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Abstract

Background: Identification of mutations from next-generation sequencing data typically requires a balance
between sensitivity and accuracy. This is particularly true of DNA insertions and deletions (indels), that can impart
significant phenotypic consequences on cells but are harder to call than substitution mutations from whole
genome mutation accumulation experiments. To overcome these difficulties, we present muver, a computational
framework that integrates established bioinformatics tools with novel analytical methods to generate mutation calls
with the extremely low false positive rates and high sensitivity required for accurate mutation rate determination
and comparison.

Results: Muver uses statistical comparison of ancestral and descendant allelic frequencies to identify variant loci
and assigns genotypes with models that include per-sample assessments of sequencing errors by mutation type
and repeat context. Muver identifies maximally parsimonious mutation pathways that connect these genotypes,
differentiating potential allelic conversion events and delineating ambiguities in mutation location, type, and size.
Benchmarking with a human gold standard father-son pair demonstrates muver’s sensitivity and low false positive
rates. In DNA mismatch repair (MMR) deficient Saccharomyces cerevisiae, muver detects multi-base deletions in
homopolymers longer than the replicative polymerase footprint at rates greater than predicted for sequential
single-base deletions, implying a novel multi-repeat-unit slippage mechanism.

Conclusions: Benchmarking results demonstrate the high accuracy and sensitivity achieved with muver, particularly
for indels, relative to available tools. Applied to an MMR-deficient Saccharomyces cerevisiae system, muver mutation
calls facilitate mechanistic insights into DNA replication fidelity.
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Background
Base substitutions in protein coding genes can result in
detrimental codon changes, particularly with the intro-
duction of a premature stop codon. Insertions and dele-
tions (indels) can potentially cause frameshifts that
change the translated sequence of the associated protein
entirely. Large indels may result in complete loss of
genes and key genetic control elements. Indels can
change important spacing between genomic landmarks
impacting trans-factor regulation. Though the impact of
base substitutions is significant, the deleterious potential

of indels is more substantial. Many studies have pro-
vided important insights into the mechanisms of indel
generation (reviewed in [1]), including slippage of a
DNA strand during replication of repetitive sequences
[2]. The rate of indel generation during replication de-
pends on the initial probability of slippage, the efficiency
of exonucleolytic proofreading, and the efficiency of
indel repair by the mismatch repair (MMR) machinery
[3]. Indels in repeat tracts are diagnostic for disease.
MMR defects, which cause rampant mutagenesis, gen-
ome instability, and cancer, result in characteristic
microsatellite instability where indels expand or contract
genomic repeat tracts. Defects in processes like genomic
ribonucleotide excision repair (RER; [4–7], reviewed [8]),
exonucleolytic proofreading [9, 10] and nucleotide
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homeostasis [11–13] are also characterized by indels in
different repeat contexts.
Decades of in vivo mechanistic insights into these pro-

cesses came from mutation rates derived from reporter
gene assays [14]. When mutated, these reporter genes yield
observable phenotypes. After accounting for silent muta-
tions, penetrance, and expressivity, the frequency of pheno-
typic change may be related to the mutation rate. Given
that rates of base-base substitution mutations tend to cor-
relate across reporter genes, it is tempting to extrapolate re-
porter mutation rates to the genome scale; however,
absolute rate estimates vary significantly between genes
[15] and between genomic positions [16, 17], and no rea-
sonable collection of reporter genes can capture the se-
quence diversity of a nuclear genome. In particular, long
repeat tracts are rare in exons of protein coding genes [18],
leading to underestimation of whole genome indel rates.
Whole genome mutation accumulation studies are an

increasingly popular way to determine whole-genome
mutation rates that addresses some shortcomings of re-
porter assays. This approach has been applied to eukary-
otes as diverse as slime molds, ciliates, green algae,
vascular plants, nematodes, arthropods, and vertebrates
[9, 13, 18–48], including humans, if parent-offspring
trios are included [49–53]. Mutation accumulation ex-
periments have two characteristics that can improve dis-
crimination and add sensitivity. First, mutation
accumulation lines provide simultaneous access to both
ancestor and progeny. Each sample may differ from the
reference, but only variant alleles that also differ between
ancestor and progeny are considered mutations. Unless
truly gross changes occur during accumulation, progeny
and ancestor should be largely isogenic and thus subject
to the same sources of mapping and sequencing error at
each locus. Second, careful controls on selective pres-
sures mean that no sub-population can grow to an un-
representative fraction of the total population. Thus,
allelic fractions in the final progeny sample will be con-
strained by those in the last founder cell, simplifying
construction of genotype models. Tools that leverage as-
pects of mutation accumulation experiments to call sub-
stitutions with extremely low false positive rates are an
active area of research [44], however those currently
available do not identify insertions or deletions.
Mutation accumulation experiments ease modeling

and discrimination of mutations but there are further
challenges to mutation detection. Errors due to library
preparation, sequencing biases, and mismapping make
indels harder to detect and characterize than substitu-
tion mutations [54, 55]. In addition, repeat tracts in-
crease sequencing errors due to amplification [56, 57]
and mapping errors due to misalignment, especially
when repeat tracts approach or exceed read length
(reviewed [58]). We recently used whole genome

mutation accumulation experiments to probe both sub-
stitution and indel rates in diploid Saccharomyces cerevi-
siae strains that encoded either wild type or mutator
variants of DNA Polymerases α, δ or ϵ (Pols α, δ or ϵ)
and were either proficient or deficient in MMR [18].
The > 35,000 base substitutions observed were sufficient
to characterize the division of labor between replicative
polymerases, to describe the efficiency of base-base
MMR, and to differentiate rates with respect to genomic
landmarks. False positive mutation calls are particularly
problematic when the underlying mutation rate is low.
Since all samples were compared to wild type cells with
very low mutation rates, stringent mutation calling filters
were used to minimize the false positive rate (FPR).
However, replicate sequencing libraries suggested that
about a quarter of substitutions from any given library
were not called, and statistical projections suggested that
indel sensitivity was even lower [9]. Low sensitivity is
problematic if statistical testing is underpowered with a
low number of mutations or if sensitivity varies with
context, as we saw in repeat tracts of varying length. To
correct for such underestimation, a statistical correction
was created to extrapolate from high-confidence conser-
vative indel calls based on assumptions about the pri-
mary sources of error. This revealed some mechanisms
and consequences of proofreading defects [9] and altered
nucleotide pools [13], but was of limited utility where
indel and/or repeat tract counts were low and stochastic
effects were inflated by the extrapolation.
Here we introduce muver (mutationes verificatae), a

mutation calling framework that streamlines the use of
common tools and applies novel methods to leverage
the power of matched progeny and ancestor to minimize
the FPR without sacrificing sensitivity. Muver includes
detailed analyses of underlying mapping patterns, pos-
sible mutational pathways, and explicit recognition of
ambiguity to increase both the accuracy and sensitivity
of mutation calling. This combination of features is ne-
cessary for the accurate estimation of mutation rates.
Though designed to improve mapping of indels in re-
peats, muver also improves substitution calls with pub-
lished data [18]. Muver results compare favorably to
previous statistical projections [9] without increasing
calls in control samples, suggesting low false negative
and false positive rates. Muver reanalysis extracts add-
itional detail, meaning, and mechanistic insight into
MMR and DNA replication fidelity.

Methods
Strains, mutation rates and analysis of URA3 mutants
Measurements of spontaneous mutation rates and the
sequencing of URA3 mutants were as previously de-
scribed [59–61]. URA3 rates used here are from two
previous studies [62, 63]. Saccharomyces cerevisiae
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strains, strain construction, mutation accumulation ex-
periments, genomic DNA preparation, Illumina library
preparation, genome sequencing, reference genome as-
sembly, and genomic feature selection proceeded as pre-
viously described [18]. Strains were diploids descended
from Δ|(− 2)|-7B-YUNI300 (Pavlov et al. 2001) and were
homozygous for CAN1, his7-2, leu2-Δ∷kanMX, ura3-
Δ∷, trp1-289, ade2-1, and lys2-ΔGG2899-2900.

