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Abstract

Background: To date, genome-wide association studies (GWAS) have successfully identified tens of thousands of
genetic variants among a variety of traits/diseases, shedding light on the genetic architecture of complex disease. The
polygenicity of complex diseases is a widely accepted phenomenon through which a vast number of risk variants,
each with a modest individual effect, collectively contribute to the heritability of complex diseases. This imposes a
major challenge on fully characterizing the genetic bases of complex diseases. An immediate implication of
polygenicity is that a much larger sample size is required to detect individual risk variants with weak/moderate effects.
Meanwhile, accumulating evidence suggests that different complex diseases can share genetic risk variants, a
phenomenon known as pleiotropy.

Results: In this study, we propose a statistical framework for Leveraging Pleiotropic effects in large-scale GWAS data
(LPG). LPG utilizes a variational Bayesian expectation-maximization (VBEM) algorithm, making it computationally
efficient and scalable for genome-wide-scale analysis. To demonstrate the advantages of LPG over existing methods
that do not leverage pleiotropy, we conducted extensive simulation studies and applied LPG to analyze two pairs of
disorders (Crohn’s disease and Type 1 diabetes, as well as rheumatoid arthritis and Type 1 diabetes). The results
indicate that by levelaging pleiotropy, LPG can improve the power of prioritization of risk variants and the accuracy of
risk prediction.

Conclusions: Our methodology provides a novel and efficient tool to detect pleiotropy among GWAS data for
multiple traits/diseases collected from different studies. The software is available at https://github.com/
Shufeyangyi2015310117/LPG.
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Background
Genome-wide association studies (GWAS) have reported
more than 51,000 single-nucleotide polymorphisms
(SNPs) to be significantly associated with complex human
phenotypes, including quantitative traits and complex
diseases (Accession of the GWAS Catalog database [1]
on October, 2017). Although the discovery of genetic risk
variants has advanced our understanding of the genetic
architecture of complex diseases/traits, these variants
explain only a small proportion of phenotypic variance

*Correspondence: jin.liu@duke-nus.edu.sg
2Centre for Quantitative Medicine, Duke-NUS Medical School, 8 College Road,
Singapore, Singapore
Full list of author information is available at the end of the article

[2]. For example, while the heritability of human height
has been estimated to be approximately 70%-80%, the
697 genetic variants found by a GWAS analysis of human
height based on 253,288 individuals explain only 20%
of the heritability of human height. A more complete
characterization of the genetic architecture of complex
phenotypes remains a significant challenge.
To increase the statistical power of a GWAS analysis,

newer analytical methods leveraging pleiotropy have been
developed. Pleiotropy, which refers to the situation where
a gene affects multiple phenotypes, was first proposed
more than 100 years ago [3]. Since then, an increas-
ing number of human genetic studies have reported
pleiotropic effects in various complex diseases, such as
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autoimmune diseases [4], metabolic disorders [5] and psy-
chiatric disorders [6]. Thus, the identification of genetic
risk variants in GWAS can be significantly improved
by incorporating pleiotropy into the statistical analysis.
Existing statistical methods for GWAS analysis that incor-
porate pleiotropy involve the joint GWAS analysis of
multiple traits [7–9]. However, these methods assume
that the individual-level GWAS data for each trait were
collected from the same study cohort, and the methods
cannot be applied when the individual-level GWAS data
were collected from different study cohorts. Alternatively,
when summary statistics derived from GWAS analysis
conducted in different study cohorts are available, meth-
ods proposed to leverage pleiotropy via GWAS summary
statistics can be utilized [10–12]. Thus, a methodological
gap in leverage pleiotropy for joint GWAS analysis of mul-
tiple traits using individual-level GWAS data for each trait
from different study cohorts remains.
In this article, we propose a novel statistical method

for leveraging pleiotropic effects in GWAS (LPG), where
individual-level data for two traits are obtained from dif-
ferent studies. LPG provides a statistical framework for
the evaluation of the local false discovery rate and predic-
tion accuracy and a formal test of the pleiotropic effects
between two traits. LPG utilizes a variational Bayesian
expectation-maximization (VBEM) algorithm, making it
computationally efficient for genome-wide analysis. We
conducted extensive simulation studies to evaluate the
performance of LPG. We then applied LPG to conduct
a joint analysis of two pairs of disorders (Crohn’s dis-
ease and Type 1 diabetes, as well as rheumatoid arthritis
and Type 1 diabetes) using data from the Welcome Trust
Case Control Consortium (WTCCC) [13]. The simula-
tion studies and real data analyses suggest that LPG can
steadily improve both the prediction accuracy and the sta-
tistical power of risk variant identification compared to
those of single-trait-based methods that do not leverage
pleiotropy.
The remainder of this article is organized as follows.

First, we introduce the statistical model and describe the
VBEM algorithm used to estimate the parameters in the
model. Second, we describe the statistical inference pro-
cedure used to evaluate the local false discovery rate and
the prediction accuracy of the identified genetic variants.
We also describe a formal hypothesis test for pleiotropy.
Third, we evaluate the performance of LPG using simula-
tions and real data analysis of WTCCC data. Finally, we
conclude with a discussion.

