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Abstract

gene loss is lacking in these mites.

the arms and mismatches in the stems.

remains to be investigated.

Background: Mitochondrial (mt) genomes of animals typically contain 37 genes for 13 proteins, two ribosomal
RNA (rRNA) genes and 22 transfer RNA (tRNA) genes. In sarcoptiform mites, the entire set of mt tRNA genes is present
in Aleuroglyphus ovatus, Caloglyphus berlesei, Dermatophagoides farinae, D. pteronyssinus, Histiostoma blomquisti and
Psoroptes cuniculi. Loss of 16 mt tRNA genes, however, was reported in Steganacarus magnus; loss of 2-3 tRNA genes
was reported in Tyrophagus longior, T. putrescentiae and Sarcoptes scabiei. Nevertheless, convincing evidence for mt

Results: We sequenced the mitochondrial genomes of two sarcoptiform mites, Histiostoma feroniarum (13,896 bp)
and Rhizoglyphus robini (14,244 bp). Using tRNAScan and ARWEN programs, we identified 16 and 17 tRNA genes in
the mt genomes of H. feroniarum and R. robini, respectively. The other six mt tRNA genes in H. feroniarum and five

mt tRNA genes in R. robini can only be identified manually by sequence comparison when alternative anticodons

are considered. We applied this manual approach to other mites that were reported previously to have lost mt tRNA
genes. We were able to identify all of the 16 mt tRNA genes that were reported as lost in St. magnus, two of the three
mt tRNA genes that were reported as lost in T. longior and T. putrescentiae, and the two mt tRNA genes that were
reported as lost in Sa. scabiei. All of the tRNA genes inferred from these manually identified genes have truncation in

Conclusions: Our results reveal very unconventional tRNA structures in sarcoptiform mites and do not support the loss
of mt tRNA genes in these mites. The functional implication of the drastic structural changes in these tRNA genes

Keywords: Mitochondrial genome, tRNA structure, Histiostoma feroniarum, Rhizoglyphus robini

Background

Mitochondria are critical organelles for cellular energy
production in eukaryotes. The four protein complexes in
the respiratory chain are encoded by both mitochondrial
(mt) genomes and nuclear genomes [1]. For animals, mt
genomes typically have 37 genes for 13 proteins, two
ribosomal RNA (rRNA) genes and 22 transfer RNA
(tRNA) genes [2]. The proteins are essential for the
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formation of respiratory chain, and the rRNA genes and
tRNA genes are essential for the translation process.
Loss of genes is rare in animal mt genomes, but has
been reported or suggested in several lineages, e.g., loss
of atp8 in nematodes [3], bivalves [4], cnidarians [5] and
flatworms [6], loss of truD in scorpions [7], and loss of
both protein-coding and tRNA genes in mites [8, 9].
Mites and ticks (subclass Acari) represent a major group
(> 54,000 species) in the class Arachnida [10] and colonize
a wide range of terrestrial, marine and aquatic habitats
[11]. The order Sarcoptiformes comprises approximately
16,300 extant species [12]. Some species are medically im-
portant, e.g. house dust mites causing allergic symptoms
in humans [13, 14], scabies mite infecting skin of humans
and other animal species [15]. Some species are also
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economically important, e.g. acarid mites inhabiting stored
food products [16]. Mt. genomes of 40 species of mites and
48 species of ticks have been sequenced (as of records from
database of NCBI on 1 August 2017). Loss of mt tRNA
genes has been reported in four sarcoptiform mites from
three superfamilies: 16 in Steganacarus magnus (Phthira-
caroidea) [8], three (¢rnF, trnS; and trnQ) in two Tyropha-
gus species (Acaroidea) [17, 18], and two (trnA and trnY) in
Sarcoptes scabiei (Sarcoptoidea) [15]. Edwards et al. reana-
lyzed the mt genome sequence of St. magnus and identified
three of the 16 tRNA genes reported as lost [19]. On the
other hand, the full set of tRNA genes were found in six
other species of sarcoptiform mites from four superfamilies:
Aleuroglyphus ovatus [20], Caloglyphus berlesei [21],
Dermatophagoides farinae [22], D. pteronyssinus [23],
Histiostoma blomquisti [24] and Psoroptes cuniculi [25].
Thus, the evidence available is conflicting whether or not
any tRNA genes are really lost in sarcoptiform mites. If
tRNA genes were indeed lost, to what extent did it occur?
If no tRNA genes were lost, why couldn’t they be identified
in some sarcoptiform mites? To address these questions
and to lay a solid foundation for comparative studies of the
mt genomes of sarcoptiform mites, we sequenced the mt
genomes of two more species of sarcoptiform mites,
Rhizoglyphus robini and Histiostoma feroniarum, from the
superfamilies Acaroidea and Histiostomatoidea respectively,
and compared the mt genome sequences of all of the sar-
coptiform mites available to date.

