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Background: Mycorrhizal symbiosis is one of the most fundamental types of mutualistic plant-microbe
interaction. Among the many classes of mycorrhizae, the arbuscular mycorrhizae have the most general symbiotic style
and the longest history. However, the genomes of arbuscular mycorrhizal (AM) fungi are not well characterized due to
difficulties in cultivation and genetic analysis. In this study, we sequenced the genome of the AM fungus Rhizophagus
clarus HR1, compared the sequence with the genome sequence of the model species R. irregularis, and checked for
missing genes that encode enzymes in metabolic pathways related to their obligate biotrophy.

Results: In the genome of R. clarus, we confirmed the absence of cytosolic fatty acid synthase (FAS), whereas all
mitochondrial FAS components were present. A KEGG pathway map identified the absence of genes encoding enzymes
for several other metabolic pathways in the two AM fungi, including thiamine biosynthesis and the conversion of vitamin
B6 derivatives. We also found that a large proportion of the genes encoding glucose-producing polysaccharide
hydrolases, that are present even in ectomycorrhizal fungi, also appear to be absent in AM fungi.

Conclusions: In this study, we found several new genes that are absent from the genomes of AM fungi in addition to
the genes previously identified as missing. Missing genes for enzymes in primary metabolic pathways imply that AM
fungi may have a higher dependency on host plants than other biotrophic fungi. These missing metabolic pathways
provide a genetic basis to explore the physiological characteristics and auxotrophy of AM fungi.
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Background

The roots of most terrestrial plants in the world have a
symbiotic relationship with filamentous fungi via mycor-
rhizae. Approximately 80% of land plants including 94% of
Angiosperms form some type of association with mycor-
rhizae [1, 2]. Arbuscular mycorrhizae, a type of endo-
mycorrhiza in which fungal hyphae enter the plant
cells and shape highly branched structures named arbus-
cules, formed symbiotic relationships with land plants
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more than 400 million years ago [3]. In contrast, land plant
associations with ectomycorrhizae, which is characterized
by dense root-surrounding hyphae and intercellular hyphae
between root cells, began about 190 million years ago [4].
Even in modern ecosystems, arbuscular mycorrhizae con-
stitute the most abundant form of mycorrhizal association
with angiosperms [2]. Thus, arbuscular mycorrhizal (AM)
symbiosis is considered the most basic form of mycorrhizal
symbiosis. Since many crops have associations with arbus-
cular mycorrhizae, AM symbiosis is also important agricul-
turally [5].

Fungi involved in AM symbioses belong to the fungal
subphylum Glomeromycotina [6], which was formerly
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classified as phylum Glomeromycota [7]. AM fungi are ob-
ligate symbionts that cannot grow without their host plants,
except in the very rare case of the cyanobacterial symbiont
Geosiphon pyriformis [8, 9]. One reason for the obligate
biotrophy of AM fungi is their dependence on hosts to sup-
ply a carbohydrate source [10]. Similar to ectomycorrhizal
(ECM) fungi [11], AM fungi take up hexoses from the host
[12, 13]. Recent studies have shown that AM fungi also im-
port lipids from host plants [14, 15].

As obligate symbionts, AM fungi are very hard to culture
in vitro, especially axenically [16]. This recalcitrance toward
artificial culture prevents improvements derived from basic
research as well as effective agricultural use. Therefore, the
molecular genomics of AM fungi are not as advanced in
comparison to other fungi. Laccaria bicolor, an ECM fun-
gus, was the first mycorrhizal fungus to have its complete
genome sequenced [17]. A reduction in the number of en-
zymes capable of degrading plant cell walls was hypothe-
sized to result from the stable interaction with its host
plant. To date, the genomes of multiple ECM fungi have
been sequenced, including Tuber melanosporum (black
truffle) and Cenococcum geophilum [18, 19]. The loss of
plant cell wall-degrading enzymes (PCWDEs) has been
confirmed to be a common feature of the genomes of ECM
fungi as well as phytopathogenic fungi [20].