Methods
Model for quantitative traits
Suppose that we have a GWAS data set {y,X} with n
independent samples, where y ∈ R

n is the vector of
quantitative phenotype, and X =[ x1, . . . , xp]∈ R

n×p is

the genotypematrix for n individuals and p SNPs.Without
loss of generality, we assume that both X and y have been
centered. We assume the following standard linear model,

y = Xβ + e, (1)

where β =[β1, . . . ,βp]� is a vector of effect sizes, and
e ∼ N

(
0, σ 2

e I
)
is the random error. Let the vector of

binary variables γ =[ γ1, . . . , γp]� indicate the associa-
tion status of all p SNPs, where γj = 1 indicates that
the j-th SNP is associated with trait y, and γj = 0
otherwise. In this paper, we consider a spike-slab prior
[14]. Many sparse priors can be employed in the con-
text of Bayesian variable selection. However, the spike-slab
prior is perfectly adapted to the variational expectation-
maximization algorithm because after reparameteriza-
tion, we are able to derive closed-form formulas for the
variational expectation-maximization algorithm.

y|X,β , γ , σ 2
e ∼ N

⎛

⎝
∑

j
γjβjxj, σ 2

e

⎞

⎠ ,

with γj ∼ Ber(α),βj ∼ N
(
0, σ 2

β

)
,

(2)

where Ber(α) is a Bernoulli distribution with probabil-
ity Pr(γj = 1) = α, and N (m, σ 2) denotes a Gaussian
distribution with mean m and variance σ 2. In Eq (2), α

represents the true (unknown) proportion of genetic vari-
ants associated with trait y (non-null group of genetic
variants), and 1 − α represents the true (unknown) pro-
portion of genetic variants not associated with trait y (null
group of genetic variants). The model (2) is known as a
binary mask model because we can consider the indicator
γj to be masking the coefficient βj. Then, the probabilistic
model can be written as

Pr(y,β , γ |X; θ) = Pr(y|X,β ; θ)Pr(β|θ)Pr(γ |θ), (3)

where θ =
{
σ 2

β , σ 2
e ,α

}
is the collection of model parame-

ters, σ 2
β depicts the variance of the genetic effects, and σ 2

e
is the variance of the random errors. We note that in our
model, the parameters σ 2

β , σ 2
e and α are considered to be

fixed but unknown and are estimated as part of the model.
This is in contrast to β and γ , which are not considered to
be fixed but have prior and posterior distributions.
Now, we generalize the above two-groupmodel to lever-

age the pleiotropy between two traits that are poten-
tially genetically correlated. Suppose we have two GWAS
datasets {y1,X1} and {y2,X2} with n1 and n2 samples,
respectively. Here, y1 ∈ R

n1 and y2 ∈ R
n2 are the vec-

tors of phenotypic values, andX1 =[ x11, . . . , x1p]∈ R
n1×p

and X2 =[ x21, . . . , x2p]∈ R
n2×p are the corresponding

genotype matrices for p identical SNPs. Without loss of
generality, we assume that both the genotype data (X1 and
X2) and phenotype data (y1 and y2) have been centered.
Then, we have
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yk|Xk ,βk , γ k , σ 2
ek ∼ N

⎛

⎝
p∑

j=1
γkjβkjxkj, σ 2

ek

⎞

⎠ , (4)

with [ γ1j, γ2j]∼ Mul∈L(α),βkj ∼ N (0, σ 2
βk

),

where k = 1, 2 refers to individual studies 1 and 2, βk =
[βk1, . . . ,βkp]� is a vector of effect sizes for study k, and
σ 2
ek is the variance of the random error in study k. Com-

pared with traditional linear regression, the latent vector
of binary variables γ k =[ γk1, . . . , γkp]� indicates the asso-
ciation statuses in study k, and γ =[ γ 1, γ 2]∈ R

p×2 is
a matrix of the association statuses in the two studies.
For mixture proportions, α = (α00,α01,α10,α11)� is the
vector of parameters in a multinomial distribution, and
Mul∈L(α) is the multinomial distribution with parame-
ter α for each possible value of L = {00, 01, 10, 11}, i.e.,
α00 = Pr(γ1j = 0, γ2j = 0), α10 = Pr(γ1j = 1, γ2j = 0),
α01 = Pr(γ1j = 0, γ2j = 1), and α11 = Pr(γ1j = 1, γ2j = 1).
When comparing model (4) with the basic model (2) for

a single trait, themajor difference lies in the joint sampling
of hidden association statuses in the joint model of the two
studies. In the presence of pleiotropy, γ1j and γ2j are no
longer independent. We demonstrate that all the param-
eters in our model can be adaptively estimated from the
data without ad hoc tuning. Let θ(= {σ 2

β1
, σ 2

β2
, σ 2

e1 , σ
2
e2 ,α})

be the collection of model parameters. The joint proba-
bilistic model can be written as

Pr(y1, y2,β1,β2, γ 1, γ 2|X1,X2; θ)

=
2∏

k=1

(
Pr(yk|Xk ,βk , γ k ; θ)Pr(βk|θ)

)
Pr(γ |θ).

(5)

By marginalizing over the latent variables
(β1,β2, γ 1, γ 2), the probabilistic model of observed data
becomes

Pr(y1, y2|X1,X2; θ)

=
∑

β1,β2,γ 1,γ 2

Pr(y1, y2,β1,β2, γ 1, γ 2|X1,X2; θ), (6)

where we have used the operation
∑

to represent the
integration of continuous variables. Then, according to
Bayes rule, the posterior probability distributions for the
variables of interest can be calculated as

Pr(β1,β2, γ 1, γ 2|y1, y2,X1,X2; θ)

=Pr(y1, y2,β1,β2, γ 1, γ 2|X1,X2; θ)

Pr(y1, y2|X1,X2; θ)
.

(7)

Computing the posterior distribution (7) is difficult
because it requires the evaluation of the marginal likeli-
hood (6), which is computationally intractable.

