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Intragenic sequences in the trophectoderm
harbour the greatest proportion of
methylation errors in day 17 bovine
conceptuses generated using assisted
reproductive technologies
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Abstract

Background: Assisted reproductive technologies (ART) are widely used to treat fertility issues in humans and for
the production of embryos in mammalian livestock. The use of these techniques, however, is not without
consequence as they are often associated with inauspicious pre- and postnatal outcomes including premature
birth, intrauterine growth restriction and increased incidence of epigenetic disorders in human and large offspring
syndrome in cattle. Here, global DNA methylation profiles in the trophectoderm and embryonic discs of in vitro
produced (IVP), superovulation-derived (SOV) and unstimulated, synchronised control day 17 bovine conceptuses
(herein referred to as AI) were interrogated using the EmbryoGENE DNA Methylation Array (EDMA). Pyrosequencing
was used to validate four loci identified as differentially methylated on the array and to assess the differentially
methylated regions (DMRs) of six imprinted genes in these conceptuses. The impact of embryo-production induced
DNA methylation aberrations was determined using Ingenuity Pathway Analysis, shedding light on the potential
functional consequences of these differences.

Results: Of the total number of differentially methylated loci identified (3140) 77.3 and 22.7% were attributable to
SOV and IVP, respectively. Differential methylation was most prominent at intragenic sequences within the
trophectoderm of IVP and SOV-derived conceptuses, almost a third (30.8%) of the differentially methylated loci
mapped to intragenic regions. Very few differentially methylated loci were detected in embryonic discs (ED);
0.16 and 4.9% of the differentially methylated loci were located in the ED of SOV-derived and IVP conceptuses,
respectively. The overall effects of SOV and IVP on the direction of methylation changes were associated with
increased methylation; 70.6% of the differentially methylated loci in SOV-derived conceptuses and 57.9% of the loci
in IVP-derived conceptuses were more methylated compared to AI-conceptuses. Ontology analysis of probes
associated with intragenic sequences suggests enrichment for terms associated with cancer, cell morphology
and growth.
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Conclusion: By examining (1) the effects of superovulation and (2) the effects of an in vitro system (oocyte
maturation, fertilisation and embryo culture) we have identified that the assisted reproduction process of
superovulation alone has the largest impact on the DNA methylome of subsequent embryos.

Keywords: Assisted reproduction technologies (ART), Epigenetics, DNA methylation, Embryo, Gene body, Bovine,
Genomic imprinting, Reproduction, Development

Background
In mammalian livestock species, embryo transfer and other
emerging technologies offer significant opportunities for
improvements in reproductive efficiency and genetic
selection [1]. Assisted Reproductive Technology (ART)
treatments involve the isolation and manipulation of gam-
etes and embryos, such as in vitro maturation (IVM), in
vitro fertilization (IVF), intracytoplasmic sperm injection
(ICSI), in vitro embryo culture (IVC) and hormonal stimu-
lation (SOV). The long- and short-term implications asso-
ciated with these technologies are not fully determined;
however several studies suggest that they are not without
complication [2–6]. Evidence that ARTs are not completely
benign exists from analyses of bovine ART-derived em-
bryos, which exhibit differences at morphological, physio-
logical, transcriptional, chromosomal and metabolic levels
compared to their in vivo-derived counterparts [7].
Epigenetic mechanisms such as chromatin remodel-

ling, histone modification and DNA methylation are fun-
damental to successful gametogenesis and are required
for normal embryonic progression [2, 8]. Of these, DNA
methylation remains the most extensively studied; with
previous work demonstrating that the appropriate estab-
lishment of DNA methylation patterns in gametes and
early embryos is essential for normal development [9].
Genomic imprinting is a process that involves appropri-
ate DNA methylation of differentially methylated regions
(DMRs) of the maternal and paternally-derived genomes
to facilitate parent-of-origin expression of a cohort of
genes, many of which are involved with embryonic
growth [10, 11]. Many reports detailing the impact of
ARTs on genomic imprinting, specifically DNA methyla-
tion at imprinted gene DMRs, suggest ART induces
aberrant methylation [12–18], while others indicate that
the DMRs remain unaffected [19–22]. Investigations of
the epigenetic impact of ovarian stimulation in mouse
models indicate that imprint establishment and global
methylation status in oocytes is not affected, but that
maintenance of imprints post-fertilization is affected
[22]. For example, DNA methylation analysis at chromo-
some 7 in single mouse in vitro cultured blastocysts has
shown widespread aberrancies, when compared to in
vivo samples [23]. Furthermore, analysis of blastocysts
[24], mid-gestation placentas [25] and full term liver and
brain tissue [26], derived from superovulated females,

indicated altered DNA methylation and/or gene expres-
sion at candidate imprinted DMRs. Most recently,
findings from an investigation using a mouse model
suggest that individual ART procedures cumulatively
increase placental morphological abnormalities and
epigenetic perturbations [27]. A recent investigation by
Saenz-de-Juano et al. demonstrated that embryos devel-
oped using an in vitro follicular culture (IFC) method
inflicted no additional epigenetic alterations at a small
number of imprinted genes (Snrpn, H19 and Mest) com-
pared with conventional ovulation induction, suggesting
that IFC is a suitable, patient-friendly alternative to
ovarian stimulation [28].
With regard to in vitro embryo production, analysis of