Results

Mitochondrial genomes of Rhizoglyphus robini and
Histiostoma feroniarum

The mt genomes of R robini and H. feroniarum are
14,244 bp and 13,896 bp long, respectively. Like other
mites and ticks reported previously, the mt genomes of
R. robini and H. feroniarum are circular and have the 13
protein-coding genes (PCGs) and two rRNA genes
(Fig. 1, Additional file 1: Figure S1, Additional file 2:
Table S1 and Additional file 3: Table S2). Using
tRNAscan-SE [26] and ARWEN [27] programs, we iden-
tified 16 and 17 tRNA genes in the mt genomes of H.
feroniarum and R. robini. The other six mt tRNA genes
of H. feroniarum (trnR, truM, trnS,, trnY, trnS;, trnA)
and the other five mt tRNA genes of R. robini (trnR,
truM, trnY, trnS;, trnA) could only be identified manu-
ally by sequence alignment and secondary structure
comparison with those identified in other species of
sarcoptiform mites [8, 15, 18, 20-25, 28]. The putative
mt tRNA genes were highly truncated in both H.
feroniarum (48 to 61 bp) and R. robini (47 to 63 bp)
(Additional file 1: Figure S1), missing either D-arm or
T-arm, except tRNA-Lys, which has the typical clover-
leaf secondary structure in both mites. Further, the puta-
tive tRNA-Arg of R. robini does not have a D-arm, nor a
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T-arm. Most of the putative tRNA genes also have mis-
matches on T-arm, D-arm, acceptor arm or anticodon
arm (Additional file 1: Figure S1).

Genes are on both strands of the mt genomes of R.
robini and H. feroniarum. In R. robini, J-strand has 26
genes whereas the N-strand has 11 genes. In H. fero-
niarum, J-strand has 27 genes whereas the N-strand has
10 genes. The start codons of the 13 PCGs were ATN
and the stop codons were TAA or TAG in both H. fero-
niarum (Additional file 3: Table S2) and R. robini (Add-
itional file 2: Table S1). Incomplete stop codons, T, was
found in protein-coding genes that precede a tRNA gene
in R. robini. The two longest non-coding regions (NCRs)
in H. feroniarum are 100 bp in size between rrnL and
trul and 143 bp between nad4 and trnH (Fig. 1). We an-
notated these two NCRs as the putative control regions
(CR) of H. feroniarum. The putative CR of R. robini is
319 bp between trnF and trnS;. No conserved sequences
were found between the CRs of the two sarcoptiform
mites. No other NCRs longer than 100 bp were found in
the mt genomes of these two mites.

Most of the mt genes are rearranged in R. robini and
H. feroniarum relative to the inferred ancestral mt
genome of arthropods (Fig. 1) [2, 29]. Currently five
types of mt gene order were found in the 12 species the
sarcoptiform mites, for which mt genomes have been se-
quenced (Fig. 1). R. robini has a common Type I gene
order, which has been found in seven other species from
different genera and families. H. feroniarum has a Type
II gene order, which is only found in this species. Type
III and Type V gene orders are also restricted to single
species. Two Tyrophagus species have Type IV gene
order (Fig. 1).

