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these small RNAs contain biological variations.
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Background: Alignment-free RNA quantification tools have significantly increased the speed of RNA-seq analysis.
However, it is unclear whether these state-of-the-art RNA-seq analysis pipelines can quantify small RNAs as accurately
as they do with long RNAs in the context of total RNA quantification.

Result: We comprehensively tested and compared four RNA-seq pipelines for accuracy of gene quantification and
fold-change estimation. We used a novel total RNA benchmarking dataset in which small non-coding RNAs are highly
represented along with other long RNAs. The four RNA-seq pipelines consisted of two commonly-used
alignment-free pipelines and two variants of alignment-based pipelines. We found that all pipelines showed high
accuracy for quantifying the expression of long and highly-abundant genes. However, alignment-free pipelines
showed systematically poorer performance in quantifying lowly-abundant and small RNAs.

Conclusion: We have shown that alignment-free and traditional alignment-based quantification methods perform

similarly for common gene targets, such as protein-coding genes. However, we have identified a potential pitfall in
analyzing and quantifying lowly-expressed genes and small RNAs with alignment-free pipelines, especially when

Background

RNA-seq continues to pose great computational and sta-
tistical challenges. These challenges range from accu-
rately aligning sequencing reads to accurate inference of
gene expression levels [1, 2]. The central computational
problem in RNA-seq remains the efficient and accurate
assignment of short sequencing reads to the transcripts
they originated from and using this information to infer
gene expression [3—6]. Conventionally, read assignment
is carried out by aligning sequencing reads to a refer-
ence genome, such that relative gene expression levels
can be inferred by the alignments at annotated gene
loci [2, 7]. These alignment-based methods are concep-
tually simple, but the read-alignment step can be time-
consuming and computationally intensive despite recent
advancements in fast read aligners [4, 8, 9]. Recently,
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several novel tools introduced alignment-free transcript
quantification utilizing k-mer-based counting algorithms
[4—6]. These alignment-free pipelines are orders of magni-
tude faster than alignment-based pipelines, and they work
by breaking sequencing reads into k-mers and then per-
forming fast matches to pre-indexed transcript databases
[4]. To achieve fast transcript quantification without com-
promising quantification accuracy, different sophisticated
algorithms have been implemented in addition to k-
mer counting, such as pseudoalignments (Kallisto [5]) or
quasi-mapping along with GC- and sequence-bias correc-
tions (Salmon [6]). Given the wide variety of choices in
RNA-seq tools, several studies have benchmarked subsets
of read aligners and quantification software. These studies
generally suggest that most of the current RNA-seq tools
display comparable accuracy [10-12].

However, the existing benchmarking studies were gen-
erally carried out on either simulated RNA-seq datasets
[12] or RNA-seq datasets that focused only on long
RNAs, such as messenger RNAs (mRNAs) and long non-
coding RNAs (IncRNAs) [10, 11, 13, 14]. Consequently,
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they did not evaluate whether these tools are suitable for
total RNA quantification in datasets that include small
RNAs, such as transfer RNAs (tRNAs) and small nucle-
olar RNAs (snoRNAs). To some extent, the lack of a
comprehensive comparison between small and long RNA
quantification may be due to the inability of most cur-
rent RNA-seq methods to efficiently recover these small
RNAs [15]. Recently, however, a novel method has over-
come this problem by using a thermostable group II intron
reverse transcriptase (TGIRT) during RNA-seq library
construction [15]. This method enables more comprehen-
sive profiling of full-length structured small non-coding
RNAs (sncRNA) along with long RNAs in a single RNA-
seq library workflow [15—17]. Thus, it is now possible to
benchmark RNA-seq quantification tools on structured
small non-coding RNAs.

To address whether current RNA-seq tools can quantify
small RNAs as accurately as they do with long RNAs, we
tested four gene quantification pipelines on a previously
sequenced TGIRT RNA-seq (TGIRT-seq) dataset [15]
obtained from the well-studied microarray/sequencing
quality control consortium (MAQC) sample set [18, 19].
Of the four tested pipelines, two are alignment-based
and two are alignment-free. We found that all four
pipelines are mostly concordant in quantifying common
differentially-expressed gene targets, such as mRNAs and
mRNA-like spike-ins. However, with respect to quanti-
fying small or lowly-expressed genes, we found that the
alignment-based pipelines significantly outperformed the
alignment-free pipelines.