the methylation status of candidate imprints in IVM
bovine and human oocytes revealed no or only marginal
effects [20, 29, 30]. This data concurred with earlier
findings in IVM-derived murine offspring, which showed
that life span and most physiological and behavioural
parameters were not impacted by IVM [31]. In contrast
to the short exposure time to in vitro culture condi-
tions that IVM entails, post fertilization IVC until
blastocyst can last from 1 to 8 days (3–4 days in mice
[28], 5–6 days in human [32] and 7–8 days in cattle
[33]), therefore it is not surprising that it has been associ-
ated with impaired imprinting for several genes in murine
blastocysts and placental murine tissues [16, 34, 35]. In
cattle, several reports have been published detailing the
impact of IVM, IVF and IVC on single, multiple or global
gene expression patterns of bovine oocytes and embryos
[4, 36–39]. Aberrant expression appears to persist beyond
elongation and implantation [40, 41]. The divergent tran-
scriptomic data is likely to be associated with altered epi-
genetic regulation [6]. Similarly, the high mortality rates
and morphological anomalies observed in surviving
cloned calves [42–44] are likely due to erroneous epigen-
etic reprogramming, as severe hypomethylation of imprint
DMRs [45–49] in tissues recovered at various stages of
development from day 17 to full term has been reported.
Most recently, analysis of kidney, brain, muscle, and liver
of ART-derived (produced in vitro) day ~ 105 large
offspring syndrome (LOS) fetuses revealed dysregulation
of imprinted gene expression, with the number of misregu-
lated genes positively correlated with an increasing magni-
tude of overgrowth in LOS fetuses. DNA methylation
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analysis in these fetuses at the DMR of three imprinted
genes, SNRPN, NNAT, and PLAGL1, also revealed some
tissue specific aberrant methylation patterns [50].
Advances in genome-wide methylation analyses offer the

opportunity to assess the effect of routine ART protocols
on the global epigenetic landscape of gametes and
embryos. Recently, the EmbryoGENE network at the Uni-
versity Laval, Quebec (http://emb-bioinfo.fsaa.ulaval.ca/)
developed a microarray based methylation analysis plat-
form for assessing genome wide methylation patterns using
small quantities of DNA from bovine embryos [51]. This
technology has been used to (1) demonstrate a link be-
tween S-adenosyl methionine supplementation, from the 8
cell stage until blastocyst, and DNA methylation in result-
ant blastocysts [52], (2) analyze the impact of different in
vitro embryo culture lengths on DNA methylation of
transferred embryos [53], (3) elucidate the effect of fatty
acid exposure during oocyte maturation and embryo cul-
ture on blastocyst DNA methylation [54] and (4) identify
differentially methylated loci in spermatozoa of monozy-
gotic twin bulls [55]. Using this technology we evaluated
the effect of oocyte maturation, fertilization and embryo
development under in vitro (IVP) conditions, and the effect
of ovarian hyperstimulation (SOV). Embryos were devel-
oped under these two conditions, separately, until day 7
(blastocyst stage) then transferred singly to recipient ani-
mals for recovery at day 17 (peri-implantation) for DNA
methylation analysis. All IVP and SOV conceptuses were
compared to the DNA methylation profiles of single ovula-
tion in vivo conceptuses from non-stimulated synchronised
animals (AI) (Fig. 1). Four differentially methylated gene
bodies, identified on the EDMA array, were analyzed
by pyrosequencing. Additionally, targeted analysis of
DNA methylation at one paternally methylated (H19)
and five maternally methylated (SNRPN, PLAGL1,
PEG10, IGF2R, MEST) imprinted loci was also carried
out in all IVP, SOV-derived and AI embryo samples.
Ingenuity Pathway and gene expression analyses were
performed to assess the functional implications of
ART-induced differential DNA methylation.

Results
Total significantly differentially methylated loci associated
with SOV and IVP
8134 loci were differentially methylated between AI and
SOV-derived and IVP conceptuses. Taking a high
stringency approach, only sequences with hybridization
to both sense and matching anti-sense probes were
analyzed (total 47,110 loci) and only those probes where
both the sense and anti-sense probe achieved signifi-
cance (P ≤ 0.05) and reached the fold-change threshold
(≥ 1.5) were considered to be differentially methylated.
Thus only loci that had overlapping probes yielding the
same signal i.e. loss or gain of methylation relative to

control samples were recorded as differentially methyl-
ated; 3140 loci met these criteria (Table 1). Overall, SOV
and IVP resulted in an increased number of loci that were
more methylated than the control conceptuses, 67.7% of
the loci had increased methylation whereas only 32.3% of
the loci had lower levels of methylation than control AI
conceptuses. To determine if either SOV or IVP regimes
had a different impact on the methylation of resultant
conceptuses the total number of differentially methylated
loci from each treatment was investigated. The effect of
treatment on the number of differentially methylated loci
was much more pronounced in conceptuses generated by
SOV (77.3%) than those using in vitro techniques (22.7%).
Fewer than 10% (312 loci) were consistent between SOV
and IVP conceptuses (Fig. 2a). Analysis of methylation
changes across three embryonic regions (ED, TE & TP) in
all IVP and SOV conceptuses revealed that the majority of
methylation changes were occurring in the trophectoderm
(ED = 1.2% vs TE = 55.4% and TP = 43.3%). The full list of
probes and their genomic coordinates are outlined in
Additional file 1.