The first genome sequence of an AM fungus was pub-
lished in 2013 for the model strain Rhizophagus irregu-
laris DAOM197198 [21]. Analysis of that genome also
indicated the loss of genes encoding PCWDEs. Genes
for several fundamental metabolic enzymes such as
thiamine synthase and type-I fatty acid synthase (FAS)
were also absent [21, 22]. The recent discovery of lipid
transport from plants to AM fungi is consistent with the
inability of these fungi to synthesize fatty acids [14, 15].
Thus, discovery of missing genes for important bio-
logical processes may provide hints about the essential
nutrient requirements of AM fungi. Such information is
also useful for developing culture conditions for AM
fungi.

The genome of R. irregularis was also sequenced for a
study about heterokaryocity. R. irregularis DAOM197198
was found to contain homokaryotic nuclei with an intra-
genomic variant [23]. Several other strains of this fungal
species have a dikaryon-like nuclear composition [24]. A
strain of R. clarus, MUCL46238, was also sequenced to in-
vestigate effector-like secretory peptides [25]; however,
there have been few comparative genomic studies of AM
fungi, and the majority of conservative characteristics of
AM fungi remain to be elucidated.

As for genes missing from AM fungi, Tang et al. [26] pro-
posed that these genes be identified as “Missing Glomero-
mycotan Core Genes (MGCG)” in their transcriptome
analysis of two Gigaspora species. Since transcriptome ana-
lysis is unable to detect genes with no or very low
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expression, the absence of MGCGs needs to be confirmed
at the genomic level; however, the use of Gigaspora for gen-
omic confirmation is problematic due to its extremely large
genome size compared with other fungi [27].

To investigate a common genetic basis for obligate bio-
trophy in AM fungi at the whole-genome level, we de
novo sequenced the genome of the HR1 strain of R
clarus. R. clarus is an AM fungal species belonging to the
genus Rhizophagus and is characterized by producing lar-
ger spores than R. irregularis, R. intraradices, and several
other Rhizophagus species [28]. R. clarus is a good candi-
date for agricultural investigations because a strain of R.
clarus has been shown to have positive effects on soybeans
and cotton [29]. We sequenced the HR1 strain of R. clarus
and compared the sequence with that of R. irregularis in
order to identify common missing metabolic pathways in
AM fungi, including the previously proposed missing
genes. This report details the gene composition of a fungal
species representing the longest history of the mycorrhizal
lifestyle.

Results

Genome sequencing and gene prediction

To investigate the gene repertoire of R. clarus, we se-
quenced genomic DNA from monoxenic cultures of the
strain R. clarus HR1 by Illumina and PacBio sequencers.
By k-mer analysis using Illumina reads, nuclei of R. clarus
HR1 were found to be homokaryotic to the same degree
as the model strain R. irregularis DAOM197198 (Add-
itional file 1: Figure S1). The genome size of R. clarus was
estimated to be approximately 146.4 Mbp, which is a little
smaller than that of R. irregularis DAOM197198 (approxi-
mately 153 Mbp) [21] but much larger than the average
fungal genome size (42.3 Mbp) [30]. Our assembly re-
sulted in a total of 4424 scaffolds containing 116.41 Mbp
sequences and an N50 length of 59.94 kbp (Table 1). As-
sessment of conserved gene comprehensiveness using
BUSCO [31] revealed that 88.6% of the fungal conserved
genes were complete genes. Similar to that of R. irregularis
[21], the genome is AT-rich so that the GC content is as
low as 27.2%. Since repeat masking following ab initio re-
peat modeling masked 36.04% of the total genome, the
genome of R. clarus is up to 36% repeat-rich.