Algorithm for the quantitative trait model
To overcome the intractability of the marginal likeli-
hood (6), we derive an efficient algorithm based on vari-
ational inference, which makes our model scalable to

genome-wide data analysis (see supplementary document
for details). The key idea is that we use Jensen’s inequal-
ity to iteratively obtain an adjustable lower bound on the
marginal log likelihood [15]. First, we consider a lower
bound of the logarithm of the marginal likelihood (6),

log Pr(y1, y2|X1,X2; θ) = L(q, θ) + KL(q||p)
≥Eq[ log Pr(y1, y2,β1,β2, γ 1, γ 2|X1,X2; θ)]

− Eq[ log q(β1,β2, γ 1, γ 2)] ,
(8)

where

L(q, θ) =
∑

β1,β2,γ 1,γ 2

q(β1,β2, γ 1, γ 2)×

log
p(y1, y2,β1,β2, γ 1, γ 2|X1,X2; θ)

q(β1,β2, γ 1, γ 2)
,

KL(q||p) =
∑

β1,β2,γ 1,γ 2

q(β1,β2, γ 1, γ 2)×

log
q(β1,β2, γ 1, γ 2)

p(β1,β2, γ 1, γ 2|y1, y2,X1,X2; θ)
.

Note that KL(q||p) is the Kullback-Leibler (KL) diver-
gence and satisfies KL(q||p) ≥ 0, with the equality
holding if, and only if, the variational posterior probabil-
ity (q) and the true posterior probability (p) are equal.
Similar to the expectation-maximization (EM) algorithm,
we can maximize the lower bound L(q, θ) with respect to
the variational distribution q, which is equivalent to min-
imizing the KL divergence [16]. To make the evalution of
the lower bound computationally effecient, we use mean-
field theory [17] and assume that q(β1,β2, γ 1, γ 2) can be
factorized as

q(β1,β2, γ 1, γ 2) =
p∏

j=1
qj(β1j,β2j, γ 1j, γ 2j). (9)

No additional assumptions on the posterior dis-
tribution are required. This factorization (9) is used
as an approximation for the posterior distribution
Pr(β1,β2, γ 1, γ 2|y1, y2,X1,X2; θ). This fully factor-
ized approximating distribution was first proposed by
Logsdon et al. [18] in the context of GWAS. The factor-
ization used in the approximating distribution makes
the corresponding variational expectation-maximization
algorithm scalable to large sample sizes and large numbers
of SNPs. We expect the approximation to perform best
when the genetic variants are independent. Nevertheless,
our numerical studies demonstrate that the approxima-
tion is sufficient even when linkage disequilibrium exists
between the genetic variants.
By means of the properties of the factorized distri-

butions in variational inference [16], we can obtain the
optimal approximation via the following formula:
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log qj(β1j,β2j, γ1j, γ2j)
=Ej′ �=j[ log Pr(y1, y2,β1,β2, γ 1, γ 2|X1,X2; θ)]

+ const
(10)

where the expectation is taken with respect to all the
other factors {qj′(β1j′ ,β2j′ , γ1j′ , γ2j′)} for j′ �= j. After some
derivations (details in the supplementary document), we
have

q(β1j,β2j, γ1j, γ2j)

=
2∏

k=1

(
fkj(βkj)

γkj f0(βkj)
1−γkj

) ∏

l
α
1([γ1j ,γ2j]=l)

lj ,
(11)

where αlj is the posterior probability of [ γ1j, γ2j]= l,
f0(βkj) is the posterior distribution of βkj when γkj = 0,
and fkj(βkj) is the posterior distribution of βkj under γkj =
1. Following algebraic manipulation, we show that f0(βkj)
and fkj(βkj) are the density functions of Gaussian distribu-
tionsN (0, σ 2

βk
) andN (μkj, s2kj).

The details of the derivation of the updating equations
and the corresponding VBEM algorithm (Algorithm 1)
can be found in the supplementary document. The VBEM
algorithm performs similarly to the coordinate descent
algorithm, which comes from the factorization of the
variational distribution (11). Hence, the VBEM algorithm
developed here is scalable to large numbers of individuals
and large numbers of SNPs..

Accommodating case-control data
Suppose that we have two GWAS case-control datasets
{y1,X1,Z1} and {y2,X2,Z2} with n1 and n2 samples,
respectively. Wemay apply the definitions introduced ear-
lier with yk ∈ R

nk×1 as the vector indicating disease status
having values -1 and 1 for controls and cases, respectively,
and Zk =[ zk1, . . . , zkp0 ]∈ R

nk×p0 as a matrix of the p0
covariates in study k. Note that the first column of Zk is a
vector of ones corresponding to the intercept. Then, con-
ditional on the observed genotype Xk , hidden status γ ,
and effects βk , we have

yk|Xk ,Zk ,βk , γ k ,φk ∼ Ber(δk), (12)

where δk =[ δk1, . . . , δknk ]
�, δki

(
= Pr(yki = 1|Xk ,βk , γ k)

= 1
1+e−ykiηki

)
is the sigmoid function of linear predic-

tor ηki, i is the index for individuals, and ηk(=
[ ηk1, . . . , ηknk ]

� ∈ R
nk×1) is the linear predictor of all

the individuals in study k such that ηk = ∑p0
j=1 zkjφkj +

∑p
j=1 γkjβkjxkj. Here, we include fixed-effect covariates in

the binary studies to adjust for potential population strati-
fication and confounders in samples. β and γ are the effect
sizes and indicator variables as defined earlier. Let θ =
{σ 2

β1
, σ 2

β2
,φ1,φ2,α} be the collection of model parameters.

