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PsePSSM and DCCA coefficient based on
LFDA dimensionality reduction
Bin Yu1,2,3*†, Shan Li1,2†, Wenying Qiu1,2, Minghui Wang1,2, Junwei Du4, Yusen Zhang5 and Xing Chen6

Abstract

Background: Apoptosis is associated with some human diseases, including cancer, autoimmune disease,
neurodegenerative disease and ischemic damage, etc. Apoptosis proteins subcellular localization information is
very important for understanding the mechanism of programmed cell death and the development of drugs.
Therefore, the prediction of subcellular localization of apoptosis protein is still a challenging task.

Results: In this paper, we propose a novel method for predicting apoptosis protein subcellular localization,
called PsePSSM-DCCA-LFDA. Firstly, the protein sequences are extracted by combining pseudo-position specific scoring
matrix (PsePSSM) and detrended cross-correlation analysis coefficient (DCCA coefficient), then the extracted feature
information is reduced dimensionality by LFDA (local Fisher discriminant analysis). Finally, the optimal feature vectors
are input to the SVM classifier to predict subcellular location of the apoptosis proteins. The overall prediction accuracy
of 99.7, 99.6 and 100% are achieved respectively on the three benchmark datasets by the most rigorous jackknife test,
which is better than other state-of-the-art methods.

Conclusion: The experimental results indicate that our method can significantly improve the prediction accuracy
of subcellular localization of apoptosis proteins, which is quite high to be able to become a promising tool for
further proteomics studies. The source code and all datasets are available at https://github.com/QUST-BSBRC/
PsePSSM-DCCA-LFDA/.

Keywords: Apoptosis proteins, Subcellular localization, Pseudo-position specific scoring matrix, Detrended
cross-correlation analysis coefficient, Local fisher discriminant analysis, Support vector machine

Background
Protein maintains a highly ordered operation of the pro-
tection of the cell system [1]. At the cellular level, proteins
work only in specific locations. It is necessary to fulfill the
protein’s function that subcellular locations provide a spe-
cific chemical environment and set of interaction partners
[2]. Apoptosis is cell physiological death which is
closely related to intracellular control [3]. Cancer and

autoimmune disease occurs when blocking apoptotic
protein appears, ischemic damage or neurodegenerative
disease occurs when unwanted apoptosis appears [4].
Studying proteins involved in the apoptotic process can
help us understand the pathogenesis of the disease and
provide a variety of therapeutic targets. It is very valu-
able to get information on apoptosis protein subcellular
localization, which can help us understand the apop-
tosis proteins function, cell apoptosis mechanisms and
drug development [5]. Therefore, it is a challenging task
using the machine learning method to construct the
protein subcellular location prediction model.
For nearly two decades, the research of protein sub-

cellular localization prediction has been a hotspot in
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bioinformatics research. Currently, this topic has
achieved some successes [6]. As for protein subcellular
localization prediction methods, we found that the re-
search focuses on the following two aspects: (1) Feature
extraction of protein sequences. The main methods in-
clude N-terminal information prediction method [7, 8],
protein amino acid composition prediction method [9, 10],
pseudo-amino acid composition [11, 12], dipeptide
composition [13, 14], grouped weight coding method
[15], discrete wavelet transform [16, 17], position spe-
cific scoring matrix [18] and protein GO annotation
[19, 20] and so on. (2) The choice of classification al-
gorithm. At present, the commonly used prediction al-
gorithms are increment of diversity [21], deep learning
[22], K-nearest neighbor [23, 24], neural network [25],
hidden Markov model [26, 27], Bayesian classifier [28, 29],
support vector machine [30, 31] and ensemble learning
[32–35]. Among them, SVM has fast computing speed, ex-
cellent ability to extract information, good generalization
performance advantages, making the SVM become the first
classifier choice for researchers.
Currently, apoptosis protein subcellular localization

prediction has made great advancement. Zhou and Doctor
[36] constructed 98 protein apoptosis protein dataset,
using the amino acid composition and covariance discrim-
inant method, the overall prediction accuracy reached
72.5% by jackknife test. Huang et al. [37] obtained the ac-
curacy rate of 77.6% by combining the protein instability
index with the support vector machine. However, the pre-
diction capacity of this method was unbalanced. Espe-
cially, for other class proteins (exclude cytoplasmic,
membrane and mitochondrial proteins), the prediction ac-
curacy did not exceed 50%. Bulashevska and Eils [38] used
Bayesian classifier based on Markov chain model to con-
struct ensemble classifier, and the prediction accuracy of
98 apoptosis proteins was further improved by jackknife
test. Zhang et al. [15] constructed a new apoptosis protein
dataset of 225 proteins. They used encoding approach
with grouped weight as feature extraction method for pro-
tein sequences and support vector machine as classifier
(named as EBGW_SVM). The overall prediction accuracy
was 83.1% using jackknife test. The feature extraction
method of the protein sequence takes into account the
distribution of residues with the same unique characteris-
tic, but ignores the physical and chemical properties of the
protein sequence. Chen and Li [39] constructed a dataset
containing 317 apoptosis protein sequences and obtained
higher prediction accuracy, which combined support
vector machine and increment of diversity (named as
ID_SVM) by using jackknife test. Similarly, Ding et al.
[40] used the Fuzzy K-nearest neighbor (FKNN) algorithm
and the overall prediction accuracy was 90.9% using
CL317 dataset. Qiu et al. [41] used the DWT_SVM
method to obtain high prediction accuracy rates of

97.5, 87.6 and 88.8% for CL317, ZW225 and ZD98 data-
sets, respectively by jackknife test. The above methods ig-
nore the biological information of the protein sequence,
so the prediction method of homologous similarity based
on the protein sequence and protein functional domain is
proposed. Yu et al. [42] proposed a novel pseudo-amino
acid model which extracted the sequence characteristics
of proteins using amino acid substitution matrices and
auto covariance transformation and used support vector
machine as classifier. The results of prediction accuracy
obtained by jackknife test were 90.0 and 87.1% on the
CL317 and ZW225 datasets, respectively. Liu et al. [43]
used tri-gram encoding based PSSM as feature extraction
method, then used SVM-RFE algorithm to reduce feature
vectors, finally the best feature vectors were input to the
SVM classifier. The prediction accuracy were 95.9, 97.8
and 96.9% on the CL317, ZW225 and ZD98 datasets,
respectively. Dai et al. [44] treated the difference be-
tween the N-segment and C-segment of the protein in
subcellular location prediction, and proposed a model
based on golden ratio segmentation to improve subcel-
lular localization prediction, and achieved a better pre-
dictive effect. Xiang et al. [45] introduced evolutionary-
conservative information to represent protein sequences.
Meanwhile, according to the proportion of golden section
in mathematics, the position-specific scoring matrix
(PSSM) is divided into several blocks. The overall ac-
curacy of ZD98 and CL317 datasets were 98.98 and
91.11%, respectively by using SVM classifier. Liang et al.
[46] combined the Geary autocorrelation function and
detrended cross-correlation coefficient methods based on
PSSM to extract the protein sequences from the CL317,
ZW225 and ZD98 datasets. Under the jackknife test, the
overall prediction accuracy were 89.0 84.4 and 91.8%,
respectively.
Using only a feature is difficult to have a big break-