Gene prediction combining ab initio prediction, protein
mapping of R. irregularis proteins and transcript mapping
resulted in the identification of 27,753 coding genes (Table
1). BUSCO assessment detected 96.9% of the conserved
genes as complete sequences, indicating that this gene
catalogue is highly comprehensive. The total number of
genes found for R. clarus is similar to that of R. irregularis
(28,232 genes reported in Tisserant et al. 2013 [21]). This
number is smaller than that reported in a recent study of
R. irregularis (41,572 genes), but similar to the reported
number of reliable genes (27,860 genes) [32]. Since most
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Table 1 Summary of genome assembly and gene prediction
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Assembled genome

Predicted genes

Assembly size 1164 Mbp
Number of scaffolds 4424

N50 59.94 kbp
GC % 27.2%

BUSCO genome benchmarks (fungi odb9)

87.9% (257/290)
0.7% (2/290)
3.4% (10/290)
8.0% (23/290)

Complete single copy
Complete duplicated
Fragmented

Missing

Number of genes 27,753
Average of gene length 1465 bp
Average of CDS length 1139 bp
Average of protein length 379 aa

BUSCO genome benchmarks (fungi odb9)

94.8% (275/290)
2.1% (6/290)
0.7% (2/290)
24% (7/290)

Complete single copy
Complete duplicated
Fragmented

Missing

fungi have fewer than 20,000 coding genes [30], harboring
many genes may be a characteristic of AM fungi.

Absence of cytosolic fatty acid synthase

Being an obligate symbiont, AM fungi presumably rely on
some important biological processes supplied by their host
plants. Recently, fatty acids were identified as important
factors for auxotrophy of AM fungi [33-35]. In general,
fungi and animals have two FAS gene sets: type I FAS and
type II FAS (Fig. 1) [36, 37]. The type I FAS consists of a
cytosolic gene or genes with multiple domains that produce
long chain fatty acids. Type I FAS is an octa-functional sin-
gle gene in animals and most basidiomycota such as

Laccaria and Ustilago; however, two tetra-functional type I
FAS genes, FAS1/FASP and FAS2/FASa, are found in asco-
mycota such as Saccharomyces and Aspergillus [38]. In con-
trast, type II FAS genes are bacterial-like gene sets used in
mitochondria and consisting of individual subunit genes.
Whereas type I FAS produces long chain (C16) fatty acids,
type II FAS synthesizes the mitochondrial respiratory cofac-
tor lipoic acid [39]. In the genome of R. irregularis, Wewer
et al. [22] reported the absence of type I FAS genes,
whereas most of the type II FAS genes were present. On
the other hand, Vijayakumar et al. [40] claimed that AM
fungi could synthesize FA as demonstrated by expression
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To determine at the genomic level whether the missing
FAS genes are a common feature of AM fungi, we sur-
veyed genes homologous to type I and type II FAS genes
in the genome sequences and predicted genes of R. clarus
as well as in the improved gene catalogue for R. irregu-
laris. In our homology search, all components of type II
FAS genes including enoyl dehydratase, which had not
been discovered in R. irregularis prior to the previous re-
port [22], were found in both R. clarus and R. irregularis
(Additional file 2: Table S1, Fig. 1). Thus, these AM fungi
have a complete set of genes encoding enzymes for the
type II FAS pathway. In contrast, a homology search for
type I FAS genes in the R clarus genome only identified
genes that are too short to correspond with multifunc-
tional FAS genes (Additional file 2: Table S1). Given their
high similarity to the type II FAS component, these
FAS-like genes are hypothesized to be more similar to
type II FAS genes than type I FAS genes. An R. irregularis
gene EXX52120.1, annotated as a “tetra-functional FAS
subunit” by Lin et al. [23] and used in Vijayakumar et al.
[40], was also confirmed to encode a malonyl-CoA ACP
transacylase component of a type II FAS (Additional file 2:
Table S1). Therefore, these AM fungi lack specific genes
for the cytosolic FAS pathway, which plays a pivotal role
in the biosynthesis of long-chain fatty acids.

Common missing pathways for vitamins and cofactors
Three previously published reports identified FAS genes,
thiamine biosynthesis genes and MGCG as missing from
AM fungi [21, 22, 26]. Thus, we checked for the absence
of MGCG in our R. clarus genomic DNA dataset. Among
39 MGCGs, eight genes involved in thiamine biosynthesis
were all absent from the R. clarus and R. irregularis ge-
nomes, suggesting common loss of genes for thiamine
synthesis in AM fungi (Additional file 3: Table S2). By
contrast, three genes shown to be present in R. irregularis
in a previous study, AAD15, PHO89, and URE2, were
present in both R. irregularis and R. clarus, indicating that
the absence of these three genes is not common among
AM fungi (Additional file 3: Table S2). Moreover, homo-
logs of YHB1 and RHR2, also identified as MGCG in Tang
et al. [26], were also discovered in two Rhizophagus spe-
cies with comparatively low scores, suggesting that these
genes may also be present in Rhizophagus species.

