerCCs
and outerCCs corroborates with previous findings of a
greater number of apoptotic cells in the outer layers of
cumulus compared to the cells closer to the oocyte [31].
The signaling between cumulus cells and oocytes is

central to folliculogenesis. We must ponder, however, that
limitations on PPI databases and even on our detection of
gene transcripts may have limited the identification of
critical interactors in COCs. Furthermore, experimental
validation should provide empirical evidence of the

interactions presented on this study. Nonetheless, the
integration of transcriptome and proteomics datasets
provided a genome-wide view of ligand-receptor or
receptor-receptor potentially interacting in the COCs.
Our results showed that hundreds of possible ligand-

receptor pairs can transduce paracrine signaling. Not-
ably, several genes that are only expressed in oocytes
encode ligands that are functionally related to “axon
guidance,” while on the other side of the zona pelucida,
cumulus cells express several genes involved in cell
adhesion. It is possible that the oocyte uses strategies
similar to those described for the nervous system [32] to
guide the formation of transzonal cellular projections
[10, 33] to establish close contact between the oocyte
and cumulus cells from the corona radiata. At the same
time, the cumulus cells are likely responsible for the
signaling required to establish and sustain cellular adhe-
sion with the oocyte membrane [34].
The functional analysis of ligands and receptors indicated

that signaling between the oocyte and cumulus cells also
regulates gene transcription. Our experimental design
allowed us to further explore the possibility that oocytes
regulate gene expression in cumulus cells and vice versa.
Our results showed that the transcript levels of several hun-
dred genes expressed in oocytes present linear co-variation
with genes expressed in cumulus cells. Furthermore, the
results indicate functional organization of a select group of
co-expressed genes. Such cross-cellular transcriptional
regulation could be modulated by paracrine signaling [35],
as we identified several potential ligand-receptor pairs that
may be formed as well as transfer of small molecules
through gap junctions [36] and transport of mRNAs
between cumulus cells and oocytes [10]. These findings
provide strong evidence that a complex gene regulatory
network between oocytes and cumulus cells regulates the
maturation of COCs in antral follicles.

Conclusion
We determined that several hundreds of genes present
co-expression within compartments in a cumulus -oocyte
complex. The major differences between oocytes and the
surrounding cumulus cells include but are not limited to
regulation of transcription, and those genes are likely re-
sponsible for distinct physiological specialization between
cumulus and oocytes. Despite their different functional
roles, oocytes and cumulus cells are dependent on each
other’s signaling to progress through folliculogenesis. The

(See figure on previous page.)
Fig. 4 Functional co-expression between oocytes and surrounding cumulus cells. Heatmap of genes showing a high correlation (|bicor| > 0.85) of
expression values between oocytes and outerCCs (a) and oocytes and innerCCs (b). Horizontal and vertical bars next to the heatmaps annotate
gene clusters with enriched biological processes (FDR < 0.2). The black boxes indicate the co-expression blocks with intersection of clusters
enriched for biological processes. Co-expression networks between oocytes and outerCCs (c) and oocytes and innerCCs (d). The color of symbols
in panels c and d correspond to the colored circles and the GO biological processes on panels a and b, respectively
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paracrine signal between the oocyte and cumulus cells can
be conducted by hundreds of putative ligand-receptor
pairs is a potential venue for transcriptional regulation be-
tween oocyte and cumulus cells. The significant correlated
expression of thousands of genes in oocytes and cumulus
cells is a strong genome-wide evidence that supports the
occurrence of a gene regulatory networks between oocyte
and cumulus cells. Our findings show that the interaction
between oocyte and cumulus cells is much more complex
than the exchange of metabolites and involves gene
regulation.

Methods
Sample collection from single COCs
Ovaries were obtained from Bos taurus cows from a
commercial slaughter house (Brown Packing, SC). No
live animals were handled specifically for this study and
ovaries were handled postmortem, thus the study was
not submitted for approval by the institutional ethics
committee at Auburn University.
Upon removal from the animals, ovaries were placed

in a 0.8% saline solution and transported to the labora-
tory. Ovarian follicles measuring between 3 and 8 mm in
diameter were aspirated with an 18-gauge needle, and
the aspirates were transferred to sterile 50 ml conical
tubes. COCs were then selected from the follicular fluid
and washed in TCM-199 medium supplemented with
0.42 M sodium bicarbonate (Macron), 0.02 M Hepes
(Sigma-Aldrich), 10% (v:v) fetal bovine serum (Seradigm),
0.05 g/ml gentamicin (Amresco), 0.022 g/ml pyruvate
(Acros Organics) and 1× Glutamax (Gibco). COCs
were selected based on morphological characteristics
indicative of a greater developmental potential [21, 37].
The obtained COCs containing oocytes with homoge-
neous cytoplasm surrounded by more than five layers of
cumulus cells were used in our research. This strategy was
adopted to eliminate COCs collected from degenerating
follicles, so that the RNA of healthy COCs would be
profiled.
The selected COCs were individually transferred to a