Embryo production specific effects on DNA methylation
The 3140 differentially methylated regions were queried
to elucidate if there was any overlap between treatments
or across embryonic regions. For this analysis the 39 loci
significantly differentially methylated in the ED were
omitted, as most of the significant differences were
found in TE and TP tissue (3101 loci) comparisons.
Significantly differentially methylated loci from IVP and
SOV conceptuses were compared (Fig. 2b). The SOV con-
ceptuses had 1250/1452 (86%) regions that were unique to
TE and the IVP conceptuses had 160/289 (55%) regions
that were unique to TE. For the TP samples 693/971
(72%) and 198/389 (51%) of the loci were differentially
methylated following SOV or IVP, respectively. 90 regions
in the TE and 158 in the TP regions were aberrantly meth-
ylated in both SOV and IVP conceptuses. There were 19
probes (y-axis, Fig. 3) that were significant in more than
one contrast and showed changes in the direction of the
effect. Most of the changes occurred between TE and TP
contrasts, demonstrating that differential methylation dir-
ection can vary across both trophectoderm tissues.

Underlying sequence features of differentially
methylated loci
Following the identification of sense-antisense probes
that had statistically significant differences in methyla-
tion (n = 3140), their distribution across the genome was
determined. As predicted from human array studies
[56], the proportion of differentially methylated loci
mapping within CpG islands was low, 36/3140 = 1.1%
(Fig. 4 and Table 2). Given that we and others have
shown that gene body methylation can facilitate
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transcription [57–60], the number of significant probes
that were located within intragenic regions (coding and
non-coding regions within the transcribed sequence)
was calculated (Table 2). Irrespective of production
method (IVP or SOV), 968 of the 3140 probes mapped
to intragenic regions (30.8%), only a very small propor-
tion (13/968; 1.3%) were found in the ED, with the
remaining probes being split between TP (445/968; 46%)
and TE (510/968; 52.7%). The data was also mined to
identify whether DNA methylation aberrancies were
occurring at loci encoding microRNAs, molecules that

are involved with post-transcriptional gene regulation
[61]. Disrupted DNA methylation was detectable at a
single miRNA (miRNA 2890), in the peripheral troph-
ectoderm (TP) of superovulated conceptuses.

Under-representation of differential methylation at
CTCF loci
The number of significant probes that were located in
CTCF recognition sites was determined using computa-
tionally predicted CCCTC-binding factor (CTCF) sites and
their coordinates transferred to the bosTau6 (UMD3.1) as-
sembly, using the LiftOver tool from UCSC. A total
number of 7 of the 3140 differentially methylated
fragments were located within the predicted CTCF
binding sites. This compares to 746 of the 48,530
CTCF recognition sites in the total set of significant
fragments that were analyzed. This means we found a
7.5-fold under-representation of CTCF sites in the
differentially methylated loci (0.2% in differentially
methylated fragments vs 1.5% in all fragments), which was
highly significant (p < 1.3e-09 by Proportional Test).

Array validation
The EDMA has been validated previously by pyrose-
quencing analysis of DNA isolated from sperm and

Fig. 1 Experimental overview. a Synchronization protocols used to generate day 17 in vivo conceptuses (AI) and day 17 conceptuses derived
from assisted reproduction technologies (SOV and IVP). b Schematic representation of the micro-dissected embryonic regions used in this study.
c Overview of the multiple comparisons performed using the EDMA platform. ED = embryonic disc, TP = trophectoderm peripheral,
TE = trophectoderm adjacent to embryonic disc. CIDR, Controlled internal drug release, PG, prostaglandin F2 alpha injection, HC, heat check,
FSH, follicle stimulating hormone, AI, artificial insemination, ET, embryo transfer, IVM, in vitro maturation, IVF, in vitro fertilisation and IVC, in vitro culture

Table 1 Total number of differentially methylated probes

Region Treatment Up vs AI Down vs AI Total

ED SOV 1 3 4

IVP 6 29 35

TE SOV 1316 136 1452

IVP 164 125 289

TP SOV 397 574 971

IVP 243 146 389

Total 2127 1013 3140

ED = embryonic disc, TP = trophectoderm peripheral, TE = trophectoderm
adjacent to embryonic disc, SOV = superovulation-derived conceptus, IVP = in
vitro-derived conceptus
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Fig. 3 Heatmap of significant probes that exhibit differences in methylation state and direction in different tissues. A small number of loci show
differences in the direction of change in methylation in different embryonic regions ED = embryonic disc, TP = trophectoderm peripheral,
TE = trophectoderm adjacent to embryonic disc, SOV = superovulation-derived embryo, IVP = in vitro-derived embryo. The ID of each probe is
outlined on the right hand side of the map and their genomic location can be found at http://emb-bioinfo.fsaa.ulaval.ca/bioinfo/html/index.html