In order to find novel missing genes, we next searched
for indications of missing metabolic pathways in R. clarus
and R. irregularis using the KEGG metabolic pathway
mapper [41]. When compared to the well-annotated ge-
nomes of two saprotrophic fungi, Saccharomyces cerevi-
siae and Aspergillus oryzae, the absence of genes encoding
enzymes in the FAS and thiamine biosynthetic pathways
in the R. clarus and R. irregularis genomes was confirmed
again (Additional file 1: Figure S2, Additional file 3: Table
S2). In addition, several other enzymes were also found to
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be absent from both AM fungi. For example, in the meta-
bolic pathway for vitamin B6, AM fungi lack genes encod-
ing enzymes that convert pyridoxal 5'-phosphate (the
active form of vitamin B6) or pyridoxal into related deriva-
tives such as pyridoxine and pyridoxamine, in contrast to
the presence of these genes in Saccharomyces and Aspergil-
lus (Additional file 1: Figures. S2 and S3, Additional file 4:
Table S3). Although AM fungi can synthesize bioactive
forms of vitamin B6, the lack of derivatives might affect
some metabolic processes. These specific losses of vitamin
metabolisms were unique characteristics among fungi
(Additional file 5: Table S4).

Carbohydrate availability
Generally, mycorrhizal fungi are known to have fewer
PCWDEs due to their close symbiotic relationship with
plants [20, 21]. This loss of polysaccharide hydrolases may
also be related to the amount of sugars supplied from host
plants. Therefore, we closely examined the carbohydrate-
degrading processes of R. clarus and R. irregularis using
the KEGG metabolic pathway mapper. We found that the
putative genes for many enzymes involved in glucose pro-
duction by polysaccharide hydrolysis, including sucrose
glucohydrolases (invertase EC3.2.1.26 and glucoinvertase
EC3.2.1.20, from sucrose to glucose), p-glucosidase
(EC3.2.1.21, from cellulose-derived cellobiose to glucose),
glucoamylase (EC3.2.1.3, from starch and glycogen to glu-
cose) and sucrose-isomaltase (EC3.2.1.10, from dextrin to
glucose), were absent from R. clarus and R. irregularis
(Fig. 2, Additional file 5: Table S4). The absence of invert-
ase and the deficiency in sucrose availability are consistent
with previous reports on R. irregularis [21, 26]. Our find-
ings also identified the loss of genes encoding other
glucose-producing hydrolases such as [-glucosidase,
which is present in most other fungi including ECM and
plant-pathogenic fungi (Fig. 2, Additional file 5: Table S4).
A previous study reported that several biotrophic fungi
such as Amanita muscaria and Ustilago maydis lack genes
encoding cellulose-binding proteins, which function in cel-
lulose degradation [20]. Our result suggests that AM fungi
may have a reduced ability to utilize cellulose as a substrate
compared to other fungi because the absence of genes en-
coding P-glucosidases is specific to AM fungi. We also
found that a gene encoding a glycogen-degrading enzyme,
glucoamylase (EC 3.2.1.3), is also absent specifically from
AM fungi, suggesting low glycolysis activity in AM fungi.
In our search, genes encoding trehalase (EC 3.2.1.28,
from trehalose to glucose) and glycogen phosphorylase
(EC 24.11, from glycogen to glucose-1-phosphate) were
the only carbohydrate hydrolase genes capable of producing
glucose-related hexoses in AM fungi (Fig. 2, Additional file
5: Table S4). The presence of trehalase is consistent with
the results of two previous reports [42, 43]. Since AM
fungi synthesize trehalose and glycogen [42, 44, 45], these
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oryzae; Sc, Saccharomyces cerevisiae. Stars indicate polysaccharides that AM fungi can synthesize
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putative enzymes are hypothesized to hydrolyze fungal
-produced products.