through in the prediction of subcellular localization. At
present, researchers usually combined multiple feature
extraction methods of protein sequences to obtain more
comprehensive protein sequence information. However,
the feature vectors of the protein sequences obtained by
fusing a variety of features are usually very high. High-
dimensional data contains a lot of redundant informa-
tion, which may seriously affect the performance of the
classifier. Dimensionality reduction methods can help us
eliminate redundant information and are widely used in
data classification and pattern recognition. At present,
many researchers introduce a variety of methods to re-
duce dimension in the subcellular localization prediction, such
as SVD (singular value decomposition) [47], Backward feature
selection [48], CFS (correlation-based feature selection) [49],
Forward selection [50], PSO (particle swarm optimization)
[51], mLASSO (multi-label least absolute shrinkage and selec-
tion operator) [52], GA (Genetic algorithm) [53] and so on.
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In this paper, we presents a new method for predict-
ing subcellular localization of apoptosis proteins, called
PsePSSM-DCCA-LFDA. Firstly, obtain sequence informa-
tion from apoptotsis protein sequences by combining
PsePSSM algorithm and DCCA coefficient. Then, the
LFDA method is used to reduce the dimension and noise
information in the original high-dimensional space. Finally,
using SVM as classifier to predict protein subcellular
localization. By jackknife test, the optimal parameters
of the model are determined under different ξ values, S
values, different dimensionality reduction methods and
selection of different dimensions, and established
PsePSSM-DCCA-LFDA prediction model. Using the
most rigorous jackknife test, the overall prediction ac-
curacy are 99.7, 99.6 and 100%, respectively for CL317
dataset, ZW225 dataset and ZD98 dataset. The results
show that the PsePSSM-DCCA-LFDA method can get
better prediction effect than other existing methods.

Methods
Datasets
In this study, we use CL317 dataset and ZW225 dataset
as the training datasets, which select optimal parameters
of the prediction model. In addition, the ZD98 dataset is
selected as an independent testing dataset that used to
test the applicability of the prediction model. The CL317
dataset was constructed by Chen and Li [39], which con-
tained 317 proteins classified into six compartments as
cytoplasm proteins, mitochondrion proteins, nucleus pro-
teins, membrane proteins, secreted proteins and endoplas-
mic reticulum proteins, each class containing 112, 34, 52,
55, 17, and 47 proteins, respectively. For CL317 dataset,
distribution of sequence identity percentage are 40.1, 15.5,
18.9 and 25.6% with ≤40%, 41%-80%, 81%-90% and ≥91%
sequence identity, respectively. The ZW225 dataset was
constructed by Zhang et al. [15], which contained 225
proteins classified into four compartments as nuclear pro-
teins, cytoplasmic proteins, mitochondrial proteins and
membrane proteins, each class containing 41, 70, 25 and
89 proteins, respectively. For ZW225 dataset, distribution
of sequence identity percentage are 52.9, 16, 16 and 15.1%
with ≤40%, 41%-80%, 81%-90% and ≥91% sequence iden-
tity, respectively. The ZD98 dataset was constructed by
Zhou and Doctor [36], which contained 98 proteins classi-
fied into four compartments as cytoplasmic proteins,
plasma membrane-bound proteins, mitochondrial pro-
teins and other proteins, each class containing 43, 30, 13
and 12 proteins, respectively. For ZD98 dataset, distribu-
tion of sequence identity percentage are 34.7, 30.6, 17.4
and 17.4% with ≤40%, 41%-80%, 81%-90% and ≥91% se-
quence identity, respectively. The protein sequences are
extracted from SWISS-PROT database (version 49.5) in
the three datasets, and we can find the accession numbers
in the literatures [15, 36, 39].

Pseudo-position specific scoring matrix (PsePSSM)
In order to obtain the evolutionary information of the pro-
tein sequences, the protein sequences of the CL317, ZW225
and ZD98 datasets are aligned with the non-redundant
(NR) database (ftp://ftp.ncbi.nih.gov/blast/db/) using the
PSI-BLAST program [54], and obtain the position specific
scoring matrix (PSSM) [55] of the corresponding pro-
tein sequences. The NR database contains 85,107,862
protein sequences. We use three iterations and E-value
is 0.001 in PSI-BLAST program. The BLOSUM62 matrix
is used as substitution matrix for generating the PSSM.
PSSM can be expressed for a protein sequence P as the
following Eq. (1).

PPSSM ¼

E1;1 E1;2 ⋯ E1;20

⋮ ⋮ ⋮ ⋮
Ei;1 Ei;2 ⋯ Ei;20

⋮ ⋮ ⋮ ⋮
EL;1; EL;2 ⋯ EL;20

0
BBBB@

1
CCCCA ð1Þ

where L is total number of amino acids in the protein
sequence, Ei, j represents the evolution information of
amino acids in protein sequences. The rows of PSSM
represent the corresponding amino acids positions in
protein sequences, and columns of PSSM indicate the 20
amino acid types that may be mutated. The PSSM value
ranges from − 9 to 11.
Since the length of the protein sequence in the CL317,

ZW225 and ZD98 datasets is inconsistent, the corre-
sponding PSSM dimension for the protein sequence in
the dataset is different, which is difficult for our subse-
quent study. In this paper, PsePSSM [56] algorithm is
used to extract the features of protein sequences, and
the PSSM of different protein sequences is transformed
into a uniform vector.
First, the elements of PSSM are normalized by Eq. (2),

whose PSSM value ranges from 0 to 1.

f xð Þ ¼ 1= 1þ e−xð Þ ð2Þ

where x is the original PSSM value.
Then, a protein sequence can be expressed using

PsePSSM as follows:

PPsePSSM ¼ P1; P2;⋯; P20; θ
1
1; θ

1
2;⋯; θ120;⋯; θξ1; θ

ξ
2;⋯; θξ20

� �T

ð3Þ

where P j ¼
PL

i¼1 Pi; j=L ð j ¼ 1; 2;⋯; 20Þ , P j represents
the average score of the all amino acid residues which are

mutated to j amino acid type in the protein P. θξj ¼ 1
L−ξPL−ξ

i¼1 ðPi; j−PðiþξÞ; jÞÞ2 ð j ¼ 1; 2;⋯20; ξ < L; ξ≠0Þ , θξj
is order information of protein sequences, j is amino acid
type, ξ is contiguous distance.
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From the above, a protein sequence generates 20+20×ξ
dimension feature vector using PsePSSM algorithm.

Detrended cross-correlation analysis coefficient
According to the evolutionary information expressed by
the protein sequence, we can obtain the corresponding
position score-specific matrix (PSSM), as shown in eq.
(1). In order to extract more protein sequence informa-
tion from the PSSM matrix, the protein sequence infor-
mation is extracted from the PSSM using the detrended
cross-correlation analysis coefficient (DCCA coefficient)
method [57–59]. DCCA coefficient is a method based
on the trend covariance method, and the least squares
linear fitting and trend elimination are carried out for
nonstationary signals. The evolutionary information
expressed in the form of PSSM is used as the attribute,
and each amino acid is considered as one property.
PSSM is considered to be the time series of all attributes.
Since the size of the PSSM matrix for each protein se-
quence is L×20, we calculate the 20 columns in the
PSSM matrix as 20 non-stationary time series [46, 60].
After normalizing the PSSM matrix using the eq. (2),

for any two different columns {mi} and {n1} of PSSM
(i=1,2,···,L), L is the length of protein sequence. First we
use the Eq. (4) to calculate the new time series Mk and
Nk.