The probabilistic model can be written as

Pr(y1, y2,β1,β2, γ 1, γ 2|X1,X2,Z1,Z2; θ)

=
2∏

k=1

(
Pr(yk|Xk ,Zk ,βk , γ k ; θ)Pr(βk|θ)

)
Pr(γ |θ).

(13)

Note that we take the coefficients for covariates (Z1
and Z2) as fixed effects, which are included in the
parameter space θ . By marginalizing over latent variables
(β1,β2, γ 1, γ 2), we can obtain the marginal likelihood,
similar to expression (6). The primary difficulty for the
binary model (13) comes from the evaluation of the sig-
moid function δki. As there is no convenient conjugate
prior for the sigmoid function, it is not analytically fea-
sible to compute the full posterior distribution over the
parameter space. To overcome this limitation, we use the
Bohning bound [19]. Here, we first derive a lower bound
of the complete-data likelihood as follows

Pr(y1, y2,β1,β2, γ1, γ2|X1,X2,Z1,Z2; θ)

≥
( 2∏

k=1
B(yk|Xk ,Zk ,βk , γk ; θ)Pr(βk ; θ)

)

Pr(γ ; θ)

=h(y1, y2,β1,β2, γ1, γ2|X1,X2,Z1,Z2; θ̃),

(14)

where B(yk|Xk ,Zk ,βk , γk ; θ̃)
(

= ∏nk
i=1 exp(− 1

2aη
2
kiy

2
ki +

(1 + bki)ηkiyki − cki)
)
denotes the product of the lower

bound of sigmoid functions with a = 1/4, bkn = aψkn −
(1+e−ψkn)−1 and ckn = 1

2aψ
2
kn−(1+e−ψkn)−1ψkn+log(1+

eψkn), and θ̃ = {σ 2
β1
, σ 2

β2
,φ1,φ2,α,ψ1,ψ2} is the new

parameter that combines the model parameters θ with the
variational parameters ψ1,ψ2 (details are provided in the
supplementary document). Using Jensen’s inequality and
the lower bound of the complete-data likelihood (14), we
have the following lower bound

log Pr(y1, y2|Info; θ)

= log
∑

β1,β2,γ 1,γ 2

Pr(y1, y2,β1,β2, γ 1, γ 2|Info; θ)

≥ log
∑

β1,β2,γ 1,γ 2

h(y1, y2,β1,β2, γ 1, γ 2|Info; θ̃)

≥Eq[ log h(y1, y2,β1,β2, γ1, γ2|Info; θ̃)]
− Eq[ log q(β1,β2, γ1, γ2)]

:=L(q),
with Info = X1,X2,Z1,Z2

(15)

where the first inequality is based on the Bohning bound
and the second follows from Jensen’s inequality as in
lower bound (8). By maximizing the lower bound (15)
with respect to μkj and s2kj, we can obtain the varia-
tional distribution in the same fashion as in expression
(11). The details of the updating equation and the corre-
sponding VBEM algorithm (Algorithm 2) are given in the
supplementary document.



Yang et al. BMC Genomics  (2018) 19:503 Page 5 of 11

Statistical inference
Evaluation of the local false discovery rate (lfdr)
After fitting an LPG model with all the parameters esti-
mated, SNPs can be prioritized based on their local false
discovery rates (lfdr) [20]. As discussed in [21], although
false discovery rate (FDR) methods were developed in a
strict frequentist framework, they also have a convincing
Bayesian rationale. Since

∑
l∈Lk αlj is a good approxima-

tion for the true posterior Pr(γkj = 1|y1, y2,X1,X2; θ),
lfdrkj(= 1 − ∑

l∈Lk αlj) can be used as the lfdr of SNP j
in the k-th trait, where k = 1 or 2, L1 = {10, 11} and
L2 = {01, 11}. Namely, the smaller the lfdr is, the more
confident we are in prioritizing a SNP. Then, we use the
direct posterior probability approach [22] to control the
global false discovery rate to select a list of SNPs to be as
large as possible while bounding the rate of false discover-
ies by a pre-specified threshold τ . With the data and fitted
model, we rank the SNPs according to their local false dis-
covery rate in ascending order. We increase the threshold
for lfdr ζ from zero to one and find the largest ζ that
satisfies

F̂DR(τ ) =
∑p

j=1 l̂fdrkjI
[
l̂fdrkj ≤ ζ

]

∑p
j=1 I

[
l̂fdrkj ≤ ζ

] ≤ τ , (16)

where τ is the prespecified bound of the global FDR, and
I(·) is an indicator function that returns 1 if the argument
is true and 0 otherwise. This progress makes it convenient
for users to control the FDR either in terms of the global
FDR or lfdr.

Evaluation of prediction performance
In addition to the identification of risk variants, we can
also use the LPG approach to conduct risk prediction.
In the LPG model, the effect size of SNP j in the k-th
study is given as E(γkjβkj) = ∑

l∈Lk αljμkj. Given the
genotype vector of an individual xk =[ xk1, . . . , xkp]�,
the predicted phenotypic value is ŷk = ck0 +
∑

j

(
(xkj − ckj)

∑
l∈Lk αljμkj

)
, where ck0 and ck1, . . . , ckp

are the mean of the phenotype and each SNP before
centering for the k-th study, respectively. We measure
the Pearson’s correlation between the observed pheno-
typic values and the predicted phenotypic values in the
testing set for quantitative traits. For case-control stud-
ies, the predicted linear predictor is η̂k = zkφk +
∑

j

(
(xkj − ckj)

∑
l∈Lk αljμkj

)
, and the odds of being a case

for such an individual can be found via logit transforma-
tion. For the predicted odds from the testing set, we can
evaluate the area under the receiver operating character-
istic (ROC) curve (AUC) [23].