Results

Study design. We tested four RNA-seq quantifica-
tion pipelines, including two alignment-free and two
alignment-based pipelines (Fig. 1): (A) Kallisto, a k-
mer counting software that uses pseudoalignments for
reducing quantification error and improving speed [5];
(B) Salmon, another k-mer counting software that
learns and corrects sequence-specific and GC biases
on-the-fly, in addition to using quasi-mapping for fur-
ther improvement in transcript quantification [6]; (C)
HISAT2+featureCounts, a conventional alignment-based
pipeline aligning sequencing reads to human genome
by a splice-aware aligner, HISAT2 [9], and quantify-
ing genes by featureCounts [3]; and (D) TGIRT-map, a
customized alignment-based pipeline using an iterative
genome-mapping procedure (Additional file 1).

The benchmarking dataset we used here consists
of TGIRT-seq libraries for four well-defined samples
(samples A-D) from the microarray/sequencing qual-
ity control consortium (MAQC [18, 19]), each obtained
in triplicate [15]. The MAQC samples A and B repre-
sent universal human reference total RNA and human
brain reference total RNA, respectively, that are mixed
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with corresponding External RNA Controls Consortium
(ERCC) spike-in transcripts. Samples C and D are mix-
tures of samples A and B at different ratios [18, 19]. The
known mix ratios in samples C and D allow for the calcu-
lation of expected fold-changes between samples C and D
from the measured fold-changes between samples A and
B for each gene [18, 19]. Mapping statistics for all pipelines
are summarized in Additional file 2: Supplementary
Tables S1-4.

Gene detection and quantification. To test if all four
pipelines produced concordant gene quantifications, we
first compared the numbers of detected genes across
all methods. We considered a gene as detected if it was
assigned with a transcripts per million (TPM) value
> 0.1. We found that the numbers of detected genes were
similar among all tested pipelines (Fig. 2a). Moreover,
by comparing the identities of the detected genes, we
found that the vast majority of the genes were detected by
all tested pipelines (Additional file 3). However, we also
found that Salmon and TGIRT-map consistently detected
more unique genes compared to the other two pipelines
(Additional file 3; Friedman test, p = 4 x 10~/;Paired
Wilcoxon test, p <0.05 for all pairwise pipeline
comparisons).

Even though Salmon and TGIRT-map both detected
more unique genes than did the other two pipelines, the
additional genes detected were different. Salmon primar-
ily recovered more long RNAs (labeled as antisense, other
ncRNAs, and protein-coding genes; Additional file 3).
This enrichment in long RNAs could be pipeline-type-
specific (when compared to alignment-based pipelines) or
algorithm-specific (when compared to Kallisto). Pipeline-
type-specific differences could be due to the probabilistic
gene quantification methods of Salmon [6]. While Salmon
can assign a single fragment to multiple genes, each
fragment can only be assigned to a single gene by the
alignment-based pipelines under our parameters. In terms
of algorithm, the result might be due to how Salmon cor-
rects for GC and sequencing biases or how it handles
equivalent classes (i.e. multiply-mapped reads) relative to
Kallisto [6]. On the other hand, TGIRT-map recovered
more miRNAs (likely to be mis-counting of fragmented
exons or unannotated exons in these libraries), some
long non-coding RNAs (annotated as other ncRNAs), and
small non-coding RNAs (annotated as other sncRNA)
(Additional file 3). These enrichments under TGIRT-
map could be pipeline-type-specific when compared to
alignment-free pipelines, which may be affected by the
choice of k-mer size. The differences between TGIRT-map
and HISAT2+featureCounts were possibly the result of an
additional local-alignment step (BOWTIE2) [20] after the
spliced-read mapping step (HISAT2) [9] in TGIRT-map
(Additional file 1).
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Fig. 1 Analysis pipelines and experimental design. We used two pipelines each for the alignment-based and alignment-free approach. The
alignment-based pipelines consisted of a HISAT2+featureCounts pipeline using HISAT2 [9] for aligning reads to the human genome and using
featureCounts [3] for gene counting, and TGIRT-map, a customized pipeline for analyzing TGIRT-seq data. Further details regarding the custom
TGIRT-map pipeline are provided in Methods and in Additional file 1. Two alignment-free tools, Kallisto [5] and Salmon [6], were used for quantifying
transcripts. For alignment-free tools, gene-level abundances were summarized by Tximport [33]. All differentially-expressed gene tests were done