Retrieving the “lost” mt tRNA genes in sarcoptiform mites
We applied the manual tRNA gene search approach
above to St. magnus, T. longior, T. putrescentiae and Sa.
scabiei, which were reported to have lost 2 to 16 tRNA
genes in their mt genomes [8, 15, 17, 18]. These “lost”
tRNA genes cannot be identified by tRNAscan-SE nor
ARWEN programs with all possible parameters we
tested. In our manual approach, we focused on the gap
regions (46—215 bp) between identified genes where the
anticodon sequences of the “lost” tRNA genes can be
identified. We then aligned the sequences of these gap
regions with those of the candidate tRNA genes identi-
fied in other species of sarcoptiform mites, and com-
pared the inferred secondary structure with each other
(Fig. 2, 3 and Additional file 4: Figure S2). Based on the
overall secondary structure, we retrieved the two “lost”
tRNA genes, trnA and trnY, in Sa. scabiei (Fig. 4) and all
of the 16 “lost” tRNA genes (trnC, trnG, truK, trnT, trnY,
truA, truD, truR, trnS;, truF, trnV, trulL;, truM, truN,
trnE and trul) in St. magnus (Fig. 5). The two “lost”
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Fig. 1 Mitochondrial gene arrangements in the sarcoptiform mites. Underlined genes are on the N-strand. Translocated or inverted genes are
color-coded (blue: inversion and translocation; green: translocation; orange: inversion). rRNA genes are in grey; control regions are in black.
Abbreviations of protein-coding genes are: atp6 and atp8 for ATP synthase subunits 6 and 8; cox-3 for cytochrome oxidase subunits 1-3; cob for
cytochrome b; nad1-6 and nad4L for NADH dehydrogenase subunits 1-6 and 4 L; rmL and rmS for large and small rRNA subunits; tRNA genes
are indicated by the single-letter IUPAC-IUB abbreviations for their corresponding amino acids. Type |: a common pattern among sarcoptiform
mites, found in different genera and families. Type Il: same as Type | except for the translocation of three tRNA genes (trnV, trnW and trnF). Type
lll: same as Type | except for the translocation of four tRNA genes (trnS,, trC, tmF and trnA). Type IV: similar to Type | but trnV was translocated

retrieved by our manual approach

and trnl was reversed except for the loss of three tRNA genes. Type V: very different from Type I. Asterisks under tRNA genes indicate those

tRNA genes, trnF and trnS;, were also retrieved in T.
longior and T. putrescentiae (Fig. 4), whereas trnQ was
not retrieved by our manual approach. Of the 16 tRNA
genes of St. magnus retrieved manually, five tRNA genes
(trnC, truD, trnG, trnK and truT) are more conserved in
nucleotide sequence than the other 11 tRNA genes
(trnA, trnE, truF, trnl, truL;, trnM, truN, truR, trnSj,
trnV and trnY) when compared with those of other spe-
cies of sarcoptiform mites (Figs. 2, 3 and 5). The second-
ary structure inferred from these manually retrieved
tRNA gene sequences is either T-armless or D-armless,
and has 1-2 mismatches on the AC-stem or 1-4 mis-
matches on AA-stem (Figs. 4 and 5). Apparently, the
severe truncation and mismatches contribute to the fail-
ure of identifying these tRNA genes by tRNAscan-SE
and ARWEN programs. Furthermore, less common anti-
codon sequences are seen in a number of tRNA genes

that we identified manually: trnE (CUC instead of UUC)
and trnl (AAU instead of GAU) of St. magnus (Fig. 5);
trnC (ACA instead of GCA), trnl (AAU instead of
GAU) and trnQ (CUG instead of UUG) of H. fero-
niarum (Fig. 4); trnF (AAA instead of GAA) and truS;
(ACU instead of GCU) of T. longior and T. putrescen-
tiae (Fig. 4).