5 μl droplet of 1× PBS 0.02% BSA (Akron). The COCs
were then transferred to a droplet containing 1× Trypsin
(HyClone Laboratories), and the outer layer of CCs was
removed through gentle pipetting. These outer cumulus
cells were collected, flash frozen and stored at − 80 °C.
The remaining COC (the oocyte and approximately two/
three layers of cumulus cells) was then washed in fresh
1× PBS 0.02% BSA and then transferred to a droplet of
1× Trypsin. The remaining layers of cumulus cells were
removed by gentle pipetting. The denuded oocytes were
transferred twice to fresh droplets of 1× PBS 0.02% BSA
to avoid carryover of cumulus cells. A schematic of the
sample handling with representative images of the sam-
ples is depicted in Additional file 1: Figure S9. Five

oocytes were examined via fluorescence microscopy to
verify that no CCs remained attached to the oocyte (not
snap frozen for RNA analysis, Additional file 1: Figure
S10). The inner cumulus cells were collected, snap frozen
in liquid nitrogen, and stored at − 80 °C. The oocyte was
then collected with using minimal 1× PBS 0.02% BSA
solution and snap frozen in liquid nitrogen. All samples
were stored at − 80 °C until use for cell lysis.

Library preparation and RNA sequencing
For each of the 16 COCs, we prepared libraries for the
oocyte, innerCC and outerCC cells. We extracted RNA
from cumulus cells using the guanidine thiocyanate-
phenol chloroform procedure [38, 39] (TRIzol reagent,
Thermo Fisher), with the addition of 0.5 μl of GlycoBlue
Coprecipitant (Thermo Fisher) as the RNA carrier [40].
We eluted the RNA from CCs in 4 μl of a solution con-
taining dNTPs and oligo-dT30VN and proceeded with
polyA+ whole transcriptome amplification using the
SMART-seq2 protocol [41, 42] for cDNA amplification.
For the oocytes, we added 2 μl of lysis buffer (20 IU/μl
RNase inhibitor (Amresco), 0.2% Triton X-100 (Amresco))
to the tube and proceeded with polyA+ whole transcrip-
tome amplification using the SMART-seq2 protocol [41,
42] for cDNA amplification. The samples were subjected
to 16 cycles of PCR amplification. For all samples, we used
1 ng of amplified cDNA for library preparation with the
Nextera XT DNA library preg Kit (Illumina, Inc.), as per
the procedures described in the SMART-seq2 protocol
[41, 42]. The libraries were quantified using a Qubit 3.0
fluorometer (Thermo Fisher) and assayed for quality
assessment on a 2100 Bioanalyzer System (Agilent). The
libraries were sequenced at the Genomic Services Lab at
HudsonAlpha in Huntsville, AL, on HiSeq2500 equipment
(Illumina, Inc.) to produce paired-end reads of 100
nucleotides in length.

Estimation of gene expression levels and principal
component analysis
The libraries were aligned against the Bos taurus gen-
ome, UMD3.1, downloaded from Ensembl [43] using the
STAR (v2.5.2) [44] aligner. Only reads showing a unique
match to the genome and less than five mismatches
were further filtered to eliminate duplicates with picard
(v2.5, http://broadinstitute.github.io/picard/). The bam
files containing non-duplicated reads were employed as
input for Cufflinks (v.2.2.1), together with Ensembl gene
annotation [45] UMD3.1.87, to obtain FPKM data [46].
Genes were subjected to analytical procedures if FPKM
> 0.5 in eight or more cells of each cell type (oocytes,
innerCCs and outerCCs). All statistical analyses were
conducted in R software [47]. Codes are available from
the corresponding author upon request.
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To identify the main sources of variation in the
dataset, we employed the FPKM values as the input
for principal component analysis using the FactorMiner R
package [48]. The significance of the principal compo-
nents was obtained with the Seurat package [49] via a
permutation test, after 1000 randomized samplings [50].