To evaluate if gene expression level estimates were
concordant among the tested pipelines, we made pair-
wise comparisons of these estimates between pipelines
(Additional file 4). The gene expression level estimates
were generally highly correlated, with Pearson’s corre-
lations ranging from 0.68-0.99 (Additional file 4). The
Pearson’s correlation coefficients were consistently very
high for pairwise comparisons between alignment-free
pipelines (Kallisto vs Salmon; 0.98-0.99) or between
alignment-based pipelines (HISAT2+featureCounts vs
TGIRT-map; 0.95-0.96). By contrast, any pairwise corre-
lation between an alignment-free tool and an alignment-
based pipeline was generally lower (0.68-0.72; Additional
file 4).

Further analyses revealed that different gene types
showed distinct variations in gene expression level corre-
lations for every pairwise pipeline comparison (Additional
file 4). For instance, ERCC spike-ins, in vitro transcripts
that mimic protein-coding transcripts, were recovered
with very high correlations for all pairwise pipeline com-
parisons (Pearson’s correlations: 0.99-1; Additional file 4).
In comparison to the true abundances that were spiked
into the RNA samples [15], the relative expression lev-
els of these ERCC spike-ins were estimated as they were
designed and tightly correlated to their true concen-
trations. We observed a near-perfect linear relationship
between inferred TPM values and true concentrations
(both log-transformed) for all pipelines (Fig. 2b; R? >
0.94 for every sample and pipeline; Kruskal-Wallis-test
p = 0.472). By contrast to ERCC transcripts, the gene
expression level estimates of other common gene targets

(antisense, protein-coding genes, etc.) were not as highly
correlated among tested pipelines (Additional file 4). To
identify the source of this discrepancy, we divided genes
into quantile groups of gene lengths or gene expression
levels, and found that the abundance estimation inconsis-
tencies among pipelines were largely caused by short gene
lengths and low expression levels (Additional file 5), as
suggested previously [13].

Differential expression measurements of long genes.
The most popular application of RNA-seq is the detection
of differentially-expressed genes. To compare the accu-
racy of differential expression inference among pipelines,
we plotted the deviation of measured log2 fold-changes
to the expected log2 fold-changes between samples A and
B for every ERCC spike-in transcript (Fig 3a; 23 ERCC
transcripts in each expected differentially-expressed
group). For all pipelines, fold-changes between samples
A and B were mostly underestimated (negative Alog2
fold-changes; Fig. 3a), which may be the result of DESeq2
fold change shrinkage [21]. To quantify the accuracy of
fold-change detection for each method, we computed
root mean square errors (RMSE) for each ERCC group
(Additional file 2). Comparisons of the RMSE values
for each ERCC group among pipelines indicated that
alignment-free pipelines had comparable performance
to alignment-based pipelines in estimating differential
expression of ERCC spike-ins (Friedman-test p = 0.016;
two-sided paired Wilcoxon-test p > 0.12 for all pairwise
comparisons).
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Fig. 2 Gene detection and quantification. a Numbers and types of detected genes in every sample and pipeline. Genes with TPM > 0.1 were
labeled as being detected. The stacked bar charts indicate the numbers of genes detected by each pipeline. The bar charts are grouped by library
(A1-D3), where A-D represent the RNA samples and the numbers represent replicate identifiers. The stacked-bars are color-coded by RNA type. b
ERCC spike-in quantifications versus the true spike-in abundances. Log2 transcripts per million (TPM) values for every ERCC transcript from every
replicate are plotted against the known spike-in concentrations, grouped by pipelines and samples. Blue lines indicate least-square regression lines.