It is noteworthy that four “lost” tRNA genes of St
magnus, trnE, trnG, trnP and trnS;, were also retrieved
by Edwards et al. [19]; two of these tRNA genes, trnG
and trnS;, were at the same location as we inferred, but
were different in the sequences of AA-stems. trnE was
abnormally inferred within nad5 by Edwards et al. [19],
whereas we retrieved trnE in a gap where no other genes
were found. Clearly, the comparative approach we used
has its limits. Further evidence is required to establish
the exact locations of the “lost” tRNA genes of St
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anticodon
trnC 1 10 20 3 40

50 55
Consensus ATCTCTTAAGTTT--AAAAAACATTAG G GAGATA

Identity

A. ovatus --AAAAAACATTAGATTGCAAATCTAAAGAAAATAAGAGAAA
C. berlesei G--AAACAACATTAGATTGCAAATCTAAAGAATTAAAGAGATA
D. farinae ACTTCTTAAGTTTT-ATAATACATTAGGTTGCAAACCTAAA-AATCATAGAAGTA

D. pteronyssinus ATCITCTTAAGTTTTAAAAATACATTAGATTGCAAATCTAAA -ATTTTAAGAGGIT

H. blomguisti  [INFCITCIFAAAG T - - - —_G-G_ CACTAGCIGAGAAT
H. feroniarum --AAATA- -

P. cuniculi

R. robini

Sa. scabiei ATCTCTTAAGTTT--TATAAACTTTGAATTG GAGATT
St. magnus TACTTTTTA - - - - - - - - - - - - - ATGAAATTGCAAATTTCTTG - -TTTAAAAGTTA
T. longior ATCTCTAAAG -AAAAAACATTAGATTGCAAATCTAAAGAATTAAAGAGATA

T. putrescentiae —G- _G-G_ AATAAAAGAGATA
A

ammoacyl acceptor arm i arm { Ioop i arm acceptor arm
anticodon

trnD 50 0 50 58
Consensus G GEICTAAGAT-TTATAGCTTAA
Identity
A. ovatus TAAGCTACAGTTA - -GTAGATAATACTGCCTTGTCATGGETGAGAA - - TTTAGETTAA
C. berlesei [TAAGETTICAG I - ——_G_G_G_GG_GIG_GG_
D. farinae [ ]
D. pteronyssinus
H. blomquisti ACATTACTTAA
H. feroniarum  [IAKGTATCAGT - - - —_G_G_G-GIG GTTAAGAT -TTATTACTTAA
P. cuniculi TAAACCTCAGT----TTTTGAAATATAGTTTTGTCAGGACTAAGTAAATAAGGTTTAT
R. robini TAAGCTTCAGTT---ATTAGTAATATAGCCTTGTCATGGCOTAAGAGTTTATGGEOTTAA
Sa. scabiei TAAGTTATAGTTTA-TAATAAAACATAGTTTTGTCATAACTAAAAA-AAATAACTTAA
St. magnus TTAGGATTGTATTAACCATTT---TTAGTTTTGTCAATACT ---TCTATAAGGTTAAT
T. longior TAAGCTTCAGTTAAATTT - - -AATATAGTTTTGTCGTAACTAAGAG - -TTTAGCTTAA

T. putrescentiae [HAAGETTTA G TTARAATTT - - —_G_G-G_G- TTATAGCTTAA
—i —

arm i loop i arm

11
1 il
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P
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R. robini ATAGCCTTAAGATATA - -ACTAATCTTTATG
ATTTTTAA
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TAATCTTTATG

anticodon
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;
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Fig. 2 The alignment of nucleotide sequences of 4 mitochondrial tRNA genes (tmC, trnD, trnG and trnK) of sarcoptiform mites. The conserved
sequences of aminoacyl acceptor arm, anticodon arm, anticodon loop and anticodon were marked

magnus, such as transcriptional data of its mt tRNA,
and sequence comparison among closely related Stega-
nacarus species.