Hypothesis testing of pleiotropy
It is of great interest to quantify the significance of
pleiotropy between two traits. The presence of pleiotropy

means that the null and non-null groups in two traits are
not distributed independently. Formally, we can set up a
likelihood ratio test (LRT) as follows:

H0 : α11 = α1∗α∗1, vs. Ha : α11 �= α1∗α∗1 (17)

where α1∗ = α10 + α11 and α∗1 = α01 + α11 are marginal
probabilities. The LRT statistic is

λ =2
(
log Pr(y1, y2|X1,X2; θ̂)

− log Pr(y1, y2|X1,X2; θ̂0)
)
,

(18)

where θ̂0 and θ̂ denote the parameters estimated under
the null and alternative hypotheses, respectively. Due
to the intractability of the marginal distribution (6), we
use the lower bound as a surrogate to approximate the
marginal likelihood. Under the null hypothesis, the test
statistic λ approximately follows a χ2 distribution with
df = 1.

Results and discussion
We applied the LPG approach to both simulation data
and real data. First, we evaluated the performance of the
LPG approach using simulation studies. We examined its
performance in risk variant identification as measured
by AUC, statistical power and FDR and its performance
in risk prediction as measured by the Pearson’s correla-
tion and AUC for quantitative traits and binary traits,
respectively. We compared the LPG performance with
two other single-trait analysis methods that do not lever-
age pleiotropy, namely, the two-group model (BVSR [24])
and Lasso [25]. The number of the replicates in simulation
studies was 50 unless otherwise specified.

Simulation settings
The simulation datasets were generated by simulating
genotype matrices Xk (k = 1, 2) from a normal distri-
bution, where an autoregressive correlation (AR) ρ|j−j′|
structure was used to mimic the linkage disequilibrium
(LD) between variants j and j′ with ρ = 0.2, 0.5 and
0.7. Next, the entries of both Xk (k = 1, 2) were dis-
cretized to obtain genotypes {0, 1, 2} according to the
Hardy-Weinberg equilibrium-based minor allele frequen-
cies, which were drawn from a uniform distribution of
[ 0.05, 0.5]. In all scenarios, unless otherwise specified, the
sample size used was nk = 3000 (k = 1, 2) and the
number of variants was set to p = 20, 000. To evaluate
the prediction performance, we generated an additional
ntest = 500 samples for each study under the same model.
For all scenarios, except for those specifically evaluating
Type 1 error rates for the test of pleiotropy, we assumed
α01 = α10. Denote the proportions of the null and non-
null SNPs of both GWAS as α0 = α00 + α10 = α00 + α01
and α1 = α11 + α10 = α11 + α01, respectively. Then,
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the hidden association status in the first study (γ 1) can be
sampled randomly with the number of nonzero entries –
pα1. α1 is set to 0.005 for the quantitative traits and 0.0025
for the binary traits. To account for pleiotropy between
two GWAS, we controlled the number of SNPs with
pleiotropic effects for the two traits as p(α11 + α10)(α11 +
α01 + g(α10 +α00)) and p(α11 +α01)((α11 +α10 + g(α01 +
α00)), where g = 0 and g = 1 correspond to the two
extreme cases of no pleiotropy and full pleiotropy, respec-
tively. We considered g = 0 to 1 in intervals of 0.2, where
larger values of g represent larger pleiotropy. Next, the
effect sizes β were simulated from N (0, 1). For the quan-
titative traits, as the heritability of each study was defined
as h2k = Var(Xkβkγ k)

Var(Xkβkγ k)+σ 2
ek
, the noise level was chosen to con-

trol the heritability at 0.3, 0.4 and 0.5. For the binary traits,
the heritability was also defined as h2k = Var(Xkζ kγ k)

Var(Xkζ kγ k)+σ 2
ek
,

except for the effect size βk was replaced by ζ k . We set
the population prevalence to 0.1 and case-control ratio to
1 while controlling heritability at 0.3, 0.4 and 0.5 using
a liability model [26]. To evaluate the Type 1 error rate
of our proposed test of pleiotropy (i.e., g = 0), we con-
sidered different values of α = (α00,α01,α10,α11)�. The
values of α = (α00,α01,α10,α11)� are given in Additional
file 1: Figure S20. We also considered simulation stud-
ies where the true effect sizes β were generated from
either a truncated normal distribution or a t-distribution
for a quantitative trait (ρ = 0.5 and h2 = 0.5). Finally, to
more accurately mimic the LD and minor allele frequency
patterns present in real data, we excerpted a subset of
variants from real dataset (KAISER, dbGaP Study Acces-
sion: phs000674.v2.p2) and conducted a simulation study
in which we sampled the genotypes from these data. We
considered a binary outcome generated using a logistic
regression model with case-control sampling (instead of
using a liability model as above), with n1 = n2 = 7000. For
each simulation, we randomly selected 10 causal SNPs,
where half of the causal SNPs had odds ratios of = e0.25 =
1.28 and half had odds ratios of = e−0.25 = 0.78. The
causal SNPs were randomly selected such that they had at
most a moderate correlation with each other (correlation
< 0.8). However, the tested SNPs could be highly cor-
related (correlation > 0.8) with each other. Additionally,
when calculating the true positive rate (for the AUC and
power), each of the 10 causal SNPs was considered to have
been correctly discovered if either the causal SNP or an
SNP in high LD with it (correlation >0.8) was discovered
(with the global FDR controlled at 0.2). When calculat-
ing the true negative rate, the collection of true null-SNPs
excluded the 10 causal SNPs and any SNP in high LD (cor-
relation>0.8) with any of the 10 causal SNPs. Thismimics
the situation in GWAS where the identified SNPs may or
may not be causal but are capturing the “signal” from the
true causal SNPs.