Mutation accumulation experiments
Descendant samples are compared to ancestral samples
to specifically detect mutations that accumulate over the
course of the experiment and to exclude changes that
occur during strain construction and handling. Bottle-
necks may be introduced to fix existing mutations; after
the bottleneck, all descendants will share a mutation set,
and none will have a selective advantage. As in previous
studies [18, 24], bottlenecks were introduced through
streaking on solid media. Samples were identified by
passage number, with the ancestor sample defined as t0
(“time point 0”). The whole genome mutation accumula-
tion data presented here was collected previously [18].
Raw data resides at the National Center for Biotechnol-
ogy Information (NCBI) Gene Expression Omnibus
under accession number GSE56939.

The muver framework
Muver is a packaged Python framework written and
tested using Python 2.7.13. All muver functions can be
accessed using its command-line interface. Muver is
open-source (MIT license), with code available in a pub-
lic online repository (https://github.com/niehs/muver).
Thorough documentation detailing instructions for in-
stallation and usage is included.
Prior to analysis, supporting reference files are gen-

erated using the “index_reference” and “create_repeat_
file” commands (see “Reference genome preparation”;
Additional file 1: Figure S1). This step must only be
completed once per assembly. Remaining tasks are
performed by the “run_pipeline” command. Analysis
requires one or more outgrowths with a single t0
control sample, as such “run_pipeline” requires a text
file describing attributes of each sample in the ana-
lysis, including paths to associated FASTQ files and
sample ploidy. This step performs the alignment and
filtering of reads (Fig. 1a), observes patterns of se-
quencing depth, strand bias, and indel errors (Fig. 1b)
, and finally performs genotype calling and identifica-
tion of high-confidence mutations (Fig. 1c-d). These
steps are detailed below. Output files are generated
that describe the observed depth distributions, strand
bias distributions, and estimated indel error rates in
plain text format. Read coverage for each sample is out-
put in bedGraph format, along with filtered regions in

BED format; mutation calls are written to a tab-delimited
text file, as well as a file in VCF format.
Muver was designed to allow iterative refinement of

mutation calls. For instance, the sequencing depth may be
examined for bias using the “calculate_depth_ratios” com-
mand. If necessary, depth correction may be performed,
and observation of genome-wide sequencing depth re-run
using the “correct_depths” and “calculate_depth_distribu-
tion” commands. Mutation calling can then be performed
again based on updated depth observations using the
“call_mutations” command. Similarly, the “plot_allelic_
fraction” command may be utilized to assess global ploidy,
and mutations can be re-called under revised assumptions
of whole-genome copy number.
The muver framework calls established bioinformatics

tools to perform common read processing and align-
ment functions and to determine observed read counts
at potential variant sites. Read processing is performed
by samtools version 1.3.1 [64] and Picard version 2.9.2
(http://broadinstitute.github.io/picard/). Alignment is
performed by Bowtie 2 (version 2.3.0) [65]. Local re-
assembly of reads and determination of counts support-
ing all observed alleles is performed by the Genome
Analysis Tool Kit, or GATK (version 3.7-0) [66].

Reference genome preparation
Prior to analyzing sample data with muver, indices and
other files must be generated from the reference genome
sequence. These include a Bowtie 2 index, constructed
using bowtie2-build with default parameters, a FASTA
dictionary file, generated using Picard CreateSequence-
Dictionary, and a FASTA index file, generated using
samtools faidx. In addition, a list of all simple repeats
with unit length 1-4 and total length 4 or greater is iden-
tified, eliminating those that either could be recon-
structed through concatenation of shorter units or that
are wholly contained within another tract of the same
repeat unit or a circular permutation thereof. Optionally,
“extract_repeat_file_sample” can be utilized to draw a
smaller random sample of repeats from the full list. This
file is utilized by “run_pipeline” automatically during the
assessment of indel rates described below, and reduces
the memory required for the analysis of large genomes.

Alignment and identification of variants
Potential variants from the reference in all samples are
identified using GATK’s HaplotypeCaller. Earlier itera-
tions of this pipeline utilized the called genotypes pro-
duced at this stage, however, we found many cases
where heterozygous genotypes were called with relatively
low allelic fractions, particularly within repeats. Most of
these appeared to be the result of PCR errors accumu-
lated during library preparation and sequencing, while a
minority were likely the result of true mutations
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occurring within the first few cell divisions after the final
passage. As the largest effect of this phenomenon occurs
within simple repeats, particularly homopolymers,
muver seeks to observe and account for this on a per-
sample basis. Application of GATK’s Base Quality Score
Recalibration and tuning of other parameters reduced
the incidence of these miscalls, but did not eliminate
them entirely. For this reason, we elected to perform our
own genotype calling, still utilizing HaplotypeCaller to
identify sites of interest and taking advantage of its local
reassembly of reads to reduce errors in regions where
the initial local alignment performed poorly. GATK’s
documentation states that the counts returned by the
StrandAlleleCountsBySample annotation may include
reads are filtered during genotype calling. Due to our
pre-filtering of reads with low alignment scores, and the
fact that we do not attempt to interpret the read counts
directly as allelic fractions, we believe that these values
are a suitably reliable source of count information.

Reads are aligned using Bowtie 2’s sensitive local align-
ment mode to maximize the possibility of observing
indels, allowing fragment lengths of 0 to 1000 bp by de-
fault (−-fr –local –sensitive-local -I 0 -X 1000). Pairs
with reads mapping to distinct chromosomes are then
filtered due to a high likelihood of misalignment, as well
as reads with alignment quality less than 20. Read group
tags are added to the resulting SAM file to allow com-
patibility with GATK, and duplicate fragments are fil-
tered using Picard MarkDuplicates (REMOVE_
DUPLICATES = TRUE), generating an output file in
BAM format. Following creation of the required BAM
index file with samtools, local realignment is performed
using GATK’s RealignerTargetCreator and IndelRea-
ligner modules. Due to the expectation of high-depth
data sets, the maximum allowed read count in an inter-
val considered for realignment was increased to 100,000
(−-maxReadsForRealignment 100,000). Picard FixMa-
teInformation module is then utilized to ensure all BAM

a b c d

Fig. 1 Overview of muver operation. White boxes represent input/output files, purple boxes represent tasks implemented in the muver codebase,
while green boxes represent tasks performed by external tools. a Given a list of FASTQ files, muver initiates alignment, quality filtering, and
deduplication of reads. b For each sample, Gaussian distributions of per-nucleotide coverage and bias in coverage per-strand are fit to observed values
to aid in filtering of sites with abnormal coverage patterns, and indel error rates are estimated as a function of repeat length. Optionally, allelic fraction
distributions are generated to facilitate determination of sample ploidy. Read counts supporting each observed allele, per-strand, are determined for
potential reference variants using GATK HaplotypeCaller. c Outgrowth (descendant) sample read counts are compared to t0 (ancestor)
using three separate statistical tests; genotypes are called for each sample by comparing observed read count distributions to those
expected for all possible combinations of observed alleles at the provided ploidy. Regions with abnormally high or low coverage, to
be excluded from mutation calling, are identified based on the previous fit. d For each outgrowth sample, mutations are inferred at
sites where read counts differ sufficiently from t0 by enumerating all possible series of events that explain the called t0 and outgrowth genotypes. The
most parsimonious of these are accepted as the most likely, and events occurring in all cases are reported to the output
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records accurately reflect the changes to the alignment
implemented in the previous step. Potential variants
from the reference in all samples are then identified
using GATK’s HaplotypeCaller using default parameters,
with the following exceptions: the minPruning and
minDanglingBranchLength arguments, which affect the
number of haplotypes retained in the assembly step, are
set to 0 to maximize sensitivity, and counts of support-
ing reads per sample, for each allele and on each strand
are requested (−-minPruning 0 –minDanglingBran-
chLength 0 -A StrandAlleleCountsBySample).