Codon usage in the mt genomes of sarcoptiform mites

There is no evidence yet that nuclear tRNA genes
can be imported into mitochondria in mites or other
animals. If a mt tRNA gene is indeed lost and there
is no nuclear replacement, then its corresponding
codons in the mt protein-coding genes will not be
translated. We analyzed the codon usage in the mt
protein-coding genes of the 12 species of sarcopti-
form mites to see whether or not, and how, the

corresponding codons of the “lost” tRNA genes are
used. Overall, the codon use is very similar across
all sarcoptiform mites. The most frequently used co-
dons are for amino acids Phe (11.2-15.3%), Leu
(7.1-10.0%), Met (6.3-10.0%), Ser (7.4-9.5%), Val
(4.4-8.8%) and Ile (6.1-10.6%) (Additional file 5:
Table S3, Fig. 6, Additional file 6: Figure S3). The
least used codons are for GIn (0.9-1.4%), Cys (1.0-
2.1%), Arg (1.0-1.4%), His (1.5-1.8%) and Trp (1.9-
2.8%) (Additional file 5: Table S3). Codons for all of
the 22 amino acids are present in all of the
protein-coding genes in all of the sarcoptiform
mites, including the four species in which mt tRNA
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A

Fig. 3 The alignment of nucleotide sequences of 4 mitochondrial tRNA genes (trnL;, trnM, trnN and trnT) of sarcoptiform mites. The conserved
sequences of aminoacyl acceptor arm, anticodon arm, anticodon loop and anticodon were marked

gene “loss” has been reported (Fig. 6). The frequency
of each codon is also very similar across all of the
sarcoptiform mites.

Discussion

Mitochondria have their own transcription and
translation systems, separate from the nuclear sys-
tems [2]. The tRNA genes encoded by mt genomes
are critical to the mt translation system. With few
exceptions, animal mt genomes encode 22 tRNA
genes for the 20 amino acids used in protein synthe-
sis [30]. Loss of any of the 22 mt tRNA genes will
severely affect the translation system in mitochondria

unless a nuclear equivalent can be imported into
mitochondria. Loss of tRNA genes have been re-
ported in the mt genomes of four species of sarcop-
tiform mites [8, 15, 17, 18]. However, convincing
evidence for the loss of mt tRNA genes in these
mites is lacking; alternative possibilities have not
been explored. Here, we show that all of the “lost”
tRNA genes except one (trnQ of T. putrescentiae)
can be found by a manual comparative approach
[31]. Furthermore, our codon use analysis does not
support the loss of any of the 22 mt tRNA genes in
sarcoptiform mites because the overall codon usage
is very similar across all sarcoptiform mites
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including those in which mt tRNA genes were re-
ported as lost [8, 15, 17, 18].

Instead of loss, we propose that it is the highly unusual
secondary structure of inferred mt tRNA genes that
makes them unidentifiable by the tRNA search pro-
grams. The mt tRNA genes of animals usually possess a
cloverleaf secondary structure with four arms: AA-arm,
D-arm, AC-arm and T-arm [32]. The only exception is
the tRNA for serine (anticodon GCT), which lack a
D-arm in nearly all animals; this is apparently an ances-
tral feature for animals [32]. Using a manual compara-
tive approach, we were able to identify all of the 16
“lost” tRNA genes in St. magnus, three in H. feroniarum,
two of the three in T. longior and T. putrescentiae, and

two in Sa. scabiei. These retrieved tRNA genes are either
D-armless or T-armless and have many mismatches at
AA-stems and AC-stems. Clearly, the highly unconven-
tional structure prevented them from being found by the
tRNA search programs.

Post-transcriptional tRNA editing is likely common
and necessary in the mitochondria of sarcoptiform
mites. Mt. tRNA editing has been reported in centipede
[33], velvet worms [34] and sponges [35], where nucleo-
tides can be substituted, inserted and/or deleted from
transcripts. Mt. tRNA editing has largely been found at
the 3" end of the AA-stems in metazoan [33-36], also in
rebuilding T-arm, variable loop or even AC-stem [34].
Within the class Arachnida, mt tRNA editing was