Mk ¼
Xk
i¼1

mi k ¼ 1; 2;⋯; L

Nk ¼
Xk
i¼1

ni k ¼ 1; 2;⋯; L

8>>>><
>>>>:

ð4Þ

Then the time series Mk and Nk are divided into L-S
segments which can be overlapped, each segment con-
tains S+1 data, and then the least squares linearly fitting
for each segment of the data to obtain the fitting values
~Mi;k and ~Ni;k . Use the Eq. (5) to calculate the covariance
of each segment.

f 2xy S; ið Þ ¼ 1
S þ 1

XiþS

k¼i

Mk− ~Mi;k
� �

Nk− ~Ni;k
� � ð5Þ

In particular, there are f 2xxðS; iÞ ¼ 1
Sþ1

PiþS
k¼i ðMk− ~Mi;kÞ2

, f 2yyðS; iÞ ¼ 1
Sþ1

PiþS
k¼i ðNk− ~Ni;kÞ2.

Next, the covariance of the L-S segments (whole time
series) calculated by using the Eq. (6) is:

f 2xy Sð Þ ¼ 1
L−S

XL−S
i¼1

f 2xy S; ið Þ ð6Þ

In particular, there are f 2xxðSÞ ¼ 1
L−S

PL−S
i¼1 f 2xxðS; iÞ , f 2yy

ðSÞ ¼ 1
L−S

PL−S
i¼1 f 2yyðS; iÞ.

Finally, the DCCA coefficients of two different time
series {mi} and {n1} are calculated using Eq. (7).

ρDCCA ¼ f 2xy Sð Þ
f xx Sð Þ f yy Sð Þ ð7Þ

As can be seen from Eq. (7), ρDCCA depends on the
length L of the protein sequence and the length S+1 of
the overlapping portion of each segment. Its value ranges
from -1≤ ρDCCA ≤1, where 1 represents perfect cross-cor-
relation, 0 indicates no cross-correlation, and − 1 represents
perfect anti-cross-correlation [61]. Finally, the DCCA coef-
ficient algorithm will generate a 190-dimensional feature
vector for a protein sequence.

Local fisher discriminant analysis
This paper uses a supervised dimensionality reduction
method, local Fisher discriminant analysis (LFDA)
[62]. LFDA has the form of embedded transformation,
and it can be easily calculated by solving the general-
ized eigenvalue problem. Let the protein data matrix
be X = [x1, x2,⋯xn],xi ∈ Rd, where n is the number of
samples of the protein, d is the dimension of the pro-
tein sequence feature extraction. yi ∈ {1, 2⋯, c}, nℓ is
the number of samples of the categoryℓ,

Pc
ℓ¼1 nℓ ¼ n .

The local within-class scatter matrix S(w)and the local
between-class scatter matrix S(b)are calculated using
Eqs. (8) and (9).

S wð Þ ¼ 1
2

Xn
i; j¼1

W wð Þ
i; j xi−x j

� �
xi−x j
� �T ð8Þ

S bð Þ ¼ 1
2

Xn
i; j¼1

W bð Þ
i; j xi−x j
� �

xi−x j
� �T ð9Þ

where

W wð Þ
i; j ¼ Ai; j=nℓ if yi ¼ y j ¼ ℓ

0 if yi≠y j

�

W bð Þ
i; j ¼ Ai; j 1=nð Þ− 1=nℓð Þð Þ if yi ¼ y j ¼ ℓ

1=n if yi≠y j

�

It is worth noting that A is an affinity matrix, Ai, j ∈ A
is the affinity betweenxi and xj. In this paper, we use the
affinity matrixAi, j = exp(−‖xi − xj‖/σiσj) defined by Zelnik-

Manor and Perona [63]. σ i ¼ kxi−xðKÞ
i k represents the

local scaling of the surrounding xi data samples, where

xðKÞ
i is the K nearest neighbor of xi. The literature [63]
proved that in the experiment for high-dimensional data,
when K = 7, better results can be obtained, so this article
selected K = 7.
Solve LFDA transformation matrixTLFDA
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TLFDA ¼ arg max
T∈Rd�r

tr TTS wð ÞT
� �−1

TTS bð ÞT
� �	 


ð10Þ
Matrix after the dimension reduction becomes:

Z ¼ T
0
LFDAX ð11Þ

Therefore, through the Eq. (11), we eliminate the re-
dundant information contained in the high-dimensional
data obtained after the original protein sequence feature
extraction. In other words, the fusion PsePSSM algo-
rithm and DCCA coefficient algorithm on the apoptosis
protein sequence after the feature extraction matrix X,
through the transformation matrix TLFDA, matrix Z is
obtained after dimensionality reduction.

Support vector machine
Support vector machine (SVM) is a supervised machine
learning method based on statistical learning theory,
which is proposed by Vapnik et al. [64]. Because of its
excellent learning and generalization ability, especially the
ability to deal with high dimensional sparse vector, it has
become a hotspot in the field of data mining and machine
learning. In recent years, SVM has also been widely used
in the field of bioinformatics. In the field of proteomics re-
search, it has been widely used to predict membrane pro-
tein types [65, 66], G protein-coupled receptors [67, 68],
protein structure [69–73], protein-protein interaction
[74–76], protein subcellular localization [77–80], protein
post-translational modification sites [81–84] and other
protein structure and function of the study.
SVM is used to solve a two-class classification problem.

SetD = {(xi, yi)| i = 1, 2,⋯, n} is a training set, wherexi ∈
Rdrepresent sample i, which has d dimension feature vec-
tors, yi ∈ {+1, −1}is class labels of sample i. SVM trans-
forms a linearly indivisible sample of low-dimensional
input space into high-dimensional feature space to make
it linearly separable.
In this study, we choose the radial basis function (RBF)

to perform prediction. Because RBF kernel function is the
most widely used kernel function and its superiority for
solving nonlinear problem [17, 18, 41–46], which is de-
fined as follows:

K xi; y j
� �

¼ exp −γ xi−y j
��� ���2

� �
ð12Þ

where γ is the kernel width parameter, xi and yj are the
feature vectors of the i-th and j-th protein sequences, re-
spectively. The egularization parameter C and the kernel
parameter γ are optimized based on CL317 and ZW225
datasets by K-fold cross validation using a grid search
strategy to obtain the highest overall prediction accuracy
by using the LIBSVM software [85], which can be freely

downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
In this paper, C is allowed to take a value only between 2−5

and 215, and γ only between 2‐15and 25.
SVM is originally designed for two-class classification,

but CL317, ZW225 and ZD98 are multi-class classifica-
tion data. At present, three kinds of strategies can be
solved multi-classification: one-versus-one (OVO), one-
versus-rest (OVR) [86] and direct acyclic graph SVM
(DAGSVM) [87]. LIBSVM software implements the
“one-versu-one” (OVO) strategy for multi-class classifi-
cation. The OVO strategy sets up a classifier between
any two categories,so if k is the number of classes, then
k(k − 1)/2 classifiers are constructed. During the testing
phase, the test samples are submitted to all classifiers,
k(k − 1)/2 classification results are obtained, and the
final result is generated by voting. That is to say, the
most voting category is the final class. It is worth noting
that when there are two categories of voting the same re-
sults, we choose the class appearing first of the vote as the
final category for the sake of simple operation.