Fig. 2 a 2-way venn diagram representing overlap of differentially methylated loci between SOV and IVP conceptuses. Duplicate probes
that were identified in multiple groups were removed, therefore the total number of loci for SOV and IVP is less than detailed in Table 1,
b 4-way venn diagram showing overlap of significant probes for the TE and TP tissues. Images generated using Venny http://bioinfogp.cnb.csic.es/
tools/venny/index.html)
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blastocyst samples [51]. In this study, DNA methylation
was further analysed at four loci identified as being
differentially methylated on the EDMA platform. Pyrose-
quencing assays were located within the intragenic
regions of RNF7 (RNF7 has two assays covering separate
CpGs – RNF7 assay 1 and RNF7 assay 2), GLTP,
TRAPPC9 and CRISPLD2. These loci were selected
based on their fold-change, P-values and that the repre-
sentative array probes contain at least one enzyme
restriction site specific to the enzymes used for
methyl-sensitive digestion during sample preparation for
the array. They also represent comparisons of the
following samples; SOV TE v AI TE, SOV TP v AI TP,
IVP TE v AI TE and IVP TP v AI TP. Pyrosequencing
confirmed the direction of methylation changes at these
loci (loss of methylation at each locus), with RNF7 assay
2 reaching significance (P ≤ 0.05) (Fig. 5).

DNA methylation analysis of imprinted genes
The methylation status at six imprinted gene DMRs
(SNRPN, PLAGL1, PEG10, IGF2R, MEST and H19) was
determined by selective mining of the array output for
probes located at imprinted loci (probe locations are

outlined in Fig. 6 and Fig. 7a). None of the probes that
mapped to imprinted genes were differentially methylated
in the EDMA platform (adjusted P-value ≥0.05). In a par-
allel experiment, pyrosequencing of the six imprinted
genes was carried out. In general, the pyrosequencing
results concurred with the array data, i.e. no significant
differences (Fig. 6). However, the PLAGL1 and MEST
DMRs showed some significant sites (Fig. 7b). The
PLAGL1 DMR was differentially methylated in troph-
ectoderm tissue from both SOV and IVP samples.
CpGs at this locus were significantly more methylated
in the TE (AI: 24.9% vs. SOV: 34% and IVP: 31.5%)
and TP (AI: 23.9% vs. SOV: 32.1% and IVP: 31.5%)
regions of day 17 ART-derived conceptuses, relative
to AI conceptuses. Methylation at MEST was signifi-
cantly lower in the ED of SOV samples when com-
pared to both AI and IVP. Additionally, to identify
any further putative imprinted genes that were differ-
entially methylated in the current study we compared
the aberrantly methylated loci from the array data
with a previously published list of 105 genes known
to be imprinted in human and mouse [50]. This
revealed that five genes (DDC, DHCR7, SFMBT2,

Table 2 Differentially methylated probes mapping to gene bodies and CpG islands

ED SOV TE SOV TP SOV ED IVP TE IVP TP IVP

Total 4 1452 971 35 289 389

CpG Island 0 18 7 0 3 8

% in CpG Island 0 1.2 0.7 0 1.04 2.1

Gene Body 2 432 309 11 78 136

% in Gene Body 50 29.8 31.8 31.4 27 35

Gene body up 0 393 (91%) 132 (43%) 0 35 (45%) 85 (62.5% )

Gene body down 2 (100%) 39 (9%) 177 (57%) 11 (100%) 43 (55%) 51 (37.5%)

ED = embryonic disc, TP = trophectoderm peripheral, TE= trophectoderm adjacent to embryonic disc, SOV = superovulationderived embryo, IVP = in vitro-derived embryo

Fig. 4 Distribution of differentially methylated loci. Breakdown of the percentage of differentially methylated loci in each genomic location
(CpG islands, Open sea, Shelf and Shore), where both sense and anti-sense probes were significant in at least one contrast. The parameters used
to define CpG Island, Open Sea, Shelf and Shore are outlined in [51]
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Fig. 5 Pyrosequencing analysis of genes with differentially methylated gene bodies. Four genes identified as having differentially methylated
intragenic regions by the EDMA analysis were selected for pyrosequencing. All assays confirmed the directionality of the change in methylation
at these loci between control samples and ART samples (a–e). DNA methylation was significantly lower in day 17 SOV TE samples, relative to in
vivo controls (b).

Fig. 6 Location of EDMA probes and pyrosequencing assays at imprinted DMR loci that showed no ART-induced differential methylation. Loci
analysed by pyrosequencing are labelled in red. The location of EDMA probes are indicated by black segments and CpG islands are green
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TCEB3 and TRAPPC9) were overlapping between the
significantly differentially methylated genes identified on
the array and the previously published reference list of
known mammalian imprinted genes (Additional file 2).

Functional implications of ART induced DNA methylation
alterations
To determine the potential impact of SOV and
IVP-induced differential methylation, observed in this
study, Ingenuity Pathway Analysis (IPA) and qPCR were
performed to interrogate genes that had differential

methylation confined within gene bodies of TE and TP
samples. IPA results showed that genes populated categor-
ies including embryonic development, cellular develop-
ment, tissue development, gene expression and organismal
development; the top 7 ranked categories are presented in
Table 3 and the complete IPA output is included in
Additional file 3. Gene expression analysis identified a link
between the loss of methylation at the TCEB3 locus, ob-
served in SOV TE and IVP TE samples (Additional file 1),
and down regulation of TCEB3 expression in SOV TE sam-
ples (P = 0.04732). qPCR results are summarized in Table 4.