Observation of genome-wide depth of coverage and
strand bias
Two common causes of incorrect genotype, and there-
fore false positive mutation calls, are genomic regions
where reads map poorly and regions of abnormal depth,
each resulting in skewed allelic fractions. In both cases,
greater variation in read coverage is observed than
would be expected by chance. Observation of the fre-
quency of averaged depths across a very large number of
samples revealed these distributions to be approximately
normal. Muver assesses depth of coverage genome-wide
for all samples, and these distributions are used to locate
regions of abnormally high or low coverage. Most of
these result from alignment deficiencies, but some may
result from true copy number variations (CNVs). Muver
allows an optional input of per-position ploidy values,
which may be found using a CNV caller. If such a file is
provided, muver will make genotype calls considering
ploidy at each position.
Another source of incorrect genotypes, affecting pri-

marily subclonal genotype calls, is the mismapping of
reads in regions on the periphery of unique and non-
unique genomic sequence. These reads typically repre-
sent a minority of the total count, and generally align to
a single strand. These features allow such miscalls to be
detected through assessment of allele strand bias. Obser-
vations of natural log-transformed strand bias values
were found to be approximately normal. In cases where
a subclonal genotype is called, these distributions are
utilized to detect abnormal strand bias in the differenti-
ating subclonal allele, allowing reversion to the primary
clonal genotype where such bias is present.
To characterize genome-wide read coverage the sam-

tools mpileup function is used, disabling its probabilistic
realignment (BAQ), applying the same mapping quality
and base quality thresholds used by HaplotypeCaller (20
and 10, respectively), and setting an arbitrarily large
maximum read count per position, 100,000, to ensure all
reads are considered (-B -Q 20 -q 10 -d 100,000).
The mpileup output is used to determine regions of

the genome with abnormal depth that are subse-
quently filtered. First, a Gaussian distribution is fit to

observed read depths, scaled by the user-provided
ploidy or local copy number. Then per-position read
depths are averaged using a 25-bp moving window.
Average values are then compared against the cumu-
lative distribution function of the fitted distribution,
generating a two-tailed p-value. Positions with p-values
below a given threshold (default = 1e-4), falling within a
given maximum distance (default = 1000), define the
boundaries of regions to be filtered, provided their depths
both fall above or below the mean. Intervals defined for
each sample are written to bed format files supporting
subsequent inspection.
The mpileup output is also used to characterize strand

bias in each sample. For each position, the ratio of the
top strand counts to the bottom strand counts is found.
A Gaussian distribution is fit to the observed frequencies
of the natural log-transformed ratios. Distribution pa-
rameters are retained to assess strand bias during muta-
tion calling.

Correction of bias in depth of coverage
Muver is capable of depth correction for systemic map-
ping biases in sequencing depth and library construction
artifacts. Visual inspection of the bedGraph files pro-
duced while mapping genome-wide coverage revealed
that depth was often highest at chromosome ends.
While the cause of this issue is unknown, we found that
the magnitude of the effect scaled regularly with distance
from the nearest chromosome end, and could be reliably
modeled by the sum of a log-normal cumulative distri-
bution function and linear function:

factor ¼ scalar 1−
1
2
þ 1
2

erf
lnx−μffiffiffi
2

p
σ

� �� �� �

þ intercept þ slope x

where x is distance from the nearest chromosome end
in bps and factor is the expected depth at that position
relative to the genome-wide mean. To facilitate estima-
tion of the parameters intercept, scalar, μ, σ, and slope,
the ratio of coverage at each position relative to the gen-
omic mean is determined and placed in 500-bp bins
based on distance from the nearest chromosome end.
The median for each bin is then determined, after ex-
cluding extreme values above 4 or below 0.25. Param-
eters from the equation above can be estimated from
these ratios by performing a non-linear least squares
fit within R, Matlab, Excel, or another preferred tool.
Following fitting, depth values may be corrected by
passing distribution parameters to the muver function
“correct_depth”, where observed depth values are
scaled by 1

factor . Regions of abnormal coverage and
strand balance may then be identified using the
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functions “calculate_depth_distribution” and
“calculate_bias_distribution”.
This module is optional and may be replaced by other

systemic depth correction tools.

Assessment of per-sample indel error rates
Insertions and deletions in repeat sequences are in-
troduced by PCR during library preparation and se-
quencing and are a major source of error during
genotype calling. Muver corrects for these errors
based on the assumption that most insertions and
deletions in repeats are attributable to these sources.
We find the observed rates vary across event types
(insertion or deletion), lengths of repeat units, and
lengths of the overall repeat tract. To correct for
these errors, muver counts reads containing an indel
that fully traverse a previously identified repeat tract.
For each sample, these values are summed for each
combination of unit length (1-4 nt) and total tract
length and expressed as a ratio of observed inser-
tions and deletion to overall coverage. We consider
these ratios as the estimated insertion and deletion
error rates in repeat regions. Muver fits the observed
rates to the following function based on repeat tract
length:

error ¼ M þ L
1þ e−k x−x0ð Þ

Here, x is repeat tract length, and M, L, k, and × 0 are
parameters that describe the fit. For each sample, fits are
performed separately for insertions and deletions and for
unit lengths of 1, 2, 3, and 4 nucleotides. Rates were cal-
culated based on fewer than ten distinct repeat loci are
not considered during fitting. The fitted parameters M,
L, k, and × 0 are retained to determined expected inser-
tion and deletion rates during genotype calling.

Estimation of global ploidy
Muver considers the ploidy of each sample during
genotype and mutation calling. Muver facilitates esti-
mation of ploidy by providing a distribution of ob-
served allelic fractions for each sample. To this end,
read counts supporting each allele at all positions
genome-wide are determined using samtools mpileup
(-B -Q 20 -q 10 -d 100,000). Allelic fractions are cal-
culated as the ratio of reads mapping to a given allele
to the total read count at a given position. A histo-
gram of observed allelic fractions is then calculated
and reported. In most cases, the rate of heterozygos-
ity is low, and these distributions display very high
counts close to zero and one, although, minor peaks
are usually apparent, and their number and location
provide an indication of ploidy. The largest of these

peaks should occur at 1
ploidy and, for ploidies greater

than 2, 1−ð 1
ploidyÞ (Additional file 1: Figure S2).

Genotype calling
Genotypes for each outgrowth and control t0 sample are
called by selecting the genotype whose expected allelic
frequencies most closely match observed frequencies.
We assume that the observed allelic frequencies are due
to contributions from a clonal genotype and a potential
sub-clonal genotype at a given sub-clonal frequency. To
call, first all possible clonal and sub-clonal genotypes are
enumerated considering sample ploidy and observed al-
leles, and the expected allelic frequencies are deter-
mined. We allow sub-clonal genotypes to be only one
allele different than the clonal genotype. We allow sub-
clonal allele frequencies to be 0.500, 0.250, or 0.125, cor-
responding to mutations occurring in the first, second,
or third generations. For a clonal genotype, sub-clonal
allele, and sub-clonal frequency, the expected frequency
for an allele is calculated by the following:

freq: ¼ 1−subclonal freq:ð Þ � allele count; clonal
total clonal alleles

þ subclonal freq:� allele count; subclonal
total subclonal alleles

Anticipating elevated PCR error in repeat sequences,
the expected allelic frequency is corrected based upon
the previously observed error rate. For each allele, the
insertion and deletion error rates are calculated based
on the unit length and the total repeat tract length. We
find that the insertion or deletion of a single unit is by
far the most commonly observed type of error. As such,
correction factors are applied to alleles that result
from the insertion or deletion of single unit. For ex-
ample, given a genotype of AA|AA, and expected + 1
and − 1 unit error rates of 0.03 and 0.05 respectively,
the corrected excepted frequencies would be as fol-
lows: A - > 0.05, AA - > 0.92, AAA - > 0.03. Following
error correction, all frequencies of zero are instead
set to 2

total sample depth , which corresponds to a pseudo-

count added for each strand and prevents division-by-
zero-errors in subsequent scoring.
Following calculation of expected frequencies, ob-

served allele frequencies are calculated considering per-
allele and total read counts for each sample. Each poten-
tial genotype is scored using the following for expected
rates e0 … en and observed rates o0 … on corresponding
to alleles a0 … an:

score ¼
XN

i¼0
abs ln

oi
ei

� �� �

The single genotype with the minimum score is ac-
cepted as the called genotype. For ties when calling the
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t0 genotype, the genotype containing the most occur-
rences of the reference allele is selected. For outgrowth
samples, the genotype containing the highest number of
alleles shared with the t0 call is selected.
If the called genotype contains a subclonal element,

two additional statistical tests are performed. First, the
observed rate of reads attributed to the differentiating
subclonal allele is compared to the rate that would be
expected given the clonal genotype call by binomial test.
An upper-tail p-value is derived from the cumulative
distribution function, and compared to the threshold
that controls family-wise error rate (FWER) at a user-
specified rate (default = 0.01) using Šidák correction (19)
with the number of positions in the genome considered
as the number of tests performed. If the p-value exceeds
the threshold, only the clonal genotype is reported. Sec-
ond, the strand bias of the reads attributed to the sub-
clonal allele is examined to ensure that the call is not an
effect of mismapping. The natural-log transformed ratio
of top strand to bottom strand counts is determined,
and a two-tailed p-value is calculated against the
genome-wide distribution. The subclonal call is not
retained if the p-value falls below the FWER-based
threshold. If abnormal strand bias is detected in a called
subclonal allele in a t0 sample, no mutations are re-
ported at that position, due to the high likelihood of er-
roneous calls. Additional sources of error may be
present that manifest as apparent subclonal mutations,
that are not accounted for in muver’s analysis. As such,
reported subclonal calls should be carefully scrutinized
(see Additional file 1: Results and Discussion).