Performance evaluation and model building
In statistical prediction, there are four validation tests:
self-consistency test, independent dataset test, k-fold
cross-validation and jackknife test, which are often used
to evaluate the prediction performance [78, 80]. In this
paper, the jackknife test [88, 89] is used to examine the
performance of the prediction model. The jackknife test
requires testing each sample in the dataset. Specifically,
each time one sample is selected as an independent test
sample in the dataset, and the remaining samples are
used as a training set to establish a prediction model
until all the samples have been tested in the dataset.
We use four standard performance measures to evalu-

ate the model performance, including sensitivity (Sens),
specificity (Spec), Matthews correlation coefficient (MCC)
and overall accuracy (OA), as follows:

Sens ¼ TP
TP þ FN

ð13Þ

Spec ¼ TN
TN þ FP

ð14Þ

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ � TP þ FNð Þ � TN þ FPð Þ � TN þ FNð Þp

ð15Þ

OA ¼ TP þ TN
TP þ FN þ FP þ TN

ð16Þ

where TP represents the numbers of the correctly identi-
fied positives, TN represents the numbers of correctly
identified negatives, FP represents the numbers of the
negatives identified as positives, FN represents the num-
bers of the positives identified as negatives. In addition,
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to assess the generalization performance of the model,
the receiver operating characteristic (ROC) curves were
used. The AUC is the area calculated under ROC curve
plotted by FP rate vs TP rate, which is a quantitative in-
dicator of the robustness of the model. Its values range
from 0 to 1.
For convenience, the method is called PsePSSM-DCCA-

LFDA in this paper, which is used to predict apoptosis
protein subcellular localization. To provide an intuitive
picture, the flowchart of PsePSSM-DCCA-LFDA method
is shown in Fig. 1. We have implemented it in MATLAB
R2014a.
The PsePSSM-DCCA-LFDA prediction model is de-

tailed below:

1) Input CL317 dataset and ZW225 dataset, respectively,
which contain apoptosis protein sequences and the
class label corresponding to all kinds of proteins;

2) The 20 + 20 × ξdimension feature vector is
generated by PsePSSM algorithm. Using DCCA
coefficient, the protein sequence is extracted to
generate 190 dimension feature vectors. By
combining these two methods, the two different
apoptosis protein datasets generate the corresponding
feature extraction matrices ofX = 317 × (190 + (20 +
20 × ξ))and X = 225 × (190 + (20 + 20 × ξ)),
respectively;

3) Using the LFDA method to solve TLFDA ¼ arg max
T∈Rd�r½trððTTSðwÞTÞ−1TTSðbÞTÞ�, the numerical matrix X

extracted in 2) is reduced dimension by Z ¼ T
0
LFDAX ,

and the matrix Z is obtained by removing the
redundant information in the apoptosis protein
sequences;

4) The matrix Z after dimensionality reduction are
input into the SVM classifier, and the protein
subcellular localization prediction is performed by
jackknife test;

5) According to the accuracy of prediction, the
optimal parameters of the model are selected,
including the ξ values andSvalues of parameters, the
selection of the dimension reduction algorithm and
the dimensionality;

6) Calculate the Sens, Spec, MCC, OA and AUC
values of the model, and evaluate prediction
performance of the model;

7) Using the independent testing dataset ZD98 to test
the PsePSSM-DCCA-LFDA prediction model.

Results
Selection of optimal parameter ξ andS
In this study, the apoptosis protein sequences are ex-
tracted by the fusion PsePSSM algorithm and the DCCA
coefficient algorithm, and obtain the feature information
in the protein sequences. It is worth noting that both the
PsePSSM algorithm and the DCCA coefficient algorithm
can control the validity of the algorithm to extract the fea-
ture information of the protein sequence by adjusting
some of the parameters in the algorithm. How to get the
best parameters of these two feature extraction algorithms
is very important for us to construct a protein subcellular
localization prediction model. In order to discover the
merits of the feature parameters, we use CL317 and
ZW225 datasets as the research object, the best parame-
ters of the model are selected by the prediction accuracy
under different parameters. In this paper, the PsePSSM al-
gorithm is used to carry out feature extraction on protein
sequences, and the ξ value indicates the sequence-order
information of the amino acid residues in the protein se-
quence. If the ξ value is set too large, the feature vector di-
mension of the protein sequence is too high, resulting in
more redundant information, which affects the prediction
effect. If the ξ value is set too small, the feature vector
contains very little sequence information, and the features
of the protein sequence of the apoptosis protein dataset
cannot be extracted comprehensively. To find the optimal

Fig. 1 Flowchart of PsePSSM-DCCA-LFDA prediction method
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ξ value in the model, set the ξ values from 0 to 10 in turn.
For the different ξ values, the apoptosis protein datasets
CL317 and ZW225 are classified by SVM respectively.
The SVM is used to select the radial basis function (RBF)
and the results are tested by jackknife method. The overall
prediction accuracy of each class protein and overall pre-
diction accuracy in the apoptosis protein datasets are ob-
tained, as are shown in Tables 1 and 2.
Table 1 shows that the OA of CL317 dataset are differ-

ent with constant change of ξ value. The highest predic-
tion accuracy of mitochondrial proteins reach 70.6%
when ξ = 3, which is 32.4 and 14.7% higher than when ξ
values are 0 and 1, respectively. The prediction accuracy
of membrane proteins is 87.3% when ξ = 10. The OA of
CL317 dataset reach 83.6 and 83.9% when ξ = 3 and
ξ = 10, respectively, higher than that when ξ values
are taking other values.
Table 2 shows that the OA of ZW225 dataset are dif-

ferent with constant change of ξ value. For cytoplasmic
proteins, the highest predictive accuracy is 81.4% when ξ
values are 1, 3, 4 and 6, respectively. For membrane pro-
teins, the highest prediction accuracy is 93.3% when ξ =
0, which is 7.9% higher than when ξ = 5. From the over-
all prediction accuracy, when ξ values are 3 and 6, the
OA of ZW225 dataset reach 77.3 and 77.8%, respect-
ively, which is 6.6 and 7.1% higher than that when ξ = 0.
To select the optimal parameters of the PsePSSM al-

gorithm in the subcellular prediction model of apoptosis
proteins, CL317 and ZW225 datasets are selected as the
training datasets. Fig. 2 shows the OA changes when dif-
ferent ξ values are chosen in CL317 and ZW225 data-
sets. It can be seen from Fig. 2 that the prediction
accuracy of the two datasets is changing with the change
of the ξ value. In addition, CL317 and ZW225 datasets
reach the highest accuracy, whenξ = 3 andξ = 6, respect-
ively. But in order to unify the model parameters, ξ = 3
is chosen in the model. Therefore, the PsePSSM algo-
rithm is used to extract the protein sequence, and each
protein sequence to obtain 20 + 20 × ξ = 20 + 20 × 3 = 80
dimension feature vector.