Table 3 Gene Ontology analysis of genes with differentially methylated gene bodies

Rank Category Number of genes P-value

1 Cancer 391 6.11 × 10–09

2 Molecular Transport 148 4.84 × 10–08

3 Cellular Assembly and Organization 148 1.01 × 10–07

4 Cellular Function and Maintenance 195 1.01 × 10–07

5 Cell Morphology 168 3.08 × 10–07

6 Organismal Development 141 1.06 × 10–05

7 Cell Death and Survival 218 1.10 × 10–05

Fig. 7 a Location of EDMA probes and imprinted DMR loci analysed by pyrosequencing. Loci analysed by pyrosequencing are labelled in red.
The location of EDMA probes are indicated by black segments and CpG islands are green. Probe positions and sequences analysed using
pyrosequencing were mapped using the Embryogene UCSC genome browser and schematics designed using Adobe Illustrator. b DNA
methylation of the MEST and PLAGL1 DMRs in control and ART conceptuses. The y-axis is average methylation (%). The number of CpGs analysed
for each DMR has been outlined previously [71]
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Discussion
Here we advance the field by comparing, separately, the
impact of hormonal and in vitro manipulations of bovine
gametes and early embryos on the DNA methylation of
preimplantation conceptuses. This unique approach to
studying the impact of these procedures on embryonic
DNA methylation was performed using DNA from
multiple embryonic regions of single conceptuses and
compared to control DNA isolated from in vivo-derived
conceptuses. Results from the current study provide evi-
dence that both of these techniques are potentially altering
genomic methylation patterns, compared to unstimulated
in vivo control samples, but especially SOV.
Classically, DNA methylation has often been defined

as a repressive genome modification associated with si-
lencing gene expression [62, 63]. A number of studies
have demonstrated that non-promoter DNA methylation
(e.g. gene bodies and regulatory elements) may have an
active role in regulating gene expression [57, 58, 64]. In
this investigation a large proportion of the differentially
methylated loci (26.3–50%) were located within gene
bodies and the direction of methylation differences at
four gene bodies, between control and SOV-derived or
IVP-conceptuses, was confirmed by pyrosequencing. We
and others have also recently shown that decreasing
gene body methylation at such genes through use of
methyltransferase-deficient systems results in decreased
transcription, highlighting a positive role for methylation
in the gene body in facilitating transcription [59, 60, 65].
This implies that the altered gene body methylation
observed in our SOV-derived and IVP conceptuses could
indeed have functional consequences. Furthermore, in
silico functional analysis of all the differentially methylated
loci, within gene bodies of SOV-derived and IVP concep-
tuses, confirmed that the associated genes populated
biological relevant categories (embryonic development,
cellular development, tissue development, gene ex-
pression and organismal development) for this stage
of mammalian development. Results from our qPCR
experiments confirmed a possible link between differ-
ential gene body methylation (detected by EDMA)
and gene expression, at the TCEB3 locus.

In the current study we also assessed the impact of
SOV and IVP on DNA methylation at CpG islands and
CTCF recognition sites. Both of these genomic features
were underrepresented in loci that were differentially
methylated following ART. Perturbations of DNA methy-
lation at CGIs of tumor suppressor genes are characteris-
tic of many cancers [57], while CTCF is fundamentally
involved with connecting the gap between nuclear
organization and gene expression, it also regulates several
epigenetic processes, such as X chromosome inactivation,
imprinting and non-coding RNA transcription [66, 67].
Therefore, given the functional importance of these gen-
etic elements, two hypotheses emerge, either of which
would account for the underrepresentation of these loci in
the set of differentially-methylated loci we identified: (1)
incurring DNA methylation changes above a threshold
level at these regions could result in embryonic lethality
or, (2) CGIs and CTCF binding sites are more resistant to
SOV or IVP-induced methylation changes. However, val-
idation of either hypothesis requires further investigation.
The almost complete absence of differentially methyl-

ated loci in the ED region compared to the TE and TP
regions, might suggest that either the ED is protected
from methylation perturbations, or that such perturba-
tions in this region of the embryo result in mortality. In
addition to the observation that the majority of differen-
tially methylated loci were within the trophectoderm re-
gions, there were also a small number of probes showing
directional differences in methylation, depending on
whether they were in the TE or TP. The observation that
the majority of the methylation differences occurred in
the trophectoderm is intriguing. During implantation the
trophectoderm engages directly with the mother’s uterus
giving rise to tissues of the placenta, creating an interface
between mother and fetus that is essential for exchange of
nutrients, gases, waste and maintenance of gestation [68].
These findings support the hypothesis in the literature that
adverse pregnancy outcomes, following ART, arise from
deficiencies in placental function [69].
As outlined earlier, the impact of ART on methylation

and expression of imprinted genes remains divisive [12–22,
30, 50, 70]. For this reason, we investigated the methylation

Table 4 qPCR analysis of imprinted genes and genes with ART-induced gene body methylation aberrancies

Gene symbol (Chromosome) Differential Methylation EDMA NCBI Ref Seq ID SOV TE SOV TP IVP TE IVP TP