Correlation network analysis of gene expression within
sample types
We performed weighted gene correlation network ana-
lysis each of the sample types (oocytes, innerCCs and
outerCCs) using the WCGNA package [51]. For each of
the three sample types, we used log2(FKPM+ 1) values to
calculate signed adjacency, followed by the calculation of
topological overlap similarity to identify patterns of
interconnectivity among genes [51]. The topological over-
lap matrix (TOM) was converted into a distance matrix
(1-TOM) for clustering, using the average method
and the Euclidian distance, with the flashClust package
[52]. GO [53] enrichment was performed for co-expression
modules by cutting the tree at different heights, and the
most representative cutting is presented in the main or
Supplementary figures.

Testing gene sets for GO enrichment
The GO [53] enrichment of the gene lists was tested using
the genes expressed in the corresponding sample types
(oocytes, innerCCs or outerCCs) as the background. We
obtained GO annotations and transcript lengths from Bio-
Mart [54] and used the GOseq package [55] to estimate
enrichment significance via the Wallenius approximation
method [55]. We used FDR for multiple testing under
dependency [56] to adjust P-values. GO terms with an
FDR < 0.2 were inferred to be statistically significant.

Comparison of gene expression between oocytes and
cumulus cells
The non-duplicated reads were subjected to counting
according to Ensembl gene annotation [45] UMD3.1.87
using HTSeq (v. 0.6.1) software [57]. We employed the
raw read count to compare gene expression levels be-
tween samples with the packages edgeR [58], using the
TMM normalization [59] and DeSeq2 [60] using sample-
and gene-specific normalization factors as described
elsewhere [60]. The model considered the two cell types
being compared (oocyte vs. innerCC, oocyte vs. outerCC)
and the collection batch (batch = 1, 2). We inferred that
differential gene expression existed if the Benjamini-
Hochberg [61] FDR was < 0.01 in the results obtained
using both packages.

Validation of differential gene expression by RT-qPCR
We selected five genes that were upregulated in oocytes
compared with cumulus cells for validation of the

RNAseq results (Additional file 3: Table S7). The genes
were selected according to their previously recognized
roles in oocyte acquisition of developmental competence.
We collected three pools of oocytes and cumulus

samples, using 35–40 COCs for each pool. Total RNA
was extracted using the TRIzol reagent, and RNA
equivalent to the content of five oocytes or cumulus
cells from five COCs was used for cDNA amplification
using the SMART-Seq2 procedures. Amplified cDNA
was purified and used as template for qPCR.
qPCR was performed using 0.5 ng of amplified DNA,

0.1 nM of specific primers (Additional file 3: Table S13)
and Perfecta SYBR Green FastMix (Quanta Biosciences),
in a final reaction of 10 μl. The reactions were assayed
in Roche Light Cycler 480 equipment (Roche), with
pre-incubation at 95 °C for 1 min, followed by 40 cycles
of 95 °C for 15 s and 60 °C for 45 s. A melting curve
was subsequently generated using the thermocycler’s
default parameters to validate primer specificity.
We used the glyceraldehyde 3-phosphate dehyd-

rogenase (GAPDH) gene as the internal control to
normalize the expression levels of target genes (primers:
TGGTGAAGGTCGGAGTGAAC, ATGGCGACGATGT
CCACTTT). Primers were designed using Primer-
BLAST [62] and are described on Additional file 3: Table
S7. The PCR efficiency was estimated for each primer
set with LinRegPCR [63], and relative expression values
were calculated using the method described for primers
with different amplification efficiencies [64]. The results
shown in Additional file 3: Table S7 are expressed as the
fold changes in oocytes relative to those in cumulus
cells. We assessed the significance of the fold changes by
comparing the averages ΔCT [65] values with Student’s
t-test [66].

Identification of putative ligands and receptors in
cumulus-oocyte complexes
First, we produced a comprehensive PPI database. We
downloaded the databases from BioGRID [67], MINT
[68], DIP [69] and IntAct [70] and filtered them to retain
the interactions from cow, human, mouse, pig, rabbit and
rat. The gene or protein identifiers were then converted to
Ensemble gene identifiers using Entrez [71] gene-to-
Ensembl mapping for BioGRID or UniProt-SwissProt
[72]-to-Ensembl mapping for MINT, DIP and IntAct. The
mapping of gene homology between each of the selected
species and cow was obtained from the BioMart database
[54, 73] (accessed on 03/09/2017), and the database was
further filtered to eliminate duplicate interactions. We
ultimately retained 247,064 putative PPIs.
Next, we used BioMart [73] (accessed on 03/23/2017)

to annotate the genes with GO terms. We retained the
pairs that contained one or two gene identifiers anno-
tated with either the term “receptor complex” or
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“receptor activity”, which are the broadest terms associ-
ated with receptors in the GO tree structure. Here we
designated “ligand” a protein that binds to a protein that
is a receptor or is part or a receptor complex. We then
mapped the gene identifier to the three transcriptome
datasets (oocyte, innerCC and outerCC) to identify poten-
tial protein-protein pairs enriched for ligands and recep-
tors in the cumulus-oocyte complexes. We conducted
tests of GO enrichment with ligands following the proce-
dures described above, and we drew circle plots with the
circlize package [74].