Identification of mutations
Mutations are identified through comparison of the read
counts per strand and allele reported by HaplotypeCaller
for a given t0 and outgrowth sample pair. The compari-
son is not performed at positions where counts are ob-
served for either sample on a single strand only or for a
single allele (e.g. 25 reads supporting allele “A” mapped
to the minus strand only). This scenario is commonly
associated with mismapping of reads on the periphery of
regions with non-unique sequence. In addition, for the
data sets presented herein, we have excluded regions
where we have historically observed poor read coverage:
telomeres; sub-telomeres; rDNA loci; and small regions
flanking each of these.
The development of muver was aided by a test data

set with approximately 21,000 potential mutations iden-
tified with GATK HaplotypeCaller set to maximize sen-
sitivity (Additional file 1: Figure S3). Initially, read
counts were compared separately per-allele and p-values
were determined from the upper tail of a binomial distri-
bution. Sites were rejected for p-values above a thresh-
old chosen to control the family-wise error rate (FWER)

at 0.01 via Šidák correction (68), assuming a number of
tests equal to the count of queryable (i.e. not excluded)
positions in the genome. Upon implementation, false
positives were noted, which upon further inspection, ap-
peared largely due to an increase of reads, likely mis-
mapped, attributed to only one strand. This issue was
resolved by performing the binomial tests separately for
each strand and requiring that p-values of both fall
below the threshold (Additional file 1: Figure S3A; “auto
positive,” in blue). While this avoided most manually clas-
sified false positives (Additional file 1: Figure S3A; “man-
ual negative,” in orange), a large number of manually
classified false negatives were observed (Additional file 1:
Figure S3A; “manual positive,” in green). A third test, the
chi-square goodness of fit, was implemented to compare
the full distributions of counts across all alleles and
strands. When this test metric was compared to either bi-
nomial p-value, the “manual positive” and “manual nega-
tive” data clouds appear to interpenetrate to a high degree
(Additional file 1: Figure S3B). In three dimensions, with
each test on a separate axis, nearly all false positive muta-
tions fall close to one of the axes or very near the origin
(Additional file 1: Figure S3C). Based on these observa-
tions, muver rejects any variant site with one or more
p-values greater than 0.1, as well as any site for
which the vector sum of the transformed p-values
was less than the FWER-corrected threshold.
Therefore, muver makes mutation calls considering

multiple statistical tests:

� A chi-square goodness of fit test is used to compare
read counts of the outgrowth to the control t0 sam-
ple. The test considers read counts at each allele and
each strand separately, resulting in the p-value pchi.

� An upper-tail p-value is generated by comparing the
outgrowth allelic frequency to the binomial cumula-
tive distribution function defined by the t0 allelic
frequency. A pseudo-count is added where the read
count is 0. Each strand is considered separately,
yielding p-values ptop and pbottom.

The computed p-values from both chi-square and bi-
nomial tests are used to call mutations. For each allele, a
composite score is calculated as follows:

score ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− log10ptop

� �2
þ − log10pbottom
	 
2 þ − log10pchi

	 
2r

This score represents the distance from certainty that
no mutation occurred, and is considered against the
similarly log-transformed p-value threshold necessary to
control the FWER at a user-specifiec rate (default = 0.01,
Additional file 1: Figure S3). To be called as a position
with a putative mutation, pchi must be less than 0.1, and
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there must exist at least one allele where the composite
score is greater than the FWER-derived threshold and
both ptop and pbottom are less than 0.1.

Inference of mutation identity
For called mutations, individual mutation events are
identified based on genotypes called in the outgrowth
and t0 control. To do this, all possible mutation events
are determined given observed alleles. The considered
mutations are as follows:

� Conversion of one allele to another (substitution,
insertion, or deletion)

� Gain of one allele (copy number gain)
� Loss of one allele (copy number loss)

Considering the t0 genotype as a starting point, se-
quences of mutation events (or paths) are considered
iteratively until one or more sequences of mutation
events are found that results in the outgrowth allele.
If more than one path is found, only mutation
events shared across all sequences are reported
(Additional file 1: Figure S4).
Muver captures mutation events that are ambiguous

but still informative. In a second pass, mutations present
in all sequences that are of the same type (conversion,
gain, or loss) and that share the same starting allele are
grouped together and reported as ambiguous. These am-
biguous events can be important for subsequent analysis.
For instance, these ambiguous events can result from
CNVs when the identity of the gained or lost allele is
ambiguous.
Clusters of mutations that increase the count of an

existing allele but do not increase copy number can
point to large scale structural rearrangements or gene
conversion events. To facilitate discovery, these events
are flagged as potential allelic conversion events, or
PACs. If a mutation is ambiguous, the PAC flag may be
ambiguous as well, depending on its constitutive alleles.
If so, the PAC flag is explicitly defined as ambiguous.
Mutations are reported in the format recommended

by the Human Genome Variation Society (HGVS) and
by NCBI. We also use the following rules to describe
mutations for which the HGVS nomenclature was not
designed, primarily CNV events and mutations to
non-reference alleles:

� A copy number gain is reported using the keyword
“gain”, e.g. g.1000gainA.

� A copy number loss is reported using the keyword
“loss”, e.g. g.1000lossA

� A copy number variant with an ambiguous allele is
reported with an asterisk, e.g. g.1000gain*.

� To report a mutation in a non-reference allele, the
mutation is identified using the flanking nucleotides,
e.g. for a G to C substitution at 1000A, the mutation
would be reported as g.999_1001G > C.

� Ambiguous mutations are grouped with pipes, e.g.
g.1000A > C|g.1000A > G.

Filtering and reporting of results
Mutation calls are filtered if any of the following are
true:

� Muver allows regions excluded from analysis to be
set by the user through an input BED file. All
mutations in these regions are filtered.

� Read depths in the outgrowth or t0 control are
differ significantly from the global mean.

� Read depths in the outgrowth or t0 control are
below a depth threshold (default = 20 reads).

� Strand bias in the t0 control subclonal allele differs
significantly from the global mean.

� If only one allele has coverage in the outgrowth or
t0 control, and that allele only has coverage on one
strand.

� Mutation calling score or individual p-values do not
meet described thresholds.

Mutations that pass filters are reported in two output
formats: a tab-delimited text file and a VCF file.

Assessment of muver sensitivity and false positive rates
with a human gold standard
High confidence variants relative to the hg19 reference
genome called by the Genome in a Bottle Consortium
[67] (release 3.3.2) for the father (NA24149) and son
(NA24385) of the Ashkenazim Trio were used to com-
pile a set of sites known to differ between individual
samples, and a subset of the raw data was analyzed to
measure muver’s sensitivity and false positive rate. For
this analysis, we utilized the first 4,000,000 reads from
each of the 336 and 288 HiSeq lanes generated for the
HG003_HiSeq300x_fastq (father) and HG002_
HiSeq300x_fastq (son) data sets, respectively. These 1.23
and 1.14 billion paired-end, 150 nt reads provided an es-
timated 126× and 108× coverage, reducing the depth to
a level more readily achieved in experiments likely to be
analyzed using muver. To provide context for these
values, we identified clonal differences with VarScan ver-
sion 2.4.3 [68] using the Somatic Mutation Calling work-
flow and VarDict version 1.5.1 [69]. Additionally, we
called variants with HaplotypeCaller for the father and
son individually, and combined the results to identify
differences.
Muver analyses were performed using a sample of

5,000,000 repeat loci for the estimation of indel error
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rates. For the purposes of this analysis, the father was con-
sidered the “t0” sample, and the son the “outgrowth”. Simi-
larly, within the VarScan analysis, the father was considered
the “normal” sample, and the son the “tumor”. Analyses
were performed with each tool across a range of values of
the primary tunable parameter: a FWER of 2 × 10− 7 to 0.9
for muver, somatic p-value of 1 × 10− 50 to 0.1 for VarScan,
a p-value of 1 × 10− 6 to 0.1 for VarDict, and a calling
confidence threshold of 10 to 10,000 for HaplotypeCaller
(Additional file 1: Tables S5-S8).
Input files for VarScan were generated from the