These results suggest that AM fungi are unable to utilize
polysaccharides, such as cellulose and other glucans, that
are found in their environment, whereas ECM fungi partly
have the ability to use these carbohydrate sources. Thus,
AM fungi may be more dependent on plants for acquiring
carbohydrates than ECM fungi.

Comparison of two AM fungal species related to
metabolic pathways

Since R. clarus HR1 was originally isolated from acidic soil
and has an optimal effect on plants growing under low pH
conditions [46], we checked pathways related to acid toler-
ance. In the case of algae, convergent loss of fermentation
pathways producing organic acids such as lactate, formate
and acetate causing cytosolic acidification in acidophilic
species has been reported [47]. We investigated whether
these pathways exist in two Rhizophagus species, and con-
sequently found that R clarus HR1 retains the same reper-
toire of those enzymes to that of R irregularis (Additional
file 1: Figure S4). Similarly, we could not find other signifi-
cant differences from the genome-wide comparison of
metabolic pathways between R. irregularis and R. clarus.
Thus, morphological and physiological differences of these

two AM fungal species may depend on other regulatory
mechanisms different from unique metabolic processes.

Discussion

Genomic features of R. clarus HR1

R clarus HR1 has an AT-rich nuclear genome of ap-
proximately 146Mbp (Table 1), which is similar to that
of the model strain R. irregularis DAOM197198 [21].
This result suggests that approximately 150 Mbp is the
standard genome size for the genus Rhizophagus.

The model AM fungal species R. irregularis has strains
with haploid-type and diploid-type karyotypes [24]; the
model strain DAOM197198 is a haploid-type strain [23].
In this study, we determined that R. clarus HR1 has hap-
loid-type homokaryotic nuclei since the k-mer distribution
pattern of R. clarus HR1 is similar to that of R. irregularis
DAOM197198. So far, diploid-type strains of R. clarus
have not been discovered, and the genome heterokaryocity
of AM fungi other than R. irregularis largely remains to be
elucidated.

Energy metabolism of AM fungi

Since AM fungi are biotrophic organisms, they rely on
host plants to serve as energy sources. AM fungi are
known to import sugars in the form of hexoses [13], simi-
lar to how ECM fungi acquire sugars [11]. The reduced
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number of carbohydrate-reactive enzymes in mycorrhizal
fungi also suggests that sugars are acquired from plants
[20]. In this study, we revealed the extreme absence of
genes encoding glucose-producing oligosaccharide hydro-
lases in AM fungi, whereas the genomes of ECM fungi
have genes to encode most of these enzymes (Fig. 2).
Thus, AM fungi are hypothesized to have completely abol-
ished glucose acquisition except for what is imported from
their host plants. This absolute host-dependency of AM
fungi may be reflective of its long symbiotic history. Extra-
ordinarily large spores may also correlate with the loss of
independent sugar acquisition because germinating AM
fungi must depend on their own energy sources before a
mycorrhizal symbiosis can be established.

AM fungi are also known to accumulate lipids that
comprise 46 ~70% of the spore weight [48]. These high
lipid contents are likely stored for germination and initial
growth before successful infection. The ability of AM
fungi to synthesize lipids is sometimes debated. The exist-
ence of fatty acid species specific to AM fungi has been
known for a long time [48]. AM fungi are unable to
produce long chain (C16) fatty acids without host
plants, although they can elongate C16 fatty acids into
fungal-specific fatty acid species [49]. At the genomic level,
Tisserant et al. [50] found transcripts homologous to FASa
and FASP, but Wewer et al. [22] identified those genes as
type II FAS subunits and reported the absence of type I
FAS genes in the R irregularis genome. By contrast, Vijaya-
kumar et al. [40] claimed that AM fungi could synthesize
lipids based on the expression and localization analysis of
CEM1 (a type II ketoacyl synthase) and a gene annotated as
“tetra-functional fatty acid synthase subunit FAS1”
(EXX52120.1). In our study, we identified the putative
“FAS1” as a subunit of a type II FAS and confirmed the
absence of type I FAS genes from the genomes of both R.
clarus and R. irregularis (Additional file 2: Table S1).
Though type II FAS enzymes can synthesize long-chain
fatty acids in vitro [51], the ability to synthesize long-chain
fatty acids in vivo is doubtful since type I FAS and type II
FAS are non-redundant and are unable to complement
each other unless their localization patterns are altered
[52-54]. Observations of fatty acid importation from
host plants [14, 15] and mycorrhizal defects caused
by lipid-related plant mutants [55, 56] also support
the hypothesis that AM fungi rely on their hosts for
fatty acids. Thus, AM fungi are hypothesized to lack
the ability to synthesize long-chain fatty acids.