Simulation results
For both the quantitative and binary traits, we analyzed
the simulated data using the proposed LPG jointly on
two traits in comparison with other alternative methods,
including BVSR and Lasso, on each separate trait. For the
probabilistic approaches, i.e., LPG and BVSR, we evalu-
ated their risk variant identification performance using
the area under the receiver operating characteristic (ROC)
curve (AUC), statistical power, and false discovery rate
(FDR). Note that for all settings, we evaluated the statis-
tical power to identify risk variants with the global FDR
controlled at 0.2. As Lasso is a deterministic approach and
its FDR is not controllable, we did not evaluate its statis-
tical power. The tuning parameter in Lasso was chosen
via 5-fold cross-validation [27]. We evaluated the risk pre-
diction performance based on the Pearson’s correlation
between the observed phenotypic values and the pre-
dicted values in the testing datasets for quantitative traits;
AUC was used to measure the classification accuracy
performance for binary outcomes.
For the quantitative traits, Fig. 1 shows the risk vari-

ant identification and prediction performance for ρ = 0.5
and h2 = 0.5. It demonstrates that LPG, which incorpo-
rats the pleiotropy between two traits, improves the risk
SNP identification compared with the single-trait analysis
(BVSR). In particular, when there is no pleiotropy (g=0),
the performance of LPG is the same as that of the single-
trait analysis (BVSR), suggesting that LPG can exploit
available pleiotropic information. Another observation is
that the risk SNP identification performance (AUC and
statistical power) of LPG improved with increasing pro-
portion of shared risk SNPs. Additionally, the probabilistic
approaches (LPG and BVSR) outperformed Lasso in terms
of risk SNP identification, regardless of the presence of
pleiotropy, as Lasso does not leverage pleiotropy between
two traits and its performance depends on the extent of
sparsity and strong signals. The FDR rates of both prob-
abilistic models (LPG and BVSR) were well-controlled at
the target 0.2 level. In terms of prediction performance,
as pleiotropy became stronger, the Pearson’s correlation
coefficients between the observed and predicted pheno-
typic values in LPG increased slightly over those of BVSR.
For the binary traits, we observed similar results (shown in
Fig. 2 for ρ = 0.5 and h2 = 0.5). First, the improved AUC
and statistical power of LPG increased as the strength of
pleiotropy increased, and the global FDR rates of both
LPG and BVSR were well-controlled. The prediction per-
formance of LPG showed a slight improvement over that
of BVSR when pleiotropy was strong. In our simulation
studies, the performance of Lasso was worse than that
of its probabilistic counterpart, BVSR. A similar observa-
tion was previously reported [28]. Additional simulation
results under different configurations of ρ (strength of the
correlation between genetic variants) and h2 (heritability)
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Fig. 1 The comparison of LPG (VB joint) and its alternative methods, BVSR (VB separate) and Lasso, for quantitative traits demonstrated increased
power in ascending order of pleiotropy g, while the FDR of both LPG and BVSR were controlled at 0.2. Panels from top to bottom are the AUC, FDR,
Power and Prediction. Choices of g range from 0 to 1. The parameter settings of the model are : p = 20,000, n1 = n2 = 3000, h2 = 0.5, ρ = 0.5 and α1

= 0.005

(Additional file 1: Tables S1 and S2) produced similar con-
clusions (Additional file 1: Figures S1 - S18). We also
conducted simulation studies (Additional file 1: Figures
S21 - S23) where the true effect sizes β were gener-
ated from either a truncated normal distribution or a
t-distribution (quantitative trait, ρ = 0.5 and h2 = 0.5).
The results demonstrate that LPG performs well even
when the underlying generating distribution for the effect
sizes β differ from our assumed prior distribution for β .
The simulation results when the genotypes were sampled
from real data are given in Additional file 1: Figure S24.
The simulation results demonstrate that our proposed
method also performs well in this setting as well. We eval-
uated the Type 1 error and power of the hypothesis test for
pleiotropy at a nominal 0.05 level. As expected, the power
of the test increases with increasing pleiotropy (increasing g)
for both quantitative and binary traits (Additional file 1
Figure S19). The empirical Type 1 error rates (g = 0)

for various configurations of α = (α00,α01,α10,α11)�
were close to the nominal 0.05 level (Additional file 1:
Figure S20).