BAM files produced during analysis with muver, using
samtools mpileup, applying mapping and base quality
filters of 20 and 10 and setting the maximum depth
to an arbitrarily large value to ensure all reads are
considered (−d 100,000). VarScan’s somatic function
was run using default parameters. Results were fil-
tered using its included processSomatic tool accepting
mutations classified as “high confidence” and catego-
rized as “Somatic” or “LOH”, as well as those labeled
“Germline” where the called genotypes differed.
Analysis with VarDict was performed utilizing the

tool’s paired sample mode with minimum allelic frac-
tion set to 0.1, the same applied by VarScan, but
otherwise default or author-recommended parame-
ters. Calling was limited to the regions defined by
the Genome in a Bottle Consortium as high confi-
dence in both the father and son. To facilitate com-
parison with the Genome in a Bottle calls, complex
mutations reported by VarDict were broken into
their constituent substitutions and indels using vcfal-
lelicprimitives, a component of vcflib v1.0.0-rc1.
Base quality score recalibration (BQSR) was performed

prior to analysis with HaplotypeCaller using GATK’s
BaseRecalibrator function, passing the dbSNP build 150
“common_all” vcf file as the required list of known sites,
and considering all default covariates, as well as repeat
unit and repeat length. HaplotypeCaller was run for each
sample individually in GVCF mode (-ERC GVCF), and
results were combined using GenotypeGVCFs.
Differences identified by any tool outside of the

high confidence regions defined by the Genome in a
Bottle Consortium in both the father and son data
sets were not considered in the determination of false
positive and false negative rates. Similarly, individual
sites or regions automatically excluded by muver due
to abnormal depth or coverage patterns were not
considered, as these were determined individually per-
sample, independent of any annotation or consider-
ation of sequence content, by a central component of
the analysis pipeline. Such exclusions were not pos-
sible for HaplotypeCaller, VarScan, or VarDict, which
do not explicitly define high or low confidence re-
gions in their respective outputs. In all cases the

entirety of chromosomes X, Y, and the mitochondrial
genome were also excluded.

Assessment of muver performance within yeast mutation
accumulation experiments
To further assess muver’s performance, we compared
mutation calling results with VarScan as well as
MuTect2 (beta) [70] in the context of S. cerevisiae muta-
tion accumulation experiments. Input files for VarScan
were prepared and results filtered as in the analysis of
human data above. Base quality score recalibration was
performed on alignment files prior to running MuTect2.
To generate the necessary lists of sites with known vari-
ation, to be excluded during BQSR, the t0 samples of
each data set were examined with HaplotypeCaller.
Aside from requesting the StrandAlleleCountsBySample
annotation, default parameters were used. A set of con-
servative filters were then applied to the variants, accept-
ing only those whose allelic fractions were less than 0.1
from the value implied by the called genotype, and
whose supporting reads did not display a strand bias
greater than 0.9. These high confidence variants were
passed to the BaseRecalibrator tool, which was run con-
sidering the default covariates as well as repeat unit and
repeat length. MuTect2 was run using default parame-
ters, passing outgrowths and t0 as matched tumor-
normal pairs. MuTect2 results were filtered based on the
following flags: t_lod_fstar, germline_risk, triallelic_site,
homologous_mapping_event, multi_event_alt_allele_in_
normal. Mutations flagged as “alt_allele_in_normal”,
“clustered_events”, or “str_contraction” were accepted,
as no such filters are applied by muver. An additional
step was applied to the MuTect2 results: mutations were
filtered whose outgrowth alternate allele frequency fell
below 0.4 or above 0.6. This was performed to filter
down to clonal-only mutations to facilitate comparisons
with muver.
Overall run time for each tool was assessed with three

separate data sets selected to represent a range of se-
quencing depths and mutation counts. The time to gen-
erate processed alignment files was added to the
runtime for each program. VarScan’s total also includes
the time required to produce the necessary input files in
mpileup format, while MuTect2’s total includes the time
required to perform base quality score recalibration. As
multithreading is not supported by mpileup or VarScan
itself, samples were processed concurrently, with only
the longest run time for each stage of the analysis in-
cluded in the total. Though the option for multithreaded
operation exists for MuTect2 and the GATK compo-
nents utilized for BQSR, attempts to run these tools with
multiple central processing unit (CPU) threads did not
complete successfully without errors. To resolve this
issue, the MuTect2 analyses were also performed for all
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samples concurrently, utilizing a single CPU thread.
Muver’s total includes time required for any necessary
depth correction and subsequent re-calling of mutations.

Estimating false negative indel rates in previous work
In previous work, indel rates were corrected for one
known false negative effect: reads that add depth but not
useful indel information. Depending on the length of a
repeat tract, some fraction of reads will partially traverse
that tract. These uninformative reads may drive indel
variants below hard allelic fraction cutoffs, resulting in
false negative or type II statistical errors [9]. If L is the
repeat tract length, D is the average coverage depth, R is
the read length, and C is the allelic fraction cutoff, then
the false negative rate, B(L;D,p), should be

B L;D; pð Þ ¼
XL
x¼0

D� C
L

� �
px 1−pð ÞD�C−x

where p is the fraction of reads that cross the entire
homopolymer,

p ¼ R−2 Lþ δLð Þð Þ= R− Lþ δLð Þð Þ:
Indel rates were corrected by dividing by 1-B(L;D,p),

under the assumption that the false positive (type I
error) rate was near zero, as evidenced by a lack of
indels called in wild type samples.

Calculating mutation rates
Briefly, as per [18], the mutation rate, per base pair per
generation, for mutation type i, in bin b, is

μbp;i; j ¼
Ni;b; j

Nbp;b � gentot; j
;

where Nbp, b is the number of base pairs in bin b. The
number of mutations of type i in bin b (Ni, b, j; ac-
counting for ploidy) and the number of generations
over which mutations accumulated (gentot, j) are both
summed across kindred isolates of strain j unless
otherwise noted. Nbp, b is set to the global ploidy of
strain j (usually 2) for the special case of whole gen-
ome rates (μbp, i, j = μg, i, j).

Simulation of multi-base deletions in a/T homopolymers
Monte Carlo simulations of the accumulation of multi-
base deletions in A/T homopolymers were performed
based on aggregate rates derived from pol2-M644G
msh2Δ and pol3-L612 M msh2Δ samples. Rates were
calculated assuming all multi-base insertions or dele-
tions represented a series of single-base events. Simula-
tions were run for 684 and 675 generations, the
respective means for all pol2-M644G msh2Δ and pol3-
L612 M msh2Δ outgrowth samples, and 5000 iterations

were performed in each case. For each generation, the
possibility of a single-base insertion, single-base deletion,
and no change were considered within all A/T homopol-
ymers of length 7-18 genome-wide.

Results
The sensitivity and false positive rates (FPRs) of
muver were determined by analyzing clonal differ-
ences between Illumina sequencing data for the father
and son from the Genome in a Bottle Consortium
(GiaB) Ashkenazim Trio. The same data was analyzed
with GATK HaplotypeCaller v3.7 and VarScan v2.4.3
for comparison. Muver was then used to identify
clonal mutations in previously collected Saccharomy-
ces cerevisiae whole genome mutation accumulation
experiments [18]. Strains with mutations in replicative
DNA polymerases α, δ or ε (pol1-L868 M, pol3-L612 M or
pol2-M644G, respectively), with or without homozygous
deletion of essential mismatch repair (MMR) gene MSH2,
were compared to wild-type strains. Muver compared
each outgrowth sample to an ancestral sample (t0) col-
lected at the beginning of the experiment. Mutation rates
were calculated based on the number of elapsed genera-
tions. Muver’s results were compared to those of
MuTect2, VarScan, rates from reporter gene experiments,
and the analysis pipeline previously used to call clonal
mutations (hereafter referred to as pipe2015). Muver re-
sults compared favorably to all other pipelines and re-
vealed an unforeseen feature of replication infidelity in
repeat tracts.