TCEB3 (chr 2) Gene body SOV TE and IVP TE NM_001102333.1 0.047 ↓ 0.34 0.19 0.51

OCRL (chr X) Gene body TE IVP and TE SOV NM_001102191.2 0.08 0.25 0.12 0.28

ATP1A1 (chr 3) Gene body TP SOV and TP IVP NM_001076798.1 0.70 0.67 0.92 0.89

SNRPN (chr 21) N/A NM_001079797.1 0.63 0.51 0.15 0.16

H19 (chr 29) N/A NR_003958.2 0.62 0.32 0.88 0.45

[P-values are given, significant values (p ≤ 0.05 unpaired, two tailed t-test) are underlined in bold]
The downwards arrow represents that the gene is downregulated compared to control (AI)
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of six previously characterized DMRs; IGF2R, PEG10,
MEST, SNRPN, PLAGL1 and H19 [71, 72] and found no
differences in methylation on the array or by pyrosequenc-
ing. However, pyrosequencing did identify significant
changes in methylation at both PLAGL1 and MEST and
PLAGL1 is under-represented by array probes. For PLAGL1
the lack of significant changes on the array is probably
due to a lack of probes located within the DMR that
was covered by pyrosequencing. The CGI spanning the
MEST proximal promoter, first exon and part of the
first intron was represented on the array by 3 probes,
2 of which directly overlapped the region analysed by
pyrosequencing. The lack of a significant signal at
these locations on the array could be, in part, due to
the high stringency approach used to select signifi-
cantly differentially methylated loci from the array or
be due to a technical difference between array analysis
and targeted analysis of methylation. This has been as
discussed previously by others [73] and we have re-
cently detailed the limitations of the EMDA platform
[54]. In addition, although the EMDA platform is
cost-effective, has a rapid turnaround time, a dedicated
downstream analysis pipeline and has been specifically
designed to assess DNA methylation patterns in bovine
embryos using finite amounts of input DNA (1 – 10 ng)
[51], it is not possible to get single nucleotide resolution
maps of genome wide methylation patterns using this
technology. This can be achieved using whole genome
bisulfite sequencing (WGBS). Future investigations using
this method will help to provide higher resolution profiles
of DNA methylation in embryos generate using ART.
Five additional imprinted genes (DDC, DHCR7,

SFMBT2, TCEB3 and TRAPPC9), identified as imprinted
in human and mouse [50], were identified as having
aberrant gene body methylation in SOV (DDC, DHCR7,
SFMBT2, TCEB3 and TRAPPC9) and IVP (TCEB3)
conceptuses here. This recently published study by Chen
et al. identified aberrant methylation patterns and bial-
lelic expression of imprinted genes in fetal organs of
pregnancies following transfer of in vitro produced
embryos. It was demonstrated that DNA methylation
was perturbed at PLAGL1, NNAT and SNRPN. Fur-
thermore, recent studies using the Illumina Infinium
Human Methylation Array, pyrosequencing and qPCR
to compare cord blood samples from ART and con-
trol pregnancies also revealed that the PLAGL1 locus
is sensitive to ART manipulations [74, 75]. The con-
sensus between the current and earlier studies, that
PLAGL1 is sensitive to ART-induced methylation
changes, is consistent with observations of an associ-
ation between ART and patients with the human dis-
order Beckwith–Wiedemann syndrome [76, 77], thus
highlighting PLAGL1 as a key susceptibility marker to
ART procedures.

Conclusions
In summary, both IVP and SOV procedures were associ-
ated with genome wide differences in embryonic DNA
methylation to different extents. Superovulation treat-
ment was the major cause of differential methylation in
this study. Changes to DNA methylation was region spe-
cific; the embryonic disc showing almost no alterations
compared to a significant number of differences in
trophectoderm tissues. The differentially methylated loci
tended to cluster within intragenic regions, suggesting a
non-random effect, and are enriched for cancer, cell
morphology and development. There was also an effect
of ART on DNA methylation at a small number of
imprinted genes and gene expression at the TCEB3
locus. Methylation differences at the PLAGL1 locus were
apparent by pyrosequencing; this is congruent with ob-
servations in the literature demonstrating the influence
of ART on DNA methylation at imprinted loci. Overall
this study provides evidence that ART induces alter-
ations to the embryonic methylome, in addition, many
of these alterations appear to occur in an ART interven-
tion, tissue and gene -specific manner. The majority of
which were observed in the trophectoderm of
SOV-derived conceptuses. These experiments demon-
strate that embryos developing from the zygotic stage to
the blastocyst stage in a modified environment (in vitro
culture conditions or oviduct microenvironment con-
taining multiple SOV-derived embryos) and transferred
to a ‘normal’ environment retain aberrant epigenetic
programming. The observed ART-induced DNA methy-
lation differences may lead to misregulation of gene ex-
pression later in development, reducing developmental
potential and contributing, in part, to health complica-
tions such as fetal overgrowth and large-offspring syn-
drome (LOS). Indeed, a recent study using WGBS has
shown a link between DNA methylation differences and
the expression of a small number of genes in skeletal
muscle recovered from day ~ 105 bovine LOS foetuses
[78]. Our study bolsters the importance of a non-rodent
model, particularly the cow, for providing comparative
data for the human IVF and developmental programming
fields and provides a base for future high-resolution
Whole Genome Bisulfite Sequencing studies investigating
the impact of ARTs on the embryonic genome in cattle.