In the feature extraction process by using DCCA coef-
ficient, the selection of Svalue has a crucial influence on
the construction of the model. Sis used to determine the
length of each overlapping portion of the detrended
cross-correlation analysis. Because the length of the
shortest protein sequence in the benchmark dataset is
50, the maximum value allowed for S is 49. To find the
optimal Svalue in the model, set Svalues from 5 to 49 in
turn. For the different Svalues, the apoptosis protein
datasets CL317 and ZW225 are classified by SVM re-
spectively. The SVM is used to select RBF and the re-
sults are tested by jackknife method. The prediction
accuracy of each class protein and the overall prediction
accuracy in the apoptosis protein datasets are obtained,
as are shown in Tables 3 and 4.
Table 3 shows that the OA of CL317 dataset are differ-

ent with constant change of S value. The accuracy of
cytoplasmic proteins reach 97.3% when S = 30 and S =
35, respectively. The highest prediction accuracy of
mitochondrial proteins reach 92.7%, when S = 45 and S
= 49, respectively, which is 12.7% higher than whenS = 5.
The accuracy of nuclear proteins is 67.3% when S = 49,
which is 21.1% higher than whenS = 5. The accuracy of
secreted proteins is 88.2% when S = 25. From overall
prediction accuracy, the OA of CL317 dataset is 85.8%
when S = 35, which is 9.8% higher than when S = 5.
Table 4 shows that the OA of ZW225 dataset are dif-

ferent with constant change of Svalue. The accuracy of
cytoplasmic proteins reach 87.1% whenS = 49. The high-
est prediction accuracy of membrane proteins reach
91.0% when S values are 20, 25 and 40, respectively. The
accuracy of nuclear proteins reach 75.6% when S = 40
and S = 45, respectively. From the overall prediction ac-
curacy, the OA of ZW225 dataset is 82.7% when S = 40,
which is higher than other parameters.
In our current study, two apoptosis protein datasets

CL317 and ZW225 are selected as the training datasets.
To determine the optimal parameters of DCCA coeffi-
cient algorithm in the model, Fig. 3 shows the change of
OA in CL317 dataset and ZW225 dataset by choosing

Table 1 Prediction results of selecting different ξ on CL317 by jackknife test

ξ

Locations Jackknife test (%)

0 1 2 3 4 5 6 7 8 9 10

Cy 88.4 90.2 90.2 92.9 92.0 92.9 92.9 92.9 92.9 92.9 92.9

Me 76.4 83.6 81.8 83.6 83.6 81.8 83.6 83.6 87.3 87.3 87.3

Mi 38.2 55.9 58.8 70.6 64.7 64.7 64.7 64.7 64.7 64.7 67.7

Se 47.1 76.5 76.5 76.5 76.5 76.5 76.5 76.5 76.5 76.5 76.5

Nu 51.9 57.7 63.5 73.1 76.9 73.1 73.1 71.2 71.2 71.2 73.1

En 85.1 85.1 85.1 85.1 85.1 85.1 85.1 85.1 85.1 85.1 85.1

OA 72.2 78.5 79.5 83.6 83.3 82.6 83.0 82.6 83.3 83.3 83.9
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differentS. It can be seen from Fig. 3 thatSvalues are dif-
ferent for the highest overall prediction accuracy of two
datasets. The average overall prediction accuracy of
CL317 and ZW225 datasets is the highest when S = 40.
That is, the DCCA coefficient algorithm chooses optimal
parameterS = 40. At this time, the 190 dimension feature
vector can be obtained by extracting each protein se-
quence by DCCA coefficient method.

Selection of dimensionality reduction method and
optimal dimension
The increasing dimension of the dataset makes the clas-
sification more difficult and the development to a certain
extent can cause curse of dimensionality. For high-di-
mensional data, firstly, dimensionality reduction is car-
ried out, and then data after dimensionality reduction is
input into the learning system. In order to achieve the
ideal protein subcellular localization prediction accuracy,
the PsePSSM and DCCA coefficients are first fused to
extract features of the protein sequences. In the discussion

of section 3.1, in the PsePSSM algorithm, select ξ = 3. In
the DCCA coefficient algorithm, select S = 40. At this
time, each protein sequence in the dataset generates a
(20 + 20 × 3) + 190 = 80+ 190 = 270 dimension feature vector.
Then, PCA (Principal Component Analysis) [90], Lapla-

cian Eigenmaps [91], AKPCA (Adaptive Kernel Principal
Component Analysis) [92] and LFDA (Local Fisher
Discriminant Analysis) dimensionality reduction method
are used to compare the effect of protein subcellular
localization overall prediction accuracy by using these four
dimensionality reduction methods. In this study, we use
the SVM to classify with the radial basis kernel function,
and the results are tested by jackknife method. The overall
prediction accuracy of subcellular localization of two
apoptosis protein datasets are obtained with different di-
mensionality reduction methods and under different di-
mensions, as shown in Tables 5 and 6.
As can be seen from Table 5, for the CL317 dataset,

choosing different dimensionality reduction methods
and dimensions have a significant effect on the accuracy

Table 2 Prediction results of selecting different ξ on ZW225 by jackknife test

ξ

Locations Jackknife test (%)

0 1 2 3 4 5 6 7 8 9 10

Cy 74.3 81.4 80.0 81.4 81.4 80.0 81.4 80.0 80.0 80.0 80.0

Me 93.3 91.0 87.6 88.8 86.5 85.4 85.4 85.4 85.4 85.4 85.4

Mi 16.0 32.0 24.0 40.0 44.0 44.0 44.0 40.0 36.0 36.0 36.0

Nu 48.8 63.4 61.0 68.3 68.3 75.6 75.6 75.6 75.6 75.6 75.6

OA 70.7 76.4 73.3 77.3 76.9 77.3 77.8 76.9 76.4 76.4 76.4

Fig. 2 Effect of selecting different values of ξ on CL317 and ZW225 datasets by jackknife test
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of protein subcellular prediction. When Laplacian Eigen-
maps and AKPCA method are used to reduce dimen-
sion, the dimension is 50, and CL317 dataset obtains the
highest overall prediction accuracy, which is 84.9 and
89.6%, respectively. When PCA method is used to re-
duce dimension and dimensionality chooses 40, the
highest overall prediction accuracy of the CL317 dataset
is 89.3%. When LFDA method is used to reduce dimen-
sion and dimensionality chooses 10, the overall predic-
tion accuracy is the highest, which is 99.7%. It shows
that when choosing different dimensionality reduction
methods, getting the best dimension for the CL317 data-
set is different. By comparing the overall prediction ac-
curacy by different dimensionality reduction methods
with different dimensions, we can find that when the
LFDA dimensionality reduction method is adopted, the
dimensionality is 10, the overall prediction accuracy is
the highest, 10.1% higher than when AKPCA dimension-
ality reduction method is used and the dimension is 50.
It can be more intuitively found in Fig. 4 for the CL317
dataset, when the LFDA dimensionality reduction method
is selected, the highest overall prediction accuracy of the
model is achieved when dimension is 10.
As can be seen from Table 6, for the ZW225 dataset,

choosing different dimensionality reduction methods and
dimensions has a significant effect on the accuracy of pro-
tein subcellular prediction. When PCA method is selected

to reduce the dimensionality and dimension chooses 30,
the highest overall prediction accuracy of 85.8% is
achieved in the ZW225 dataset. When using the Laplacian
Eigenmaps method to reduce dimension, and dimension-
ality chooses 30 or 50, the overall prediction accuracy of
the dataset is the highest, which is 82.2%. When using the
AKPCA method to reduce dimension, and dimensionality
chooses 40, the highest overall prediction accuracy is
86.2%. When using the LFDA method to reduce dimen-
sion, and dimensionality chooses 10, 20, 30, 40, 50, 60, 70
or 80, the highest overall prediction accuracy is 99.6%. It
indicates that the choice of the optimal dimension is
closely related to the use of dimensionality reduction
methods. In this paper, by comparing the overall predic-
tion accuracy by different dimensionality reduction
methods with different dimensions, it can be found that
when the LFDA dimensionality reduction method is
adopted and the dimension is 10, the overall prediction
accuracy is the highest, 17.4% higher than when Laplacian
Eigenmaps dimensionality reduction method is used and
dimension is 30. It can be more intuitively found in Fig. 5
for the ZW225 dataset, when the LFDA dimensionality re-
duction method is selected, the highest overall prediction
accuracy of the model when dimension is 10, 20, 30, 40,
50, 60, 70 or 80. Since the two apoptosis protein datasets
CL317 and ZW225 are selected as the training set, in
order to unify the parameters of the model, the LFDA di-
mensionality reduction method is adopted in this paper,
and the optimal dimension is 10-dimensional.