Muver sensitivity and false positive rate with human data
Analysis of the GiaB father and son samples was per-
formed with muver using family-wise error rates (FWER)
from 2 × 10− 7 to 0.9. Sensitivity and FPRs were calculated
considering only high-confidence GiaB calls. For the ex-
amined FWER range, the sensitivity and false positive rate
increase approximately linearly for both substitutions and
indels, with no clear inflection points to suggest an opti-
mal FWER (Additional file 1: Figure S5). Based on these
observations, as well as those in the analysis of yeast ex-
periments during muver’s development, we selected 0.01
as the default FWER, electing to reduce the false positive
rate at the expense of sensitivity.
At the selected FWER, muver has FPRs of 0.036

and 0.030 Mbp− 1 for substitutions and indels,
respectively (Fig. 2a, red), while still calling 93.6 and
87.3% of GiaB substitutions and indels, respectively.
However, some muver calls (0.155 and 2.22%; Fig. 2a,
orange) shared positions but not mutation types with
GiaB calls, yielding more strict sensitivities of 93.4
and 85.1% (Fig. 2a, green), Most occurred where an
allelic imbalance of more than threefold resulted in
a best-fit genotype model with a possible subclonal
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mutation which was then rejected downstream due
to insufficient statistical support.
For substitutions, muver displayed FPRs 96-, 94-,

and 62-fold lower than those of GATK Haplotype-
Caller [66], VarDict,[69] and VarScan [68], respect-
ively (Fig. 2a, red), with only 5.0, 3.5, and 4.1%
lower sensitivity (Fig. 2a, green). Similarly, for indels,
muver displayed FPRs 42-, 79-, and 30-fold lower
than those of HaplotypeCaller, VarDict, and VarScan
(Fig. 2a, red), with far fewer GiaB mutation type dis-
agreements (Fig. 2a, orange) and comparable to
higher sensitivity (Fig. 2a, green).
Low false positive rates occurring with relatively

modest losses in sensitivity are unique to muver. To
achieve a substitution FPR comparable to that of
muver run with default settings, HaplotypeCaller

requires a calling confidence threshold of ~ 3000, and
VarScan requires a somatic p-value threshold lower
than 10− 15 (Additional file 1: Figure S5). Such
conservative thresholds result in sensitivities of
approximately 33 and 60%, respectively, compared to
94% for muver. For indels, thresholds > 2500 and < 10− 10

are necessary to match muver’s FPR, resulting in
sensitivities below 26 and 66% for HaplotypeCaller and
VarScan, while the rate for muver remains at a
relatively high 87%. VarDict was unable to achieve
false positive rates comparable to muver at any
threshold, as it rounded any p-value lower than 10− 5

to zero. Sensitivity, however, varied little and
remained relatively high regardless of the threshold
applied, approximately 96 and 79% for substitutions
and indels, respectively.

a

b

Fig. 2 Comparison of muver results with other common mutation calling software. a Muver compared to GATK HaplotypeCaller, VarScan, and
VarDict mutation calls in a Genome in a Bottle (GiaB) human father-son pair. Presumed false positives are mutations called where none are
implied by GiaB genotype calls. Mutation disagreements are mutation calls with positions that agree but mutation identities that disagree with
GiaB. Sensitivity is the percent of GiaB genotype differences identified by a given caller, excluding loci with identity disagreements. False positive
rates (FPR) are per million base pairs (Mbp− 1) tested by both GiaB and a given caller (i.e. excluding areas of excessively low coverage, etc.). b
Comparison of clonal substitution and insertion/deletion calls between muver, MuTect2 and VarScan for Saccharomyces cerevisiae with very low
(wild type) and very high (pol3-L612 M msh2Δ) mutation rates. Mutations called by both MuTect2 and VarScan but not by muver are in orange.
Mutation calls shared with muver are in green. Mutations called by MuTect2 or VarScan only are in red. Those called by muver but missed by the
listed caller are in purple. Statistics from human data in panel A suggest that in panel B most red calls are false positives and most blue calls are
false negatives. Mutation rate ratios (pol3-L612 M msh2Δ over wild type) for each caller were calculated from the number of called mutations, the
size of the genome, and the number of elapsed cell divisions (see Methods). For comparison, mutation rate ratios from previous URA3 assays are
also presented. See Additional file 1: Table S1 for event counts
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Application to mutation accumulation studies
To assess muver’s performance in mutation accumu-
lation experiments relative to other tools, we ana-
lyzed yeast wild type (WT) and pol3-L612 M msh2Δ
samples with both VarScan [68] and MuTect2 [70]
(Fig. 2b, Additional file 1: Table S1). Both VarScan
and MuTect2 are designed to call mutations in
matched tumor-normal pairs, however, their ap-
proaches to genotype and mutation calling differ
from the methods employed by muver. VarScan re-
lies on mpileup to provide observed allele counts,
and no local reassembly of reads is performed. Mu-
tations are called by comparing observed tumor and
normal sample read counts using Fisher’s exact test,
and genotypes are identified using defined allelic
fraction thresholds. VarScan does not support identi-
fication of mutations for ploidies greater than two,
and does not report more than a single alternate al-
lele per position. MuTect2 utilizes the same local re-
assembly algorithm implemented in HaplotypeCaller,
from which the read counts supporting each allele
are derived. Mutations are identified based on a log
odds score comparing the likelihood of observing
the given read counts assuming a genuine mutation
relative to the likelihood of the observation assuming
no difference is present. Though MuTect2 supports
arbitrary ploidy, only a single alternate allele is re-
ported at each position, restricting the possible geno-
type calls to homozygous reference or heterozygous with a
reported allelic fraction between 0 and 1.
For the WT mutation accumulation data set, muver,

MuTect2, and VarScan called 31, 27, and 479 mutations,
respectively. Under the conservative assumption that all
mutations called were erroneous, these values provide
upper bound FPR estimates in this system of 0.367, 0.320,
and 5.68 Mbp− 1 for muver, MuTect2, and VarScan,
respectively. For muver and VarScan these are higher than
measured using GiaB data.
To assess FPRs in a similar context, but more directly,

we called mutations after splitting reads from a single
sample (TAK137) into virtual outgrowth and t0 samples,
using the “virtual tumor” method as applied by the au-
thors of MuTect [70]. As reads were derived from the
same source, no mutations should be called. Of the three
tools, only VarScan reported mutations passing all filters
(a total of 9). The WT mutation accumulation and vir-
tual outgrowth/control results both suggest low FPRs for
muver and MuTect2. We performed a second virtual
outgrowth/control analysis using the pol3-L612 M
msh2Δ outgrowth TAK280, a sample expected to harbor
a very large number of variant sites. Again, there were
zero false positive calls in the muver and MuTect2 re-
sults, and 9 for VarScan. Assuming 900 generations of
mutation accumulation, VarScan’s 9 false positives would

imply a mutation rate per base per yeast cell division
equal to or greater than the rate for any wild type
eukaryote yet assessed through whole genome mutation
accumulation (rates averaged if multiple experiments
available for a given species [9, 13, 18–47]). This illus-
trates the importance of very low FPRs when calculating
rates from mutation accumulation experiments. Muver
has not been designed to detect rare variants in hetero-
geneous tumor samples, the domain of other tools de-
signed for that purpose such as MuTect2. Muver, if used
for such would detect only mutations in the last com-
mon ancestor of the bulk tumor. Muver would be more
appropriate for mutation accumulation experiments in
cancer cell lines or tumor organoids.
In contrast to the WT strain, the mutation rate for the

pol3-L612 M msh2Δ background is elevated by a muta-
tor variant of DNA Polymerase δ and by the absence of
mismatch repair (MMR) [18, 24, 59, 71, 72]. A total of
21,239 mutations were called across all tools for the four
pol3-L612 M msh2Δ outgrowth samples (Figure 2b,
Additional file 1: Table S1). The three methods agreed
on the positions of over 70% of mutation calls; 16% were
identified by muver and VarScan, but not MuTect2.
Most of these sites show evidence of non-reference al-
leles in the t0 sample or more than one alternate allele
present in the outgrowth sample. MuTect2 explicitly ex-
cludes the former and applies “triallelic_site” or “hom-
ologous_mapping_event” flags to the latter. An
additional 1% were called by MuTect2 and VarScan, but
not muver, however, nearly all of these were excluded
from consideration due to abnormally high or low depth
in the t0 or outgrowth sample. Sites called by MuTect2
alone or by MuTect2 and muver together represent less
than 1% of calls. The calls by VarScan alone were more
frequent at ~ 3%. Approximately two-thirds of these are
excluded by muver (insufficient t0 versus outgrowth dif-
ference; filtered due to insufficient/abnormal depth or t0
subclonal strand bias, thus likely due to mismapping)
and for most of the remainder, muver calls identical
clonal genotypes for the outgrowth and t0 samples after
accounting for subclonal populations or mismapping is-
sues in one or both samples.
Nearly all muver-specific mutations, the remaining 6%

of calls, were indels within repeat tracts. These are mu-
tation types and contexts that muver was specifically de-
signed to target. Given much lower mutation rates in
WT samples than in pol3-L612 M msh2Δ but presum-
ably the same rates of PCR error and mismapping, these
calls appear to be genuine.
Observed run times for each assessed tool varied

widely depending on sample number and read depth,
with VarScan’s analyses completing in 3.5 to 10 h and
MuTect2’s completing in 1.5 to 7.5 days. Muver fell be-
tween these two extremes, requiring 5.5 to 15 h