Real data analysis
Crohn’s disease (CD), rheumatoid arthritis (RA) and type
1 diabetes (T1D) are autoimmune diseases, and previous
work suggests they share common genetic risk variants
[29]. We applied LPG to the analysis of two pairs of dis-
eases, CD and T1D, as well as RA and T1D, using data
reported by the WTCCC [13]. The dataset consists of
approximately 2000 cases for CD, RA and T1D and 3000
shared controls, with genotypes at 500,568 SNPs. We per-
formed strict data quality control using plink [30]. First,
we removed individuals with missing genotype call rates
greater than 2%. For cases from each disease and samples
from each control dataset, we removed SNPs with minor
allele frequencies smaller than 5% and SNPs with miss-
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Fig. 2 The comparison of LPG (VB joint) and its alternative methods, BVSR (VB separate) and Lasso, for binary traits demonstrated increased power in
ascending order of pleiotropy g, while the FDR of both LPG and BVSR were controlled at 0.2. Panels from top to bottom are the AUC, FDR, Power and
Prediction. Choices of g range from 0 to 1. The parameter settings of the model are : p = 20,000, n1 = n2 = 3000, h2 = 0.5, ρ = 0.5 and α1 = 0.0025

ing rates greater than 1%. We further excluded SNPs with
p-values < 0.001 in the Hardy-Weinberg equilibrium test
for samples in the control groups. In addition, pairs of sub-
jects with estimated relatedness exceeding 0.025% were
identified and one individual from each pair was removed
at random by GCTA [31].

RA and T1D
Since WTCCC used shared controls among seven
diseases and because samples in the control group were
from two cohorts (the 1958 British Birth Cohort (58C)
and UK Blood Services (UKBS)), we used one control
cohort for RA and the other for T1D. After quality control

Fig. 3 For the data consisting of the 58C controls with RA and UKBS controls with T1D, Manhattan plots of the separate analysis using BVSR and joint
analysis using LPG
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Table 1 Comparison of SNPs identified by BVSR and LPG between T1D and RA

snp chr position sep T1D sep RA joi T1D joi RA

1 rs6679677 1 114303808 < 1e-17a (0.3494) 4.66e-13a (0.3161) < 1e-17a (0.3504) < 1e-17a (0.2944)

2 rs13200022 6 31098957 2.22e-16a (-0.3371) 1 (-0.0309) < 1e-17a (-0.3380) 2.29e-14a (-0.0670)

3 rs550513 6 31920687 2.14e-05a (-0.2315) 9.96e-01 (-0.1355) 8.76e-09a (-0.2325) 8.76e-09a (-0.1458)

4 rs3130287 6 32050544 < 1e-17a (-0.4659) 1 (-0.0650) < 1e-17a (-0.4668) 3.29e-14a (-0.0603)

5 rs17421624 6 32066177 1.1e-08a (-0.2672) < 1e-17a (0.3801) < 1e-17a (-0.2686) < 1e-17a (0.2570)

6 rs9272346 6 32604372 < 1e-17a (-0.7077) 1 (-0.0888) < 1e-17a (-0.7089) 3.73e-14a (-0.0579)

7 rs2070121 6 32781554 4.44e-16a (-0.3331) 1 (-0.0597) < 1e-17a (-0.3335) 2.22e-16a (-0.1199)

8 rs10484565 6 32795032 < 1e-17a (0.3786) 1 (0.0838) < 1e-17a (0.3797) < 1e-17a (0.1541)

9 rs241427 6 32804414 1e-04a (-0.2236) 9.98e-01 (-0.1283) 6.1e-06a (-0.2237) 6.1e-06a (-0.1005)

10 rs10759987 9 121364134 1.66e-03a (-0.2082) 1 (0.0272) 6.76e-03a (-0.2083) 6.76e-03a (0.0208)

11 rs17696736 12 112486818 9.86e-06a (0.2354) 1 (0.0570) 1.18e-05a (0.2358) 1.18e-05a (0.0560)

Results from the analysis of the dataset consisting of 58C controls with RA and UKBS controls with T1D. Two types of analysis were conducted: separate (“sep”) analysis using
BVSR and joint (“joi”) analysis using LPG. The last 4 columns of the table give the local false discovery rates (lfdr) and estimated coefficients (in parentheses) for SNPs identified
by BVSR and LPG between T1D and RA
adenotes lfdr < 0.2

filtering, 240,101 SNPs in 1,812 cases fromRA, 1,932 cases
from T1D, and 2,897 controls (1,427 controls from 58C
and 1,470 controls from UKBS) from the two data sets
were retained for the following analysis. First, we con-
ducted the analysis for the 58C controls with RA and the
UKBS controls with T1D using LPG and BVSR. The pri-
oritization results are shown in Fig. 3, in addition to a
complete list of findings in Table 1, where the lfdr cutoff
point is 0.2. As shown in Table 2, the single-trait analysis
using BVSR identified 2 SNPs for RA, while a joint analy-
sis using LPG identified 9 SNPs, in addition to the 2 SNPs
identified by BVSR, for RA (giving a total of 11 SNPs iden-
tified by LPG). There were a few SNPs (e.g., rs10484565)
where the joint analysis using LPG gave highly significant
p-values for RA but the separate trait analysis using BVSR
gave a p-value of 1 (Table 1). One possible explanation for
this discrepancy is that the effect sizes for these SNPs were
smaller and the sample size used in the separate analy-
sis was too small to detect SNPs with smaller effect sizes.
For the additional SNPs identified by LPG that were not
identified by BVSR, 1 of 9 was reported to be associated
with RA in previous studies. rs10484565, within the TAP2
gene was previously reported to be associated with RA
[32]. The p-value for the pleiotropy test was 1.68 × 10−17,
suggesting the existence of pleiotropy between RA and

T1D (Table 3). In summary, leveraging the pleiotropic
effects enabled LPG to identify more risk SNPs compared
to those identified by the single-trait analysis (BVSR). We
also evaluated the prediction performance using RA and
T1D. Specifically, we quantitatively assessed the risk pre-
diction performance using 10-fold cross validation. The
prediction accuracies of both LPG and BVSR are shown
in Table 2, which shows that the joint analysis of RA
and T1D consistently outperformed the separate analysis
of each study in terms of prediction accuracy, improving
from 62.8% to 64.4% for RA and from 76.7% to 78.3% for
T1D. The joint analysis of RA and T1D took 8 to 29 min
to complete on a Linux platform with a 2.60 GHz intel
Xeon CPU E5-2690 v3 with 30720 KB cache and 96 GB
RAM (Additional file 1: Table S3). To demonstrate the
robustness of our LPG, we switched the control cohorts
for RA and T1D and repeated the analysis, with similar
results.