Xue et al. BMC Genomics (2018) 19:466 Page 7 of 11
p
[¢ A G
Uea A U—A C U-G
G A U u U C Uu-G aminoacyl acceptor arm G A
A-—-U A-U U—A A-U
0.9 C—-g G-C G-C A—y D-am
U-a U-A G-C AT G-U
X—: 8 _A A-U A_U U-A l
—A U U A-U
AATU A U-A 6Y AAUUG G-U W GUUUUUAUA
vAGeu 7197 u Y% AA“JU"‘U G A GUGAUy UAAAA ML e
ce UCAC A A U CCAUUU AP % C'U{H‘JUU R CéAA UA
AGUUA Aa A G u e u AQ-®Ay©
A A-UU A o uY @ u° Cg. gaG / ®-0 u A
g@:% %:é g:% @_% Dearm 2:8 varialbe loop
O-® A—U O-A © A A—U \
©©© UU ©®* ©® ©@ UA CA - ©U @@ [:TA anticodon arm
® @) ® @ ® A U
[¢ ©LH®
©4© ©p® ©0© 0© ®
fmA trn trnD trnE 1200512968
4152-4215 9094-9133 2154-2211 4225-4275
U U G G
c c u ¢ u A A
G A Uu-.G A-U G-U A 10)
U C U—A U—A U-G Ay
A-U C-G A-U U-a U-R
A-U c-G G-C U-A U_a
U—A G-C - G
¢ auvtey & v AC A oA~ Uyg K Guu,
P U ACC UG
U AUU A | A G A UAGG
UAGGG Al T G UAUA | AAUG N
AC A G UAA . UGA U e G U U
Ay g G A UAGU U UL UGC c ¢ U
U—-A"U G.U Ag_c ¢ A uCl Ce A
C -G G ® ¢ c U-G ® G
0-® U—A 0-® vy A O
U © 0-a @-u oy AU
®-0 @ﬁUC Uu-® G- U A-O
O ® © ® U U
G C © G U
% _& Ap® o o G U A @
©© ® o 0, ©p®
trnG I trnK trnL1 trnM
3781-3836 v 10102-10146 v 11247-11297 10202-10257 12891-12941
U-A cu A
c c c u c U U [re!
uu C—G A—U U U U ¢ A A
A-U G-U G—C U U U-.G C-G
U u U U A A U U U—A A A
U U A-U G-C C U U.G C—-G
U—A S U—A U—A U-A G A
ﬁ—g U Ilj/[\ Uy G (‘:I‘J?U A-U G.U AN Ay
A c A-U G.U G
UA I‘J[‘JL‘ICUC 8] AUUUC U GAUU AC UL[II]JU[\JA UU GI‘JI[JUCGU AAGGGU AUA
| .
U AAAAUCU G UA U Aa U AAAGAA U UAAULU A UUC' GAAA
A A G A A U Up Y Ua U AU
A—UUA A-uU ®-UG @ UuAA A-uUC Ve-0
A—-U A-U A-0 G—C A—U C A
A-U A-U ©-0 ©-© 0O-® U-A
) 8-0 A-U ®-0 0-® 6o
A C o &% o % & © ®
G@ @U 0o ® o ® ©) ® U ® © ®
) 0e0® 00 00 g0 Co®
trnN trnR trnS1 trnT trnV trnY
13267-13318 9008-9056 4198-4247 7522-7573 12834-12887 13302-13357
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suggested to form AA-stems in spiders [37, 38]. Investi-
gation into tRNA editing in sarcoptiform mites is appar-

ently needed.

Conclusions

In summary, using a manual comparative approach, we
were able to identify all of the mt tRNA genes which
were reported previously as lost in sarcoptiform mites

except for trnQ of T. putrescentiae. Our codon usage
analysis does not support the loss of any mt tRNA genes

in sarcoptiform mites. Instead, the mt tRNA genes re-
ported as “lost” previously in sarcoptiform mites have
unusual secondary structures and contain many nucleo-

tide mismatches. Post transcriptional tRNA editing is
likely common and necessary in sarcoptiform mites and
need to be investigated in future studies.
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Methods

Collection of mites

H. feroniarum and R. robini were collected from mush-
rooms (Pleurotus ostreatus) in March 2015 at the Institute
of Vegetable Crops, Jiangsu Academy of Agricultural
Sciences, Nanjing, China. Mite samples were either used
immediately for DNA extraction or were preserved in 100%

ethanol at - 20 °C prior to DNA extraction. Samples of
each mite species were also mounted to slides as voucher,
using Hoyer’s medium for morphological check with Zeiss
A2 (microphoto camera AxioCam MRc) microscope. All of
the specimens and vouchers were deposited at the
Arthropod Collection, Department of Entomology, Nanjing
Agricultural University, China.