Burkholder et al. BMC Genomics  (2018) 19:345 Page 12 of 19



(Additional file 1: Table S2), representing a > 6-fold re-
duction relative to MuTect2, but a 1.5-fold increase rela-
tive to VarScan. These analyses were performed using
up to 20 CPUs when parallel processing was possible,
however, the total CPU time required follows a similar
trend, with muver performing somewhat less efficiently
than VarScan, but more efficiently than MuTect2.

Muver compared to previous single locus results
Until the advent of whole genome mutation accumula-
tion, mutation reporter assays, specifically forward muta-
tion assays, were the gold standard for measuring
mutation rates and were often extrapolated to estimate
overall rates across the genome. Whole genome substi-
tution and single-base indel rates called by muver yield
ratios of pol3-L612 M msh2Δ and WT mutations con-
sistent with those previously reported from the URA3
reporter system [62, 63] (Fig. 2b), after accounting for
higher indel rates outside of genes in the absence of
MMR [9, 18]. Ratios from muver match the reporter
data better than those of MuTect2 and VarScan. When
comparing mutation rates, the former illustrates the
need for sensitivity (see indels in Fig. 2b) and the latter
illustrates the need for low FPRs. Overall there is good
correlation between muver whole genome calls and mu-
tation rates from the reporter assay (Fig. 3a). The corre-
lations between log-transformed rates are linear over at
least a three-order-of-magnitude dynamic range (per
base pair per generation; Fig. 3a; R2 = 0.988 and 0.933
for substitutions and single-base indels, respectively; ex-
cluding pol1-L868 M msh2Δ substitutions). Mutation ac-
cumulation substitution and single-base indel rates are
respectively 1.43 and 6.08-fold higher on average (ex-
cluding pol1-L868 M msh2Δ substitutions). The latter
was expected given higher predicted indel rates in long
homopolymers of the sorts not found in URA3 [9]. The
mutation accumulation substitution rate in pol1-L868 M
msh2Δ samples reported by muver is about 5-fold lower
than in the reporter system. Thus, URA3 is not a repre-
sentative model of unrepaired base-base mismatches
made by Pol α-L868 M.
Muver-called and URA3 reporter multi-base indel

rates are less correlated (R2 = 0.813; Fig. 3a). On average,
the reporter assay underestimates the whole genome
multi-base indel rate by 2.2 and 118-fold in MMR-
proficient and MMR-deficient strains, respectively.
URA3 appears to be a poor model for MMR-repairable
multi-base indel loops. Again, this was expected given
higher predicted indel rates in long repeat tracts, that
are common in the genome but rare in URA3 [9]. This
suggests that whole genome mutation accumulation ex-
periments are more suitable for studying processes for
which multi-base indels are diagnostic (i.e. microsatellite
instability in MMR-deficient tumors [73, 74]).

Correlations between muver calls and URA3 muta-
tions rates inform muver FPR estimates. Pipe2015 iden-
tified only eight indels in the 28 MMR-proficient
samples, all single-base and all from strains with either
Pol δ or ε mutator variants [18]. Muver identified two
indels in the seven wild type samples and two in the six
Pol α-variant samples. If these thirteen samples are con-
sidered negative controls, then given the 12 Mbp cerevi-
siae genome, the upper bound for the indel FPR is ≤0.
026 Mbp− 1, remarkably similar to the value measured in
the comparison of human genomes. From a regression
of mutation accumulation versus URA3 single-base indel
rates (Fig. 3a), the expected count for these thirteen
samples is 3.5. The observed count is not significantly
greater than this value (Poisson p = 0.28), suggesting that
the apparent upper bound indel FPR is overestimated.
Muver found 28 single-base (up from eight) and five
multi-base indels (up from zero) in the fifteen MMR-
proficient Pol δ and ε mutator samples, a seven-fold in-
crease over the maximum muver indel FPR.

Muver compared to previous whole genome mutation
accumulation results
A major deficiency of previous analyses was that reads
that overlap but do not fully traverse a given repeat tract
provide no information on changes in tract length but
were nonetheless included in local coverage calculations.
Longer tracts and shorter reads mean a higher likelihood
that the apparent allelic fraction of an indel will fall
below filter thresholds. However, simply lowering filter
thresholds would also increase false positive rates. Our
previous solution was to accept the high false negative
rate for pipe2015 and then adjust the indel rate calcula-
tion based on a statistical model of this error source
[18]. This method yielded high certainty for indel rates
in common (i.e. short) repeat tracts, but the rationale
was more tenuous for very rare tracts where extrapola-
tion could magnify stochastic variation.
Muver identifies more mutations of all classes than

did pipe2015 [18]. Excluding those now believed to be
pipe2015 false positives, overall clonal mutation counts
among 19 outgrowths lacking MSH2 increased by 90%,
to over 66,000, including a 40% increase in base pair
substitutions (Fig. 3b). Muver increases indel calls 4.3-
fold, however, the reported calling rate increases more
for some indels than for others. Increases are greater for
insertions and multi-base indels than for deletions and
single-base indels. In outgrowths lacking MSH2, single-
base deletion counts increase 3.3-fold (4274 to 14,143)
while multi-base insertion counts increase 42-fold (20 to
834).
Muver increases counts more substantially in longer

repeat tracts compared to shorter, as would be expected
from previous statistical projections [9], and in general,
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insertion counts more than deletion counts (Fig. 3c).
The greatest fold changes were observed for the longest
insertions and deletions within the longest repeat tracts
(Additional file 1: Figure S6). The net result is that
muver, on one extreme, increases single-base deletion
counts in short 1-5 bp homopolymers 1.7-fold, and on
the other, increases trinucleotide repeat insertion counts
63-fold for tracts longer than 16 bp.
For contexts in which previous extrapolations were

presented with high confidence [9], such as A/T homo-
polymers of less than 11 bp, muver-derived indel rates
correspond well to those projections (e.g. Fig. 4a-b and
Additional file 1: Figure S7A-B). This implies that muver
has corrected the calling deficiencies accounted for in
those extrapolations. No robust multi-base indel curves
(versus tract length) were constructible from pipe2015
calls for any yeast genotype besides multi-base deletions
in A/T homopolymers, and these were considered unre-
liable. In contrast, muver found enough to construct
multi-base A/T insertion, dinucleotide deletion and inser-
tion, and trinucleotide deletion and insertion curves for
Pol δ and ε mutator variants lacking MSH2 (e.g. Fig. 4c-d
and Additional file 1: Figure S7C-D).