Coefficients of determination are annotated in each panel

To test whether the four pipelines provided reliable
gene expression level estimates for calling differentially-
expressed genes, we called differentially expressed ERCC
spike-in transcripts using different p-value cutoffs, com-
pared each call to the known spike-in concentration dif-
ferences, and plotted the results as receiver operating
characteristic (ROC) curves (Fig. 3b). By design, there are

23 spike-ins with same concentrations and 69 spike-ins
with different concentrations between samples A and B
[22]. Using the areas under the curves (AUCs) of the ROC
curves, we found that alignment-free tools (Kallisto and
Salmon) performed slightly better than alignment-based
pipelines in accurately calling differentially-expressed
spike-in transcripts (AUC: 0.65, 0.66, 0.71, and 0.68
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Fig. 3 Differential expression analysis of ERCC spike-ins. a Violin-plots of deviations between measured and expected log?2 fold-changes of ERCC
transcripts between samples A and B. The distributions of log2 fold-change errors for each ERCC transcript are grouped by their expected
differentially-expressed groups and are color-coded by the tested pipelines. The horizontal dashed line indicates no error. b Receiver operating
characteristic curves for calling ERCC spike-ins as differentially-expressed. Areas under the curve were computed using p-values assigned by the
differential expression caller (DESeq2 [21]) on abundance estimations of each ERCC transcript from each pipeline

for HISAT2+featureCounts, TGIRT-map, Kallisto, and
Salmon respectively; one non-differentially-expressed
and two differentially-expressed ERCC spike-ins had
TPM = 0 in all pipelines). In addition to analyzing in
vitro ERCC transcripts, we also verified that all pipelines
performed nearly identically in terms of quantifying in
vivo transcripts, by comparing estimated expression lev-
els to TagMan qRT-PCR results published previously
(Additional file 6) [18].

Whole transcriptome differential expression analysis.
To benchmark the suitability of different gene quan-
tification pipelines for differential expression analysis
of all RNA types, we used the known sample mix
ratios and the fold-change measurements between sam-
ples A and B to construct the expected fold-changes
between samples C and D for every gene [18]. By

comparing the measured to the expected fold-changes
between samples C and D, we found that both alignment-
based pipelines showed superior performance over
alignment-free pipelines (R? = 0.63, 0.62, 0.47, and 0.45
for HISAT2+featureCounts, TGIRT-map, Kallisto, and
Salmon, respectively; Fig. 4a). Further analyses showed
that low correlations between measured and expected
fold-changes were due to lowly-expressed genes (Fig. 4a),
as suggested previously [15, 19]. However, to our sur-
prise, Kallisto and Salmon had exceptionally poor fits
to the corresponding models for these lowly-expressed
genes (Fig. 4a; R? = 0.44, 0.43, 0.17, and 0.13 for the low-
est 75% expressed genes from HISAT2+featureCounts,
TGIRT-map, Kallisto, and Salmon, respectively).

In addition to lowly-expressed genes, we also found
that short gene lengths greatly decreased the accuracies
in fold-change analyses, particularly for alignment-free
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Fig. 4 R of measured versus expected log2 fold-changes between samples C and D. a Gene expression level influenced accuracies of fold-change
estimation. R values were computed from the expected and measured log2 fold-change values between samples C and D for each pipeline using
different gene sets grouped by average gene expression levels. The first gene set, labeled “Total RNA”, includes all genes. The subsequent gene sets
include only the genes with the top 1%, top 10%, top 25%, or bottom 75% expression levels, as indicated. Bars are color-coded by pipelines. b Gene
lengths influenced accuracies of fold-change estimation. Genes from each pipeline were grouped by their gene lengths into four quantile groups.
For each quantile group, R? values were computed from the expected and measured log2 fold-change values between samples C and D. Bars are
color-coded by pipelines. Coefficients of determination (R?) were computed by R2 function from R caret package [35]. Negative R” values
indicate exceptionally bad fold-change predictions [23] from the software as illustrated in Additional files 7 and 8, where the fold-change prediction
do not fit well to the samples mix-ratio