Effect of feature extraction algorithm on results
Feature extraction method converts character representa-
tion of a protein sequence into a numerical representation,
which uses the corresponding feature vector to represent
protein sequence information. PsePSSM method can get
homology and sequence information of amino acids in the
protein sequences. DCCA coefficient method is an exten-
sion of the DCCA and the DFA (detrended fluctuation
analysis). Here, only the evolutionary represented in the
form of PSSM is adopted as the considered properties.
The PsePSSM algorithm and the DCCA coefficient
method are combined to obtain more protein sequence
information, but this will obtain high-dimensional features
to make the model worse, which contain more redundant
variables. LDFA dimensionality reduction method use
local within-class scatter matrix and local between-class
scatter matrix to remove the redundant information based
on the feature information of the protein sequences in the
dataset and the corresponding class labels. In this paper,
the optimal feature extraction algorithm is selected by
comparing the influence of different feature extraction
methods on the prediction results. Two different predicted
results of the two apoptosis protein datasets CL317 and
ZW225 are shown in Tables 7 and 8. Furthermore, we

Table 3 Prediction results of selecting different S on CL317 by
jackknife test

S

Locations Jackknife test (%)

5 10 15 20 25 30 35 40 45 49

Cy 96.4 90.2 92.0 90.2 95.5 97.3 97.3 95.5 95.5 96.4

Me 83.0 83.0 83.0 83.0 83.0 83.0 83.0 83.0 83.0 83.0

Mi 80.0 87.3 83.6 87.3 83.6 87.3 89.1 90.9 92.7 92.7

Se 44.1 52.9 82.4 79.4 88.2 85.3 85.3 82.4 82.4 82.4

Nu 46.2 63.5 63.5 65.4 61.5 61.5 63.5 65.4 65.4 67.3

En 64.7 52.9 52.9 52.9 70.6 70.6 76.5 76.5 64.7 58.8

OA 76.0 78.2 81.4 81.4 83.9 84.9 85.8 85.5 85.2 85.5

Table 4 Prediction results of selecting different S on ZW225 by
jackknife test

S

Locations Jackknife test (%)

5 10 15 20 25 30 35 40 45 49

Cy 85.7 81.4 80.0 85.7 84.3 85.7 84.3 85.7 85.7 87.1

Me 84.3 86.5 86.5 91.0 91.0 89.9 89.9 91.0 89.9 89.9

Mi 28.0 36.0 48.0 52.0 56.0 56.0 56.0 56.0 56.0 56.0

Nu 48.8 68.3 70.7 61.0 58.5 58.5 70.7 75.6 75.6 73.2

OA 72.0 76.0 77.3 79.6 79.1 79.1 80.9 82.7 82.2 82.2
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analyze the robustness of the model under different fea-
ture extraction algorithms, which use ROC curve. As we
know, the ROC curve is used in positive vs negative (two
classes) classification. But apoptosis proteins subcellular
localization prediction is a multi-class prediction prob-
lem. We first use the one-versus-rest (OVR) strategy to
transform the multi-classification problem into
two-classification problems. One of the classes is se-
lected as positive samples i.e. “positive” one and other
classes as negative samples [69]. Then for these
two-classification true positive rate and false positive
rate, the average of them was taken as the final result
[43]. Figures 6 and 7 are the ROC curves obtained by
four different feature extraction methods for the CL317
dataset and ZW225 dataset, respectively.
Table 7 shows that the OA of CL317 dataset are differ-

ent, which use different feature extraction algorithms.
The OA of PsePSSM algorithm reach 83.6%, which is

1.9% lower than DCCA coefficient algorithm. The OA of
PsePSSM-DCCA algorithm is 86.8%, which is 3.2, 1.3%
higher than PsePSSM and DCCA coefficient algorithm,
respectively. The LFDA algorithm is used to reduce the
dimensionality after two algorithms. The accuracy of
each class has been obviously improved by using LFDA
algorithm and OA of CL317 dataset reach 99.7%. For
PsePSSM algorithm, the accuracy of secreted proteins
reach 70.6%, which is lower than DCCA coefficient,
PsePSSM-DCCA and PsePSSM-DCCA-LFDA algorithm,
respectively. The accuracy of secreted proteins is 100%
by PsePSSM-DCCA-LFDA algorithm, which is 29.4%
higher than the PsePSSM method. Fig. 6 shows that
PsePSSM-DCCA-LFDA reach largest coverage area of
the ROC curve, whose AUC value is 0.9842. In addition,
the AUC values of PsePSSM, DCCA coefficient and
PsePSSM-DCCA are 0.9591, 0.9520 and 0.9587,
respectively.

Fig. 3 Effect of selecting different values of S on CL317 and ZW225 datasets by jackknife test

Table 5 Prediction results of subcellular localization of the
CL317 dataset by selecting different dimensionality reduction
methods and different dimensions

Dimensions

Algorithms Jackknife test (%)

10 20 30 40 50 60 70 80 90 100

PCA 79.5 84.9 89.0 89.3 87.7 86.1 85.8 83.9 82.6 80.4

Laplacian 63.4 73.8 79.2 82.6 84.9 84.5 82.3 80.8 78.5 74.4

AKPCA 78.2 84.5 87.7 89.0 89.6 88.6 87.4 88.3 86.8 86.4

LFDA 99.7 98.7 98.7 98.4 98.4 97.8 97.5 97.5 97.2 97.2

Table 6 Prediction results of subcellular localization of the
ZW225 dataset by selecting different dimensionality reduction
methods and different dimensions

Dimensions

Algorithms Jackknife test (%)

10 20 30 40 50 60 70 80 90 100

PCA 74.2 79.1 85.8 84.9 83.6 81.3 78.7 78.2 77.8 74.7

Laplacian 69.3 80.0 82.2 80.9 82.2 77.8 73.8 72.0 68.0 67.1

AKPCA 74.7 82.2 84.0 86.2 84.9 83.1 80.9 80.9 77.3 78.2

LFDA 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.1 99.1
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Fig. 4 Effects of selecting four different dimensionality reduction methods and different dimensions on the overall prediction results of subcellular
localization in CL317 dataset