Methods
Study design and number of comparisons
The experimental design for embryo production is illus-
trated in Fig. 1a. Four day 17 conceptuses of each type
(4 x AI, 4 x IVP and 4 x SOV) that were fully intact
upon flushing from the uterus were retained for experi-
mental analysis. Each embryo was dissected into the fol-
lowing sections, as outlined in Fig. 1b; the embryonic
disc (ED) and trophectoderm - embryonic disc adjacent
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(TE) and trophectoderm peripheral (TP). The entire
embryonic disc was trimmed and for the TE and TP
approximately 1 cm sections were isolated. The rationale
to interrogate these regions separately was based on
previous investigations demonstrating that differences,
such as differences in morphology and function, occur
between regions adjacent to the embryonic disc and the
periphery of the trophectoderm. Multiple statistical con-
trasts (Fig. 1c), comprising four biological replicates of
each type of embryo and each embryonic region (ED, TE
and TP), were carried out using the 400 K EmbryoGENE
DNA Methylation Array (EDMA http://emb-bioin
fo.fsaa.ulaval.ca/). This bovine-specific array contains
~ 420,000 probes mapping to 359,738 loci, surveying
20,355 gene-regions and 34,379 CpG islands).

Preparation of conceptuses
Animal synchronization and embryo collection
All animals were housed indoors in a slatted shed for
the duration of the experiment and were fed a diet
consisting of grass and maize silage supplemented with a
standard beef ration. Cross-bred beef heifers (primarily
Charolais beef heifers, or Simmental X Charolais and
Limousin X Charolais crosses) were randomly assigned
to be treated as unstimulated donors or recipients (i.e.
single-ovulating, n = 20) or superstimulated donors
(n = 9). Artificial insemination and IVF were carried
out using frozen thawed semen from the same bull to
limit any potential variability that may be introduced
by using spermatozoa from multiple bulls. Animals
were slaughtered at a local abattoir 17 days following
insemination or 10 days subsequent to embryo trans-
fer, using standard practice.

Unstimulated heifers
Collection of control in vivo-derived bovine concep-
tuses was performed using a previously described
synchronization protocol [79], denoting these control
conceptuses as ‘AI’ is based on a previous investiga-
tion [80]. Briefly, heifers (approximately 18–24 months
old) were synchronized using an 8-day Controlled Internal
Drug Release device (CIDR 1.36 g, Pfizer, Sandwich, Kent,
UK) with administration of a prostaglandin F2α (PGF2α)
analogue (2 ml Estrumate; Schering-Plough Animal
Health, Hertfordshire, UK, equivalent to 0.5 mg cloproste-
nol) injection one day prior to removal of the CIDR. Ani-
mals were examined for estrus four times daily, from 36 h
following PGF2α injection. Animals in standing estrus be-
tween 36 and 60 h were inseminated using frozen thawed
semen. Reproductive tracts were recovered within 30 min
of slaughter from animals on day 17 post insemination,
and transported on ice. Conceptuses were recovered from
reproductive tracts by flushing both uterine horns with
40 ml of PBS containing 5% fetal calf serum (FCS). All

intact conceptuses were washed and dissected in PBS and
then immediately snap frozen using liquid nitrogen.

Superstimulated donor heifers
Procedures for superstimulation were as described by
Rizos et al. [81]. Beginning on day 10 of a synchronised
oestrous cycle, heifers were superstimulated with a total
of 455 IU FSH (13 ml Folltropin; Bioniche, Inverin,
Galway, Ireland) given as twice daily intramuscular in-
jections over 4 days on a decreasing dose schedule.
Luteolysis was induced with 2 ml Estrumate (PGF2α)
given on day 12 with the sixth injection of follicle stimu-
lating hormone (FSH). All heifers received 2.5 ml Receptal
(GNRH) at 40 h after PGF2α, the expected time of the
luteinizing hormone (LH) surge [82]. Animals seen in
standing estrus between 36 and 60 h were inseminated
using frozen thawed semen. Inseminated animals were
slaughtered and embryos recovered from reproductive
tracts on day 7 and used for same day embryo transfer.

In vitro embryo production
The techniques for producing embryos in vitro have been
described in detail previously [81], reagents were pur-
chased from Sigma (Sigma-Aldrich, Ireland). Immature
cumulus–oocyte complexes (COCs) were obtained by
aspirating follicles from the ovaries of heifers and cows
collected at killing. COCs were matured for 24 h in
TCM-199 supplemented with 10% (v/v) FCS and 10 ng/ml
epidermal growth factor at 39 °C under an atmosphere
of 5% CO2 in air with maximum humidity. For IVF, ma-
tured COCs were inseminated with frozen-thawed
Percoll-separated bull sperm at a concentration of 1 × 106

spermatozoa/ml. Gametes were co-incubated at 39 °C
under an atmosphere of 5% CO2 in air with max-
imum humidity. Semen from the same bull was used
for all experiments. At ∼20 h post-insemination (hpi),
presumptive zygotes were denuded and cultured in
groups of 50 in 500 μl synthetic oviduct fluid media
(SOF) supplemented with 5% FCS. Cleavage rate was
recorded at 48 hpi and blastocyst development re-
corded at day 7 post-insemination (pi).