Xue et al. BMC Genomics (2018) 19:466

DNA extraction, mt genome amplification and sequencing
Genomic DNA was extracted from individuals, using a
DNeasy Blood and Tissue Kit (QIAGEN), following the
modified protocol [39]. For H. feroniarum, a 658-bp
fragment of coxI was initially amplified by PCR with the
primer pairs LCO1490-HCO2198 [40] (Additional file 7:
Table S4). PCR products were purified and sequenced
directly using the Sanger method at Majorbio (Shanghai,
China). Specific primers for H. feroniarum, HCOIF1 and
HCOIR1, were designed from the sequences of the coxI
fragment. PCR with these two primers produced a
13.5-kb amplicon, which was sequenced with Illumina
Hiseq 2000 platform at the Majorbio (Shanghai, China).

For R. robini, a 395-bp fragment of cob and a 357-bp
fragment of rruS were initially amplified by PCR with
the primer pairs CytbF-CytbR [41] and SR-J-14199-
SR-J-14199 [42] (see Additional file 7: Table S4). The PCR
products were purified and sequenced directly using
Sanger method at Majorbio. Two pairs of specific primers,
R412SF1-R4COBR1 and R4COBF2-R412SR3, were de-
signed from the sequences of the cob and rruS fragments.
The PCR with R412SF1-R4COBR1 produced a 5.8-kb
amplicon. The PCR with R4COBF2-R412SR3 produced
an 8.4-kb amplicon. Both amplicons were sequenced with
[lumina Hiseq 2000 platform at the Majorbio.

The initial PCRs contained 12.5 uL. of PCR SuperMix
(Transgene Biotech Co., Ltd., Beijing, China), 2 pl of tem-
plate DNA, and 1.25 pM of each primer, for a total vol-
ume of 25 pL. The PCR cycling conditions were: 3-min
denaturation at 96 °C; 35 cycles of 10-s denaturation at
95 °C, 30-s annealing at 46 °C and 1.5-min extension at
72 °C; 5-min final extension at 72 °C. Then, the PCRs were
held at 4 °C. PCR products were checked on 1% agarose
gel. PrimeSTAR GXL DNA polymerase (TAKARA) was
used in the long PCRs with the cycling conditions: 35 -
cycles of 98 °C for 10 s, 68 °C for 5 to 10 min (depends on
the length of regions between rruS and cob). The reaction
mixture contained 0.5 ul GXL DNA Polymerase, 5 pl
buffer, 2 pl ANTP mixture, 0.75 pl of each primer, 1 pl of
template DNA and Milli-Q water added to a total volume
of 25 pl. Positive and negative controls were executed with
each PCR. PCR products were checked on 1% agarose gel.
PCR products were purified with QIAquick Spin PCR
Purification Kit (QIAGEN).

Assembly of lllumina sequence-reads, gene identification
and codon usage analysis

[lumina sequence-reads obtained from the mt genome
amplicons of H. feroniarum and R. robini were assem-
bled into contigs with Geneious 8.1.2 (Biomatters Ltd.).
The tRNA genes were identified using tRNAscan-SE
[26] and ARWEN [27] or identified manually based on
anticodons and secondary structures. tRNA genes of the
two sarcoptiform mites were verified by comparison of
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secondary structures and conserved nucleotide se-
quences with those of the Acari species reported in pub-
lished literature. PCGs were identified by open reading
frame search in Geneious and BLAST searches of
GenBank [43]. The two rRNA genes, rruL and rruS, were
also identified by BLAST searches of GenBank based on
sequence similarity and conserved sequence motifs. The
start and stop nucleotides of rrnL and rruS cannot be de-
termined exactly and were assumed to be immediately
after their upstream genes and before their downstream
genes. The nucleotide sequences of mt genomes of H. fer-
oniarum and R. robini have been deposited in GenBank
under accession numbers MF596167 and MF596168. The
codon usage and Relative Synonymous Codon Usage
(RSCU) values were analyzed with MEGA 6.0.6 [44].