Fig. 5 Effects of selecting four different dimensionality reduction methods and different dimensions on the overall prediction results of subcellular
localization in ZW225 dataset
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Table 8 shows that the OA, accuracy of each class are
different for ZW225 dataset with different feature ex-
traction algorithms. The OA of PsePSSM algorithm
reach 77.3%, which is 5.4, 7.6 and 22.3% lower than
DCCA coefficient algorithm, PsePSSM-DCCA algorithm
and PsePSSM-DCCA-LFDA algorithm, respectively. The
OA of PsePSSM-DCCA algorithm is 84.9%, which is 7.6,
2.2% higher than PsePSSM and DCCA coefficient algo-
rithm, respectively. Using the LFDA algorithm to reduce
the dimensionality, the PsePSSM-DCCA algorithm as
feature extraction method, the prediction accuracy of
the four kinds of proteins in the ZW225 dataset has
been improved remarkably, and the OA of the model
has reach 99.6%. Fig. 7 shows that PsePSSM-DCCA-
LFDA reach largest coverage area of the ROC curve,
whose AUC value is 0.9805. In addition, the AUC values
of PsePSSM, DCCA coefficient and PsePSSM-DCCA are
0.9380, 0.9386 and 0.9464, respectively. Analyzing and
comparing the prediction results and robustness of pre-
diction model on CL317 and ZW225 datasets by using
four different feature extraction methods, we choose
PsePSSM-DCCA-LFDA as feature extraction method in
this paper.

Performance of prediction model
In PsePSSM-DCCA-LFDA prediction model, protein se-
quence information is extracted by fusing the PsePSSM
and DCCA coefficient methods, and then the subcellular
localization of apoptosis protein datasets is predicted by
SVM based on LFDA dimensionality reduction method.
According to the above analysis, when using PsePSSM,
ξ = 3 is selected, when using DCCA coefficient, S = 40is

selected. Using the LFDA method to reduce the dimen-
sion of the dataset, the optimal dimension chooses 10.
The RBF is selected as the kernel function of SVM. In
this paper, the most rigorous jackknife test methods are
used to test the datasets CL317 and ZW225, the main
results are shown in Table 9.
As can be seen from Table 9, the OA of CL317 dataset

is 99.7% by using jackknife test. The sensitivity of each
class is 100% except cytoplasmic proteins. The sensitivity
of cytoplasmic proteins is 99.1%. The specificity of each
class is 100% except mitochondrial proteins. The OA of
ZW225 dataset is 99.6% by using jackknife test. The
sensitivity, specificity and MCC of mitochondrial and
nuclear proteins are 100, 100% and 1, respectively. The
sensitivity of cytoplasmic proteins is 100%, the specifi-
city and MCC are 99.4% and 0.99, respectively.

Comparison with other methods
In this section, to demonstrate the effectiveness of the pro-
posed method PsePSSM-DCCA-LFDA, we compared with
other recently reported prediction methods on the same
apoptosis proteins datasets. All the methods are performed
using jackknife cross-validation test. Tables 10 and 11 de-
tails the comparison of the proposed method and other
prediction methods on the CL317 and ZW225 datasets,
respectively.
As can be seen from Table 10, the OA of CL317 data-

set is 99.7% by using PsePSSM-DCCA-LFDA, which is
2.2–17% higher than other prediction methods. We can
find that the overall accuracy by our method is higher
than that of ID [93], ID_SVM [39], DF_SVM [21], FKNN
[40] and so on. The value of sensitivity for each protein
class is listed. For example, the sensitivity of mitochon-
drial proteins, nuclear proteins, secreted proteins, endo-
plasmic proteins and membrane proteins eached 100%
by our method, while the ID [93] are 85.3, 82.7, 88.2,
83.0 and 81.8%, respectively. For the cytoplasmic proteins,
the sensitivity of our method is 99.1%, which is also the
highest, which is 12.7% higher than that of the Auto_Cova
[42] method. For the CL317 dataset, our proposed method
has achieved satisfactory prediction results.
As can be seen from Table 11, the OA of ZW225 dataset

is 99.6% using PsePSSM-DCCA-LFDA, which is almost
16.5, 15.6, 13.8 and 12.5% higher than EBGW_SVM [15],
DF_SVM [21], FKNN [40], Auto_Cova [42], respectively.
Especially for the most difficult case-mitochondrial pro-
teins, the predictive accuracy has improved to 100% by
our method, which is 40% higher than that of the
EBGW_SVM [15], 36% higher than the prediction ac-
curacy of DF_SVM [21]. It indicates that the model of
this paper has excellent properties for the prediction of
mitochondrial proteins in apoptosis proteins. In gen-
eral, for the ZW225 dataset, our proposed method has
achieved satisfactory prediction results.

Table 7 Prediction results of different feature extraction
methods on CL317 by jackknife test

Locations

Algorithms Jackknife test (%)

Cy Me Mi Se Nu En OA

PsePSSM 92.9 85.1 83.6 70.6 73.1 76.5 83.6

DCCA 95.5 83.0 90.9 82.4 65.4 76.5 85.5

PsePSSM-DCCA 93.8 85.1 90.9 82.4 76.9 70.6 86.8

PsePSSM-DCCA-LFDA 99.1 100 100 100 100 100 99.7

Table 8 Prediction results of different feature extraction methods
on ZW225 by jackknife test

Locations

Algorithms Jackknife test (%)

Cy Me Mi Nu OA

PsePSSM 81.4 88.8 40.0 68.3 77.3

DCCA 85.7 91.0 56.0 75.6 82.7

PsePSSM-DCCA 88.6 88.8 56.0 87.8 84.9

PsePSSM-DCCA-LFDA 100 98.9 100 100 99.6

Yu et al. BMC Genomics  (2018) 19:478 Page 12 of 17



In order to further validate the actual prediction ability
of the model, we use the independent testing dataset
ZD98 to test the model. When using PsePSSM, ξ = 3 is
selected. When using DCCA coefficient, S = 40 is se-
lected. Using LFDA method to reduce the dimension of
the dataset, the optimal dimension chooses 10. The RBF
is selected as the kernel function of SVM. The results of

the ZD98 dataset are tested by the jackknife cross-valid-
ation method and compared with other reported predic-
tion methods. Table 12 shows the predictive results of
the subcellular localization on the ZD98 dataset.
As can be seen from Table 12, the OA of ZD98 data-

set is 3.1–11.2% higher than other methods by using
PsePSSM-DCCA-LFDA, which is 9.2% higher than ID

Fig. 6 The ROC curves of four different feature extraction methods on dataset CL317

Fig. 7 The ROC curves of four different feature extraction methods on dataset ZW225
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[93], 11.2% higher than ID_SVM [39] and DWT_SVM
[41]. In addition, the sensitivity of mitochondrial pro-
teins, cytoplasmic proteins and membrane proteins
reached 100% by our method, while the ID_SVM [39]
are 84.6, 95.3 and 93.3%, respectively. Especially for
mitochondrial proteins, the prediction accuracy of
DWT_SVM [41] is 53.9%, which is 46.1% lower than
that of our method. It shows that our method has
achieved good results of the mitochondrial proteins
prediction. For the accuracy of the other proteins by
the algorithm proposed in this paper is 100%, which is
41.7% higher than the ID_SVM method [39]. In conclu-
sion, the above results indicate that the prediction
model we construct can significantly improve the pre-
diction accuracy of protein subcellular localization and
has achieved satisfactory prediction results.