pipelines (Fig. 4b; R? = 0.29, 0.33, —0.16, and —0.17
for the shortest 25% genes from HISAT2+featureCounts,
TGIRT-map, Kallisto, and Salmon, respectively). As we
are testing whether the measured (i.e., observed) fold-
changes fit into the expected fold-changes (i.e., the model)
constructed by the fold-changes between samples A and B
and the known mix-ratios of samples A and B in samples C
and D, R? values served as a metric of quantifying the mea-
surement errors relative to the known model. Here, we
used R? = 1-Y",(5i—f)?/ Y ;(yi—»)?, where y; is the pre-
dicted and f; the expected log, fold change for gene i, and
y is the mean log, fold change across genes. Thus, a nega-
tive R? indicates highly discordant measurements relative

to the expected fold-changes predicted by the known mix-
ratios and the measured fold-changes between samples A
and B [23], as illustrated in Additional files 7 and 8. These
discordant measurements reflect the difficulty the quan-
tification tools have in making accurate fold-change pre-
dictions either between samples A and B (f;) or between
samples C and D (y;) for small genes (Additional file 7).
To evaluate whether the deficiency in small gene quan-
tification was specific to certain gene types, we computed
the root mean square errors (RMSE) for the expected ver-
sus measured log2 fold-changes between samples C and D
for genes grouped by their gene types. Consistent with the
gene quantification results, Salmon and Kallisto showed
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slightly better fold-change estimation performance on
ERCC spike-ins while alignment-based pipelines showed
slightly better fold-change estimation on protein-coding
genes (Fig. 5a and Table 1). Furthermore, alignment-based
and alignment-free pipelines produced similar results
for the majority of small RNA types, such as snoR-
NAs. For snoRNAs and other small non-coding RNAs
(labeled as other sncRNA), Salmon and TGIRT-map
recovered more genes than did HISAT2+featureCounts
and Kallisto, but Salmon and TGIRT-map also showed
similar RMSE values that were comparable to the RMSE
values from HISAT2+featureCounts and Kallisto (Fig. 5a
and Table 1). We also found that Salmon quantified
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ribosomal RNAs (rRNA) better than other pipelines
in these rRNA-depleted libraries (Table 1). The reason
may be that Salmon handled multiply-mapped reads for
these highly repetitive rRNA differently (comparing to
alignment-based pipelines) or used bias corrections (com-
paring to Kallisto). However, for tRNAs, alignment-based
pipelines detected higher numbers of tRNA isoacceptors
compared to alignment-free pipelines and showed advan-
tages in detecting differential tRNA expression, yielding
lower RMSE values (Fig. 5b and Table 1).

Since we found performance differences in tRNA fold-
change analysis between alignment-free and alignment-
based pipelines and a performance decrease in small

color-coded by pipelines
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Fig. 5 Pipeline performances of differential expression measurements for different gene types. a Root mean square error (RMSE) values between
measured and expected log2 fold-change values for each gene type. Bars indicate RMSE values for different gene types from each pipeline and are
color-coded by pipelines. b Cumulative absolute errors in tRNA log2 fold-change predictions. tRNAs (x-axis) were ordered ascendingly by the
absolute errors in log2 fold-change predictions for each pipeline. Cumulative absolute errors for all detected tRNAs are plotted. Lines are
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Table 1 RMSE values in differential expression measurements

RNA type HISAT2+featureCounts  TGIRT-map  Kallisto  Salmon
Antisense 0455 0452 0476 0442
(5380) (5361) (4855)  (5261)
ERCC 0.406 0.399 0.342 0.336
(88) (87) (88) (88)
mMiRNA 0.589 0.547 0575 0.552
(558) (1289) (952) (1108)
Mt 0.21 0.137 0173 0235
(36) (34) (36) (36)
OtherncRNA 0461 0461 0.501 0.5
(20611) (20822) (18573) (21614)
Other sncRNA 0511 0483 0514 0.501
(2236) (3025) (2560)  (3077)
Protein coding 0.229 0.231 0.302 0.287
(19944) (19965) (19712)  (19865)
rRNA 0.733 0.608 0582 0.186
(4) ) ) )
sNoRNA 0.383 0.395 0429 0438
(620) (704) (623) (742)
tRNA 0.23 0.2 0478 0468
(55) (58) (48) (48)
vaultRNA 0171 0.258 0417 0405