Retrieving the “lost” mt tRNA genes in sarcoptiform mites
Mitochondrial genome sequences of T. longior, T. putres-
centiae, Sa. scabiei and St. magnus were retrieved from
NCBI (Additional file 8: Table S5). We surveyed the “lost”
tRNA genes using tRNAscan-SE [26] and ARWEN [27]
and then manually identified the “lost” tRNA genes. We
focused on the gap regions (46—215 bp) between identified
genes where the anticodon sequences of the “lost” tRNA
genes could be found. To find conserved nucleotides in
anticodon loops, the nucleotide sequences of 17 “lost”
tRNA genes (trnA, trnC, truD, truE, truF, trnG, trul, truk,
trnL;, truM, truN, truQ, truR, trnS;, truT, trnV and trnY)
of sarcoptiform mites were aligned using MUSCLE algo-
rithm in Geneious 8.1.2. and manually formed the second-
ary structures. The nucleotide sequences of anticodon
loops are relatively conserved in these sarcoptiform mites
(Figs. 2, 3 and Additional file 4: Figure S2).

To get more species of oribatid mites for comparison
with Steganacarus magnus, we also retrieved and ana-
lyzed the whole genome sequence data of three oribatid
mites available in NCBI, ie., Platynothrus peltifer (ID:
37201), Hypochthonius rufulus (ID: 37200), Achipteria
coleoptrata (ID: 37199) (Additional file 8: Table S5). We
searched the mt genome sequences and contigs of these
oribatid mites from their whole genome sequence data
using the sequence of their cox! as a reference. Unfortu-
nately, the coverage of mt genomes is very low in the
whole genome sequence data of these 3 oribatid mites.
We found only mt truK for PL peltifer from one contig
(GenBank accession number LBFO01104924.1, Fig. 2)
but no mt tRNA genes for Hypochthonius rufulus and
Achipteria coleoptrata.

Additional files

Additional file 1: Figure S1. Inferred secondary structure of 19
mitochondrial tRNA genes of Histiostoma feroniarum (Hf) and 22
mitochondrial tRNA genes of Rhizoglyphus robini (Rr). tRNA genes are
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labeled with the abbreviations of their corresponding amino acids.
Dashes indicate Watson—Crick bonds; dots indicate bonds between U
and G. Shared identical sequences between tRNA genes are circled in H.
feroniarum. (PDF 3430 kb)

Additional file 2: Table S1. Mitochondrial genome organization of
Rhizoglyphus robini. (DOCX 13 kb)

Additional file 3: Table S2. Mitochondrial genome organization of
Histiostoma feroniarum. (DOCX 16 kb)

Additional file 4: Figure S2. The alignment of nucleotide sequences of
nine mitochondrial putative tRNA genes (encoded by trnA, trnk, trnF, trnl,
trnQ, trR, trnS;, trnV and trnY) in the Sarcoptiformes mites. The
conserved sequences in anticodon loops were marked. (PDF 4582 kb)

Additional file 5: Table S3. Amino acid frequencies of the sarcoptiform
mites. (DOCX 16 kb)

Additional file 6: Figure S3. Relative synonymous codon usage (RSCU)
and codon numbers for five amino acids (H, L,, P, S; and W) in the
mitochondrial genomes of sarcoptiform mites. The X-axis shows the sar-
coptiform mites, and the Y-axis shows the RSCU or total number of co-
dons. The blue column indicates the codons that match the anticodons
of the corresponding mt tRNA genes. The red, green and purple column
indicate the imperfect, synonymous codons to the anticodons of their
corresponding mt tRNA genes. (PDF 635 kb)

Additional file 7: Table S4. PCR primers used in this study. (DOCX 13 kb)

Additional file 8: Table S5. Sarcoptiform mites included in this study.
(DOCX 18 kb)
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or A: tRNA gene for alanine; tRNA: Transfer RNA; trnC or C: tRNA gene for
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