Although AM fungi accumulate lipids, many ECM and
saprotrophic fungi store carbohydrates such as glycogen,
trehalose and mannitol as their carbon sources [57-59]. A
possible reason for this difference may be because AM
fungi have to store lipids that are essential for membrane
construction in their cells. These differences in primary
storage compounds may also be correlated with the
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availability of polysaccharides. AM fungi have lost the
gene for glucoamylase, a glycolytic enzyme that is highly
conserved in other fungi (Fig. 2). Thus, AM fungi may not
be able to use glycogen effectively compared to other
fungi; thus, glycogen is less important as a carbon source.

AM fungi and difficulties with cultivation

AM fungi are known to be very difficult to cultivate axen-
ically [16]. The reason for this difficulty is thought to be
their auxotrophic dependency on symbiosis. The growth
of AM fungi is hypothesized to depend on many other
compounds in addition to lipids and carbohydrates. We
confirmed the absence of several metabolic pathways as-
sociated with the biosynthesis of vitamin B6 derivatives
and thiamine synthesis (Additional file 1: Figure S2, Add-
itional file 5: Table S4). Missing of thiamine synthetic path-
way, which is supposed to be essential for infection in rust
fungi [60], suggests that AM fungi may have non-thiamine
dependent infection system. Since these vitamins are essen-
tial for events other than infection, addition of these com-
pounds to media may improve the culture efficiency of AM
fungi.

In addition to conserved characteristics, AM fungi also
have species-specific characteristics for successful culture.
The effectiveness of symbiotic fungi on plant growth also
differs by species and strains [61]. Though our analysis
could not find genetic difference of AM fungal species
contributing physiological characteristics yet, the draft
genomic sequence data for R clarus HR1 may help to
understand how its genetic background influences acid
tolerance and promotes effective plant growth.

Conclusions

In this study, we sequenced the genome of an AM fungus,
R. clarus HR1, and compared the data with that from a
model AM species, R. irregularis DAOM197198. We con-
firmed that genes for several metabolic pathways such as
cytosolic fatty acid biosynthesis and thiamine biosynthesis
were absent in both AM species. We also found that
metabolic genes such as those encoding enzymes that
synthesize vitamin B6 derivatives were commonly absent.
As for sugar metabolism, AM fungi lack almost all the
genes encoding polysaccharide hydrolases that produce
glucose except trehalase and glycogen phosphorylase,
whereas most of these polysaccharide hydrolase genes are
present in other phyto-biotrophic fungi. These findings
support observations of the high host dependency of AM
fungi.

Methods

Sample preparation

The HRI1 fungal strain of R clarus was isolated from
Hazu, Nishio, Aichi, Japan [46]. This strain is available
from the MAFF Gene Bank as MAFF520076. Fungal
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samples were cultured monoxenically with Agrobacterium
rhizogenes-induced hairy roots of carrot (Daucus carota)
[62] growing on M medium [63]. After 2 months incuba-
tion, roots of the host plant were removed and fungal tis-
sues were collected using citrate-mediated lysis of the
culture medium [64].

DNA extraction and amplification

Genomic DNA was extracted by a modified CTAB
method as described in Maeda et al. [32]. Extracted DNA
was purified with gravity-flow, anion-exchange tips (Geno-
mic-Tip 20/G, Qiagen, Netherlands).