Discussion
In this paper, we propose a novel method for predict-
ing apoptosis protein subcellular localization, called
PsePSSM-DCCA-LFDA. When using PsePSSM, ξ = 3 is
selected. When using DCCA coefficient, S = 40 is se-
lected. Using LFDA method to reduce the dimension
of the dataset, the optimal dimension chooses 10. The
RBF is selected as the kernel function of SVM. The
overall prediction accuracy are 99.7, 99.6 and 100% for
CL317 dataset, ZW225 dataset and ZD98 dataset by the
most rigorous jackknife test, respectively, which is better
than other state-of-the-art methods. The OA of CL317
dataset is 99.7% by using PsePSSM-DCCA-LFDA,
which is 2.2–17% higher than other prediction methods.
The OA of ZW225 dataset is 99.6% by using

Table 9 Prediction performance of datasets CL317 and ZW225
protein subcellular localization on the jackknife test method

Jackknife test

Locations CL317 ZW225

Sens (%) Spec (%) MCC Sens (%) Spec (%) MCC

Cy 99.1 100 0.99 100 99.4 0.99

Me 100 100 1 98.9 100 0.99

Mi 100 99.6 0.99 100 100 1

Se 100 100 1 – – –

Nu 100 100 1 100 100 1

En 100 100 1 – – –

OA (%) 99.7 99.6

Table 10 Prediction results of different methods on CL317
dataset by jackknife test

Jackknife test (%)

Methods Sensitivity for each class (%) OA (%)

Cy Me Mi Se Nu En

ID [93] 81.3 81.8 85.3 88.2 82.7 83.0 82.7

ID_SVM [39] 91.1 89.1 79.4 58.8 73.1 87.2 84.2

DF_SVM [21] 92.9 85.5 76.5 76.5 93.6 86.5 88.0

FKNN [40] 93.8 92.7 82.4 76.5 90.4 93.6 90.9

PseAAC_SVM [95] 93.8 90.9 85.3 76.5 90.4 95.7 91.1

EN_FKNN [96] 98.2 83.6 79.4 82.4 90.4 97.9 91.5

DWT_SVM [41] 100 98.2 82.4 94.1 100 100 97.5

Auto_Cova [42] 86.4 90.7 93.8 85.7 92.1 93.8 90.0

APSLAP [97] 99.1 89.1 85.3 88.2 84.3 95.8 92.4

Liu et al. [43] 98.2 96.4 94.1 82.4 96.2 95.7 95.9

PSSM_AC [98] 93.8 90.9 91.2 82.4 86.5 95.7 91.5

DCCA coefficient [46] 91.1 92.7 82.4 76.5 80.8 93.6 88.3

PsePSSM-DCCA-LFDA 99.1 100 100 100 100 100 99.7

Table 11 Prediction results of different methods on ZW225
dataset by jackknife test

Jackknife test (%)

Methods Sensitivity for each class (%) OA (%)

Cy Me Mi Nu

EBGW_SVM [15] 90.0 93.3 60.0 63.4 83.1

ID_SVM [39] 92.9 91.0 68.0 73.2 85.8

DF_SVM [21] 87.1 92.1 64.0 73.2 84.0

FKNN [40] 84.3 93.3 72 85.5 85.8

EN_FKNN [96] 94.3 94.4 60.0 80.5 88.0

DWT_SVM [41] 87.1 93.2 64 90.2 87.6

Liu et al. [43] 97.1 98.9 96.0 97.6 97.8

PSSM_AC [98] 82.9 92.1 68.0 78.0 84.0

Auto_Cova [42] 81.3 93.3 85.7 84.6 87.1

PsePSSM-DCCA-LFDA 100 98.9 100 100 99.6

Table 12 Prediction results of different methods on the
independent testing dataset ZD98 by jackknife test

Jackknife test (%)

Methods Sensitivity for each class (%) OA (%)

Cy Me Mi Other

ID [93] 90.7 90.0 92.3 91.7 90.8

ID_SVM [39] 95.3 93.3 84.6 58.3 88.8

DF_SVM [21] 97.7 96.7 92.3 75.0 93.9

FKNN [40] 95.3 96.7 100 91.7 95.9

PseAAC_SVM [95] 95.3 93.3 92.3 83.3 92.9

DWT_SVM [41] 95.4 93.3 53.9 91.7 88.8

APSLAP [97] 95.3 90.0 100 91.7 94.9

Liu et al. [43] 95.3 100 100 91.7 96.9

PSSM_AC [98] 97.7 96.7 100 83.3 95.9

EBGW_SVM [15] 97.7 90.0 92.3 83.3 92.9

DCCA coefficient [46] 93.0 86.7 92.3 75.0 88.9

PsePSSM-DCCA-LFDA 100 100 100 100 100
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PsePSSM-DCCA-LFDA, which is 1.8–16.5% higher
than other prediction methods. The OA of ZD98
dataset is 3.1–11.2% higher than other methods by
using PsePSSM-DCCA-LFDA.
PsePSSM-DCCA-LFDA demonstrated good performance

on predicting apoptosis protein subcellular localization,
which is better than the state-of-the-art methods. It is
mainly due to the following reasons:

1. Both the PsePSSM algorithm and the DCCA
coefficient method extract feature information from
the PSSM corresponding to the protein sequences.
Although both algorithms are data mining the
evolutionary information of protein sequences in
order to obtain the best numerical representation of
the protein sequences, the two algorithms are
different. PsePSSM feature extraction takes into
account the sequence-order information of the
protein sequence. The DCCA coefficient uses the
columns in the PSSM as the least squares fitting
and the trend elimination as the non-stationary
time series to remove the PSSM between the
cross-correlation.

2. LFDA can effectively remove redundant information
in the protein sequences without losing important
information in the apoptosis protein sequence.

3. SVM classification algorithm can deal with
high-dimensional data, avoiding over-fitting and
effectively removing non-support vector.

Protein subcellular localization information can explain
the disease mechanism, provide theoretical basis and
solution. Medical studies have found that abnormal
subcellular localization of proteins occurs, when cells is
cytopathic. Further, abnormally localized proteins pro-
vide molecular markers for the early diagnosis of dis-
eases and can become molecular targets for the design
of new drugs, which achieve the goal of curing diseases.
Currently our method is still trained on small dataset,

because CL317, ZW225 and ZD98 datasets are widely
used benchmark datasets, it is difficult to collect large-
scale experimentally verified. In the next step, we will
build a large-scale protein subcellular dataset for predic-
tion research.

Conclusion
With the advent of the big data age, the gap between the
number of proteins in the public database and its func-
tional annotations is widening. The critical challenge of
bioinformatics is to develop automated methods for fast
and accurately determining the structures and functions
of proteins [94]. In this paper, a novel method for pro-
tein subcellular localization prediction is proposed. We
use the LFDA dimensionality reduction method and the

SVM algorithm to predict the apoptotic protein subcellu-
lar localization. Firstly, we fuse the PsePSSM and DCCA
coefficient methods to carry out feature extraction on
protein sequences. Then, the extracted feature vectors
are used to reduce the dimension using LFDA method,
and the subcellular localization of apoptosis proteins
are predicted by SVM algorithm. By jackknife test, the
OA of the three benchmark datasets reach 99.7, 99.6
and 100%, respectively. The results show that the
PsePSSM-DCCA-LFDA method has good performance
by comparing with others, which use the same benchmark
datasets. Since user-friendly and publicly accessible web-
server is one of the important factors in building a
practical predictive system [78, 88], in order for the con-
venience of the researchers, we will develop a web-server
or standalone version for the prediction method presented
in this paper.
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