Functional annotation of highly variable genes
To achieve robust functional annotation of variable genes,
we retained only those genes that were detected in all 16
oocytes (N = 6701) or all 16 outerCC samples (N = 7168).
We did not conduct this analysis for innerCCs because
there were only a few hundred genes expressed in all 16
samples. For each gene, we calculated the coefficient of

variance according to CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð expðx2ÞÞ−1
p

, where x is the
sample standard deviation of log2(FPKM+ 1) for each
gene. Then, we carried out GO enrichment tests for the
genes with highly variable expression.

Calculation of the pairwise correlation of transcript levels
between genes expressed in oocytes and surrounding
cumulus cells
For each of the 16 COCs collected, we sampled the oo-
cyte, innerCCs and outerCCs. We leveraged this sam-
pling structure to calculate the biweighted correlation
(bicor [25, 52]) between the expression levels of genes
expressed in oocytes and the surrounding cumulus cells
according to the following framework. Let xkj be the
log2(FPKM+ 1) value of gene k(1,…, n) in the oocyte, ylj
the log2(FPKM+ 1) value of gene l(1,…, n) in the innerCCs,
and zmj the log2(FPKM+ 1) value of gene m(1,…, n), in the
COC j(1, .., 16). We calculated bicorðxkj;yljÞ and bicorðxkj;zmjÞ
using the “bicor()” function [52] in R as the coefficient of
the association of expression levels between genes tran-
scribed in different cells.
The statistical significance of the coefficients was esti-

mated using eFDR [75, 76]. We disrupted the connection
of a COC linking each pair of samples (i.e., oocyte and
innerCCs) by permuting the COC index j(1, .., 16) from the
oocyte samples and calculated bicor0bðxkj;yljÞ and bicor0bðxkj;zmjÞ
for each gene pair for 10,000 permutations (B) with no re-
placements (for the oocyte and innerCCs or the oocyte and
outerCCs independently). Then, eFDR for bicorðxkj;yljÞ was

estimated as
PB

b¼1

#ðk:jbicor0bðxkj ;yljÞj≥ jbicorðxkj ;yljÞj; k¼1;…;ðk�lÞÞþ1

ðk�l�BÞþ1 ,

as described in the literature [76]. Because this
method can be computationally intensive, we

calculated eFDR for specific values of biweighted cor-
relation (Additional file 1: Figure S7a).

Functional analysis of the co-expression network between
oocytes and the surrounding cumulus cells
We conducted the network analyses with genes that
showed highly significant (eFDR< 1.8 × 10− 5) and strong
correlations (|bicor| > 0.85, Noocyte = 819 and NinnerCC =
4569; Noocyte = 1781 and NouterCC = 3187). Here, we
describe the application of the method for oocytes and
outerCCs, but this method was also applied for oocytes
and innerCCs. First, we calculated a distance matrix
(1−bicorðxkj;yljÞ) and used it as the input for clustering

(average method and Euclidian distance) of the two
dimensions (i.e., genes from oocytes in rows and genes
from outerCCs in columns). We cut each tree at different
heights and tested the clusters for enrichment of biological
functions from the GO database (see description above).
We used the ComplexHeatmaps package [77] to draw
annotated heatmaps and Cytoscape [78] software to
visualize the networks. The same approach was used for
oocytes and innerCCs.

Additional files

Additional file 1: Figures S1-S10. Supplementary Figures to Functional
signaling and gene regulatory networks between the oocyte and the
surrounding cumulus cell. (PDF 12330 kb)

Additional file 2: List of genes specifically expressed in oocytes and
cumulus cells. Four spreadsheets containing genes specifically expressed
in oocytes, inner CCs, outerCC and CCs, average FPKM, and Ensembl
annotation. (XLSX 314 kb)

Additional file 3: Tables S1-S13. Supplementary Tables to Functional
signaling and gene regulatory networks between the oocyte and the
surrounding cumulus cell. (XLSX 110 kb)

Additional file 4: Annotation of the 14,011 Ensembl pairs of genes
corresponding to potential ligand-receptor or receptor-receptor interactions
between oocytes and cumulus cells. Table containing Ensembl identifiers,
expression levels and annotation of genes corresponding to potential
ligand-receptor or receptor-receptor interactions between oocytes and
cumulus cells. (XLSX 1381 kb)
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