For PacBio sequencing, genomic DNA was amplified
using a REPLI-g Single Cell Kit (Qiagen, Netherlands) after
selection of long DNA (> 6 kbp) using the BluePippin DNA
size-selection system (Sage Science, USA). To reduce artifi-
cial effects resulting from amplification, extracted gDNA
was separated into six tubes before amplification, and each
sample was amplified independently. After amplifying the
entire genome, DNA was purified again with Genomic-Tips
20/G.

Sequencing

lllumina sequencing

Paired-end libraries of two different insertion sizes
(180 bp and 600 bp) were constructed for Illumina se-
quencing using approximately 1 pg of genomic DNA. Li-
braries were prepared according to the standard Illumina
TruSeq DNA protocol. Libraries were sequenced by using
HiSeq 1500 for sequencing reads of 126 bp each. The total
number of sequencing reads obtained from each genome
was approximately 18.7 Gbp (74 Mreads) for PE180 and
33.3 Gbp (123 Mreads) for PE60O.

PacBio sequencing

Approximately 10 pg each of amplified gDNA was used
for PacBio library construction. Sequencing libraries were
constructed following the manufacturer’s protocol (Pacific
Bioscience, USA). Libraries were sequenced with a PacBio
RS II instrument and resulted in 26.0 Gbp of total sequen-
cing reads.

Genome assembly
Sequence reads were trimmed using cutadapt 1.8.1 [65].
Sequencing adapters and low-quality bases at the 5'-ends
(7 bp for Illumina PE180, 10 bp for Illumina PE600 and
100 bp for PacBio reads) and the 3"-ends (QV < 20 region
for Ilumina reads) were removed. After trimming, se-
quencing errors in the PacBio reads were removed using
Sprai 0.9.9.20 [66]. To diminish amplification-based er-
rors, the script “ezez4makefile_v4.pl” in the Sprai 0.9.9.20
package was used with the “filter_same_lib” option.
[lumina reads were first used for k-mer analysis using
Jellyfish [67]. Using karyotype information and the
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preliminary estimated genome size, assembly of Illumina
reads and estimation of the precise genome size were per-
formed with AllPaths-LG 44837 [68]. The initial “esti-
mated genome size” parameter was set to 150,000,000. The
resulting contigs were scaffolded with Opera-LG 2.0.6 using
Ilumina reads and PacBio error-corrected reads [69]. Gaps
in the scaffolds were filled with PBJelly using the PBSuite
15.8.24 package with PacBio error-corrected reads using pa-
rameters identified by the manufacturer [70]. Sequential er-
rors were corrected with Pilon 1.22 using Illumina reads
[71] after mapping the reads with bowtie2 2.2.0 [72].

To remove contaminated sequences, scaffolds were sub-
jected to a homology search of the NCBI NR database
using GhostZ 1.0.0 [73]. In the search results, hits to An-
thurium amnicola sequences were removed since se-
quences annotated to this higher plant in the NR database
were thought to contain contaminating fungal sequences.
Using homology search results from GhostZ, the origins
of the scaffolds were predicted with MEGAN 6.6.7 [74];
scaffolds without fungal origins were discarded. Short
scaffolds (<1 kbp) were also removed. The completeness
of the genome was assessed using BUSCO 2.0 [31] with
the gene set “Fungi 0db9” and the augustus gene model of
Rhizopus oryzae.

Masking of repetitive sequences

Repeat sequences were identified with RepeatMasker 4.0.6
and RepeatModeler 1.0.8 [75]. Repeat motifs were con-
structed de novo with RepeatModeler, and then the repeti-
tive regions of the draft genome were masked with
RepeatMasker. Parameters for RepeatModeler and Repeat-
Masker were not changed from the default values.

Gene prediction

For evidence-based gene prediction, RNA-seq was per-
formed with the Illumina system. Total RNA was extracted
with an RNeasy Plant Mini Kit (Qiagen, Netherlands). An
RNA-seq library was constructed from 200 ng of RNA
using the TruSeq Stranded RNA Library Prep Kit (Illumina,
USA). After quality evaluation, the library was sequenced
by an Illumina HiSeq 1500.