CD and T1D
After the basic quality control filtering described above,
240,393 SNPs in 1675 cases from CD, 1932 cases from
T1D, and 2895 controls (1425 controls from 58C and 1470
controls from UKBS) from the two datasets were used
for the analysis. After excluding the MHC region SNPs,

Table 2 Comparison of the prediction accuracy of T1D and RA

Data Number of hits Prediction accuracy (AUC)

1 Type 1 diabetes(T1D)joint 11 78.3%(2.9%)

2 Rheumatoid arthritis(RA)joint 11 64.4%(1.8%)

3 Type 1 diabetes(T1D)separate 11 76.7%(2.9%)

4 Rheumatoid arthritis(RA)separate 2 62.8%(2.4%)

For the data consisting of 58C controls with RA and UKBS controls with T1D, summary of separate and joint analysis of T1D and RA
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Table 3 Inference of pleiotropy

LRT p-value

CD-T1D-inMHC 2.27e-05 1

RA-T1D-inMHC 1.03e+02 2.75e-24

T1D-CD-inMHC -8.87e-02 1

T1D-RA-inMHC 7.25e+01 1.68e-17

CD-T1D-exMHC 8.22e+00 4.13e-03

RA-T1D-exMHC 2.33e+01 1.38e-06

T1D-CD-exMHC 4.73e+00 2.96e-02

T1D-RA-exMHC 2.07e+01 5.29e-06

Pleiotropy estimated and inference, inMHC means including the MHC region and
exMHC means excluding the MHC region

leaving a total of 239,931 SNPs, we performed the same
four comparisons. Here, we discuss the comparison with
58C controls for CD and UKBS controls for T1D after
excluding the MHC region. Manhattan plots are shown
in Additional file 1: Figure S37, and all SNP findings are
shown in Additional file 1: Table S17 in the supplemen-
tary document, where the threshold for lfdr was set to 0.2.
As shown in Additional file 1: Table S17, the single-trait
analysis using BVSR identified 3 SNPs for CD, while the
joint analysis using LPG identified an additional 4 SNPs
for CD (giving a total of 7 SNPs identified by LPG). For
the SNPs identified by LPG that were not identified by
BVSR, 2 (rs6679677 and rs2542151) of 4 were reported to
be associated with CD in the GWAS catalog [1]. Overall,
the SNP findings are consistent with the published lit-
erature. For example, rs11805303 in the IL23R gene was
identified to be strongly associated with CD by bothmeth-
ods, consistent with an earlier report by theWTCCC [13].
Additionally, rs17234657 on chromosome 5 was identi-
fied to be associated with CD by both LPG and BVSR, a
finding previously reported by theWTCCC [13]. Another
intergenic SNP, rs2542151, which was identified by LPG
but not BVSR, was also previously reported to be signif-
icantly associated with CD [13, 33]. The p-value for the
pleiotropy test was 2.96 × 10−2, suggesting the existence
of pleiotropy between CD and T1D (Table 3). The pre-
diction performance of both LPG and BVSR is shown in
Table S16 in the Additional file 1: document. The results
demonstrate that the prediction of the joint analysis of
CD and T1D was slightly better than that of the separate
analysis of each study, improving from 58.1 to 58.7% for
CD and from 60.1 to 60.3% for T1D. The joint analysis
of CD and T1D took 20 to 37 min on a Linux platform
with a 2.60 GHz intel Xeon CPU E5-2690 v3 with 30720
KB cache and 96 GB RAM (Additional file 1: Table S3).
The results from the other comparisons are detailed in
the supplementary document and were similar to those
presented above.

Conclusion
In this article, we proposed a novel statistical frame-
work for leveraging pleiotropy in GWAS data. Compared
with a single-trait-based analysis that does not leverage
pleiotropy, LPG offers improved statistical power and pre-
diction accuracy in the identification of risk variants. We
developed an efficient algorithm based on VBEM, which
not only enabled us to evaluate the posterior quantities
of interest but also made the evaluation computationally
scalable. These advantages make LPG a powerful tool to
analyze GWAS data exhibiting pleiotropic effects. In this
article, we analyzed two pairs of traits from WTCCC,
namely, RA vs T1D and CD vs T1D. The findings reported
here are consistent with the published literature.
Despite these advantages, a current limitation of LPG is

that it is not applicable to more than two traits. Model-
ing pleiotropic effects in a combinatorial fashion for more
than two traits is challenging as the number of hidden
association statuses increases exponentially with the num-
ber of traits. LPG was designed to leverage pleiotropy
when GWAS data for multiple traits are collected from
different study individuals, and LPG therefore comple-
ments the earlier methods proposed for incorporating
pleiotropy when GWAS data are collected from the same
study individuals [8, 9]. However, to date, no method has
been proposed for leveraging pleiotropy when the GWAS
data for multiple traits are collected from partially shared
study samples, indicating an avenue for future work.

Additional file

Additional file 1: The supplementary document contains additional
simulation and data analysis results aswell as derivation details. (PDF 11571 kb)
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