Unstimulated recipient heifers and embryo transfer
Control animals (AI) were oestrous synchronized, as
described above, artificially inseminated on detection of
estrus and slaughtered 17 days post insemination.
Oestrous synchronised recipient animals were randomly
assigned to receive a day 7 blastocyst stage embryo
recovered from a stimulated heifer (SOV) or produced
in vitro (IVP), 7 days following detection of estrus.
Recipient animals were slaughtered 10 days post embryo
transfer and conceptuses were recovered from repro-
ductive tracts on day 17 of embryo development.
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Sample preparation
Day 17 conceptuses were processed for methylation
array analysis by dissecting three embryonic regions
from all control (AI) and treatment group samples (SOV
and IVP) immediately after recovery from the reproduct-
ive tract. These regions were as follows: the embryonic
disc (ED); the trophectoderm region directly adjacent to
the embryonic disc (TE); and the peripheral tip of the
elongated day 17 embryo (TP) (Fig. 1b). Genomic DNA
and total RNA were isolated from single, dissected day 17
conceptuses using the AllPrep DNA/RNA Micro Kit
(Qiagen, Manchester, UK) according to the manufac-
turers’ guidelines. DNA samples were quantified using
a Qubit dsDNA HS assay kit (Invitrogen™, Thermo-
Fisher Scientific Ltd., Dublin, Ireland). 10 ng of DNA
from each sample was prepared for the array exactly
as outlined in [51]. 100 ng total RNA from each re-
gion of all conceptuses and converted to cDNA as
described previously [83].

Microarray
For a complete outline of microarray design and probe
locations see [51, 84] and the EmbryoGENE UCSC Gen-
ome Browser (http://emb-bioinfo.fsaa.ulaval.ca/bioinfo/
html/index.html). A total number of 36 separate amplifi-
cations, comprising three regions (ED, TE, TP) from
each of 12 conceptuses (4 × AI, 4 × SOV and 4 × IVP),
were analysed in the present study. Quality control plots
for all samples generated after EDMA microarray
hybridization and data analysis are included in Additional
file 4. The microarrays were processed using a custom
pipeline outlined in [51]. The heatmap in Fig. 3 was gener-
ated in R using the heatmap function.

EDMA data analysis
EDMA data was analysed as previously outlined [51] using
the Limma package from Bioconductor [85, 86]. LOESS
intra-array normalisation and quantile inter-array scale
normalisations were performed. Normalised data was then
fitted to a linear model and tested for differential methyla-
tion using Bayesian statistics. DNA methylation differences
were considered significant when the P value was < 0.05
and the absolute log2 fold change threshold was ≥1.5. Eigen
values were used to compare groups using the Bioconduc-
tor package MADE4 [87].

Pyrosequencing and qPCR
Methylation analysis of six imprinted gene DMRs
(SNRPN, PLAGL1, PEG10, IGF2R, MEST and H19) and
four gene body regions identified as differentially meth-
ylated using the EDMA platform (RNF7, GLTP,
TRAPPC9 and CRISPLD2) was performed using pyrose-
quencing, as described previously [83, 88]. Briefly, a sub-
set of tissue samples, collected as described above, were

snap frozen, according to embryonic region, in 6 μl PBS
and stored at − 80 °C. Prior to bisulfite PCR and pyrose-
quencing, samples were thawed, homogenised by vortex-
ing for 1 min and 1 μl was removed for bisulfite
modification of DNA using the EZ DNA methylation
Direct kit, Zymo Research, USA. Modified DNA was
eluted in 42 μl elution buffer (preheated to 50 °C) and
6 μl was used as template in PCR reactions. For PCR
conditions and primer sequences see [71, 72]. RNF7,
GLTP, TRAPPC9 and CRISPLD2 primers are outlined in
Additional file 5: Table S1. Methylation values were used
a continuous variables for statistical analysis. Sample
group means for each gene were compared using
ANOVA followed by post-hoc t-tests using a Tukey’s
honest significant difference (HSD) multiple testing
correction threshold of ≤0.05. For each gene, analysis of
residual values (Q-Q plots and Anderson-Darling tests)
showed that all data were normally distributed. All
statistical analyses were performed using the Minitab
version 16 software package (Minitab Inc., PA, USA).
qPCR was carried out in 15 μl reactions containing
7.5 μl Fast Sybergreen mastermix (Applied Biosystems,
Foster City, CA, USA), 0.3 μm of each primer and 5 μl of
a 1/10 dilution of cDNA. Raw CT values were imported
into qbaseplus (Biogazzelle, Zwijnaarde, Belgium) were data
was calibrated, normalised and expression values (CNRQ)
for each gene was determined. Target genes, TCEB3,
OCRL and ATP1A1, were selected as they were shown to
be differentially methylated in at least two comparisons on
the array. SNRPN and H19 were also included as they are
two of the most extensively studied imprinted genes. Tar-
get genes were normalised using two stable reference
genes, H3F3A and GAPDH (qPCR primers are listed in
Additional file 5: Table S2). Statistical analysis for each
gene (unpaired, two tailed t-tests) was carried out using
the stat wizard function in qbaseplus.

IPA analyses
Ingenuity Systems Pathway Analysis (IPA; Ingenuity
Systems, Redwood City, CA, USA) was used to identify
canonical pathways and functional processes of bio-
logical importance within the lists of all differentially
methylated regions that were located within gene bodies.
Gene bodies were defined as all coding and non-coding
regions within the transcribed sequence. Intensity on the
array does not necessarily match methylation pattern or
level for the complete gene-defined region. Functional
analysis of differentially methylated loci, within gene
bodies, was performed to characterize biological pro-
cesses that could potentially be affected by ART.
Right-tailed Fisher’s exact tests were used to calculate a
P-value for each of the biological functions assigned to a
list of differentially methylated gene bodies.
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