RNA-seq reads were trimmed with cutadapt to remove
adapter sequences and low-quality bases (5'-ends 15 bp
and 3'-ends QV score < 30). Trimmed reads were mapped
to genomic data with Tophat 2.1.1 [76]. Using the Tophat
result, genome-guided transcript assembly was achieved
with Trinity 2.0.6 [77]. The resulting transcripts were
encoded by 29,997 genes; the total number of identified
sequences including splice variants were up to 39,663 se-
quences. The total number of identified bases was ap-
proximately 42.53 Mbp and the N50 was 1653 bp.
ORFs were also predicted with TransDecoder 3.0.1 [78]
and 30,826 ORFs including 15,941 complete ORFs were
predicted.
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Since several conserved genes were found in masked re-
gions, gene prediction was performed using unmasked
genomic data. Gene predictions were accomplished with
four different methods: GeneMark-ES [79], Augustus [80],
Exonerate protein mapping [81], and Exonerate transcript
mapping [82]. A totally ab initio prediction was per-
formed using GeneMark-ES 4.33 with default param-
eters and resulted in 27,995 genes. Gene prediction
with taxonomy-based parameters and transcript-based
hints was conducted using Augustus 3.1.0 with the
gene model of R. irregularis [32] and a hint-file pre-
pared from BLAT mapping of the transcripts [83].
Augustus predicted 28,576 genes. Gene regions were
also predicted by mapping protein sequences of the re-
lated species R. irregularis [32] using Exonerate 2.2.0 with
the “—percent” option set as 80. This mapping resulted in
9994 mapped loci. ORFs from transcripts were also
mapped with Exonerate with the “—percent” option set as
90 and resulted in 16,723 loci. Each result was integrated
into the final gene models with EVidenceModeler 1.1.1.
Weights for each result were set as follows: Genemark-ES:
Augustus: Exonerate R. irregularis protein mapping: Exon-
erate transcript mapping = 2: 1: 3: 3.

Investigation of missing genes and metabolic pathways
FAS genes and MGCGs were identified by BLAST
searches using deduced protein sequences of S. cerevisiae
as queries. For the FAS genes, the corresponding se-
quences of Aspergillus nidulans, Laccaria bicolor, Puccinia
graminis and Ustilago maydis were also used as BLAST
queries. A BLAST result with an e-value <107 ° was
regarded as a positive hit.

Metabolic pathways were searched using the KEGG
metabolic pathway map [41]. KEGG pathways were anno-
tated from predicted gene catalogues using GhostKoala
with “genus_prokaryotes + family_eukaryotes” databases
at the KEGG web server [84]. Annotated KEGG lists were
also mapped at the KEGG website.

Reference sequences

Draft genomes from two previous studies [21, 23] were
downloaded from the websites reported in their published
papers. Gene lists and sequence reads of R. irregularis
DAOM197198 were also used from Maeda et al. [32]. Gene
repertory files of other fungi used as references were down-
loaded from JGI MycoCosm [85, 86] or NCBI Genome
[87]. Genomic information of Laccaria bicolor (v2.0) [17],
Amanita muscaria Koide (v1.0) [20], Coprinopsis cinerea
Okayama-7 [88], Ustilago maydis 521 (v2.0) [89], Puccinia
graminis f. sp. Tritici (v2.0) [90], Tuber melanosporum
Mel28 (v1.0) [18], Neurospora crassa [91], Saccharomyces
cerevisiae S288C [92], Aspergillus oryzae RIB40 [93, 94], As-
pergillus nidulans [94, 95, Taphrina deformans [96] and
Shizosaccharomyces pombe [97] were downloaded from JGI
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website. Gene catalog of Suillus luteus (GCA_000827255.1)
[20], Rhizoctonia solani (GCA_000524645.1) [98], Aur-
icularia subglabra (GCF_000265015.1) [99], Cryptococ-
cus neoformans (GCF_000149245.1) [100], Magnaporthe
oryzae (GCF_000002495.2) [101], Fusarium oxysporum
(GCF_000149955.1) [102] and Cenococcum geophilum
(GCA_001692895.1) [19] were downloaded from NCBI
website.
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