Insights into DNA replication fidelity
Previous statistical extrapolations of indel rates inflated
uncertainty in homopolymers of greater than 13 bp.
Though it appeared that multi-base deletion rates in
long A/T homopolymers exceeded what would be ex-
pected for sequential single-base deletions, the difference
was insignificant [9]. However, using muver-derived
rates, Monte Carlo simulations suggest that single-base
A/T deletion rates are sufficient to explain multi-base
A/T deletion rates in runs of up to 10 bp, but thereafter,
multi-base deletion rates exceed the 95% confidence
interval from the simulations, initially by a few-fold but

a

b 

c

Fig. 3 Comparison of muver calls with previous Saccharomyces cerevisiae
mutation accumulation experiments. a Log-transformed substitution
(square) and indel (circle) mutation rates, per base pair per generation,
determined across the genome by muver of by acquisition of resistance
to 5-fluoroorotic acid (5-FOA) upon mutation of the URA3 reporter gene
[63]. Solid lines are linear regressions for the log-transformed
rates (R2 = 0.988 and 0.908 for substitutions and single-base
indels, blue and green, respectively; excluding pol1-L868 M
msh2Δ substitutions in yellow; R2 = 0.758 for multi-base indel
rates in red). b Mutation counts from muver (purple) and
pipe2015 (red; [18]) for MSH2-deficient S. cerevisiae presented
here. Counts for mutations called by both pipelines are shown
in green. c Fold-change in mutation counts (muver over
pipe2015) in repeat tracts of 1-5 bp (purple), 6-10 bp (orange),
11-15 bp (grey) and more than 15 bp (gold). In calculating fold
changes, pseudocounts were added to the numerator and denominator
for categories where the pipe2015 totals were zero. Abbreviations: del.
= deletions; ins. = insertions; dinuc. = dinucleotide repeats;
trinuc. = trinucleotide or triplet repeats
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eventually (in > 15 bp tracts) by two orders of magnitude
or more. In fact, multi-base rates exceed single-base
rates in tracts of > 15 bp.
Statistical extrapolations suggested that indel rates in

long runs are largely independent of the polymerase vari-
ants present, attributed to a lack of proofreading once re-
peat tracts extend past the polymerase footprint [9, 13].
This conclusion was based on single-base A/T deletion
and insertion rates which were projected to plateau at
roughly 10− 5 and 10− 6 per base pair per generation,
respectively. Though there is noise, muver-derived rates
plateau between 10− 5 and 10− 6 per base pair per
generation for single-base insertions and multi-base indels
of all kinds in all long repeat contexts, regardless of poly-
merase status or repeat context.

Discussion
The muver framework combines common variant dis-
covery workflows with novel methods (Fig. 1) to improve

identification of mutations in difficult genomic contexts
and has been optimized for accurate and sensitive muta-
tion calling in lineal samples. Muver employs GATK
HaplotypeCaller to identify potential reference variants
and to calculate strand-specific read depths. Muver
models genome-wide read depths and excludes regions
consistent with poor read mapping. Muver further iden-
tifies and excludes regions that significantly exceed the
average global read depth, minimizing false positive calls.
Muver can accommodate arbitrary ancestral and des-
cendant ploidies and supports user-definition of local
copy number variants (CNVs). Muver identifies muta-
tions by comparing read counts per strand and per allele
between ancestral and descendant samples. Sites that
differ between ancestor and descendant are compared to
genotype models that account for observed alleles, as-
sumed ploidy, empirical error rates, and the potential for
subclonal mutations across a range of population frac-
tions. The latter also helps correct for allelic imbalances

a b

c d

Fig. 4 Muver-derived insertion and deletion rates in repeat tracts in pol3-L612 M msh2Δ samples. Rates (per bp per generation) of single-base (filled)
and multi-base (open) deletions (triangles) and insertions (diamonds) are shown versus tract length for repeats with unit length of 1 (homopolymers;
a-b) or greater than 1 (dinucleotide and triplet repeats; c-d). See Additional file 1: Figure S7 for rates in pol2-M644G msh2Δ samples
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introduced through Bayesian haplotype reassignment
performed by HaplotypeCaller and through library con-
tamination (see Additional file 2).
In the current implementation of the muver frame-

work, contamination and error are controlled inciden-
tally, detected in the course of identifying subclonal
mutations, however, minor modification would support
explicit control. For example, in the application of the
muver framework to matched tumor/normal compari-
sons, a user-specified normal tissue contamination frac-
tion could be incorporated into the expected rates of all
potential genotypes when performing tumor sample
genotype calling. The flexibility of the genotype and mu-
tation calling methods implemented within the muver
framework will allow many systematic sources of error
in allelic fractions to be modeled and controlled.
Muver identifies mutation events by considering all

possible mutations that may occur given observed al-
leles. Given called t0 control and outgrowth genotypes,
muver then enumerates all possible sequences of muta-
tions and determines mutations that must necessarily
have occurred, and notes any ambiguities. As triploid
and tetraploid cells are common in yeast, muver also
makes considerations for ploidy. Unlike other ap-
proaches, muver explicitly considers ploidy during geno-
type and mutation calling, allowing direct comparison of
samples with different ploidy. By default, muver excludes
regions with depths that differ significantly from the glo-
bal average, but substitutions and indels are considered
simultaneously with CNVs when local copy numbers are
provided. Failure to account for ploidy/copy number or
to filter regions of unknown copy number can result in
an increased false positive rate, or the misinterpretation
of true mutations as noise. Accurate understanding of
these features is crucial for the interpretation of data de-
rived from experiments where outgrowth samples can
acquire many copy number variations and even global
changes in ploidy. Ploidy changes are common in can-
cers [75], correlate with the total number of mutations
and affect cell proliferation and immune evasion [76].
Muver performs favorably when compared to other

commonly used tools. When analyzing human Genome
in a Bottle data (Fig. 2a), muver exhibited far fewer mu-
tation type disagreements than did VarScan, VarDict,
and GATK HaplotypeCaller, 62- to 96-fold lower substi-
tution FPRs, and 30- to 79-fold lower indel FPRs. When
analyzing both GiaB human data and previous yeast mu-
tation accumulation data (Fig. 2a), muver has higher
indel sensitivity and a lower indel FPR than VarScan. In
the same yeast data, muver had higher indel and substi-
tution sensitivity than MuTect2 with comparable FPRs.
These performance improvements are the result of de-
tailed empirical analysis of read coverage performed by
muver, as well as the per-sample assessment of

sequencing error that informs the models utilized for
per-locus genotype calling. These models incorporate
ploidy and homogeneity assumptions that follow from
accumulation experiments or other ancestor/progeny
comparisons, while VarScan utilizes simple thresholds
for genotype calling, and MuTect2 is designed for the
detection of low frequency mutations, requiring aggres-
sive filtering to ensure only clonal changes are reported.
Overall run times for muver were substantially lower
than for MuTect2, while not dramatically higher than
VarScan. Given the relative sensitivity and specificity of
each tool, muver represents the best balance of accuracy
and computational performance and is a practical option
for regular use in whole-genome mutation accumulation
analyses.
Muver results compare well with previous studies and

reveal new information. Muver-derived indel calling rates
more closely resemble predicted indel mutation rates than
calls made previously [9]. Substitution rates derived with
muver correlate well with previous single locus reporter
assays, while single-base indel calls conform well with pre-
vious high confidence statistical extrapolations. Muver-
identified multi-base indels exceed those from previous
yeast mutation accumulation assays, revealing unprece-
dented details for indels in long repeat tracts. Multi-base
indels occur in mismatch repair-deficient yeast in long ho-
mopolymers at rates that exceed what would be expected
from sequential single-base indels (open circles versus
open triangles in Fig. 4a and Additional file 1: Figure
S7A). Multi-base A/T deletion rates eventually exceed the
rates of single A/T deletions (open red triangles versus
closed red triangles in Fig. 4a and Additional file 1: Figure
S7A). Multi-base indel rates in homopolymers closely
match multi-base indel rates in di- and trinucleotide re-
peats. These effects are independent of mutator polymer-
ase background but begin when homopolymer length
exceeds the polymerase footprint. Taken together, this
suggests an unforeseen model wherein polymerases slip
multiple bases in one homopolymer synthesis reaction, as
if the repeat unit in long homopolymers is greater than
one base pair. Thus, multi-base homopolymer indels
should not be considered multiple single-base indels when
analyzing such effects as microsatellite instability.

Conclusions
The muver framework introduces novel methods in
genotype calling, identification of mutations, and infer-
ence of mutation identity. Detailed, per-sample, observa-
tion of sequencing data allows unsupervised filtering and
error correction, without the need for precise tuning of
thresholds. Muver is capable of accurate and sensitive
calling of clonal mutations, particularly of heretofore dif-
ficult indels, and supports analysis of complex genomic
contexts involving ploidy differences unavailable in other
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packages. Muver’s demonstrated utility in the identifica-
tion of indels and substitutions, from yeast to humans,
makes it applicable to a variety of studies that could illu-
minate the evolutionary, mechanistic and medical impli-
cations of mutagenesis.

Additional files

Additional file 1: Supplemental Text and Figures. Contains 8
supplemental tables and 7 supplemental figures. (DOCX 2454 kb)

Additional file 2: Results Files. Zip file containing VCF and TXT
formatted muver results for all yeast data sets analyzed. (ZIP 10697 kb)
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