@) 8 @® ©

Numbers of genes tested by DESeq2 are shown in parentheses. RNA-type
annotations were generated from Ensembl [30]. “Other ncRNA" represents the
following RNA types: sense intronic, 3prime overlapping ncRNA, processed
transcript, sense overlapping, lincRNA, and all pseudogenes. “Other sncRNA"
represents the following RNA types: misc RNA, sSnRNA, scaRNA, sRNA, scRNA. Mt
represents all mitochondrial genes, including mitochondrial-encoded tRNAs.
vaultRNA represents any Ensembl gene names with Vault or VTRNA

gene quantification for alignment-free pipelines, we antic-
ipated the comparison in tRNA fold-change predictions
among the different pipelines would give us insights into
the deficiency of alignment-free pipelines in small gene
quantification. We hypothesized that the deficiency of
alignment-free pipelines in small gene quantification was
possibly due to the choice of a long k-mer size (31-mer)
relative to the sizes of the small RNA transcripts, such as
~75 nt for tRNAs. To investigate whether the choice of
k-mer size had any effect on small RNA quantification,
we tested Salmon with four different k-mer sizes, ranging
from 11 to 31 (11, 15, 21, and 31; default is 31 for both
Salmon and Kallisto). We found that at k = 21, higher
R? values were observed for total RNA (Additional file 9).
Using tRNA as a model for comparisons in small gene
quantifications, we also found a performance improve-
ment (detected higher number of tRNA and lower RMSE)
using k = 21. However, Salmon with this k-mer size still
yielded two-fold higher RMSE relative to TGIRT-map for
tRNA fold-change prediction (Additional files 2 and 9).
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To gain a better understanding to the problem of small
gene quantification in alignment-free pipelines, we fur-
ther inspected the tRNAs that were undetected by both
Salmon and Kallisto. Using TGIRT-map alignment results,
we found that the read alignments mapped to these
tRNAs displayed a high abundance of non-reference bases
(Additional file 10). These non-reference bases may be
caused by post-transcriptionally modified RNA bases that
could introduce reverse-transcription errors by changing
base-pairing interfaces [24, 25], as it is known that tRNAs
are post-transcriptionally-modified and have abundant
base modifications [15, 17, 26]. Thus, we predict that
these abundant non-reference bases in small RNAs, tRNA
in this case, may have prevented k-mer-based algorithms
from successfully counting these reads.

To further test our hypothesis of k-mer assignment
being the problem for quantifying small genes, we took
advantage of the alignment-based mode of Salmon and
compared it to the k-mer-based algorithm implemented
in Salmon [6]. Salmon has two different algorithm imple-
mentations that accept different input types, either raw
sequencing reads (k-mer-based mode) or alignments of
sequencing reads pre-assigned to transcripts (alignment-
based mode). While the k-mer-based mode performs read
assignment and transcript quantification simultaneously,
the alignment-based mode only perform transcript quan-
tification on pre-aligned reads [6]. The difference between
the two modes allowed us to isolate k-mer matching
from transcript quantification in this comparison. Using
Salmon alignment-based mode to perform gene quan-
tification on Bowtie2 [20] alignments against the tran-
scriptome, we found that Salmon alignment-based mode
is more accurate in quantifying short genes than k-mer-
based mode. We observed a higher R? value for short gene
quantification in Salmon alignment-based method than
that in k-mer-based methods with any k value that we
have tested (Additional file 9). In additional to short genes,
using Salmon alignment-based mode also resulted in a
more comparable performance in tRNA quantification
relative to TGIRT-map (Additional file 9). These results
further supported our hypothesis that k-mer matching
algorithms were the sources of inaccurate small RNA
quantification.

Discussion

We have performed an in-depth comparison among four
RNA-seq pipelines, including two alignment-based and
two alignment-free pipelines, to determine the relative
performance of these tools for simultaneous quantifica-
tion of long and small RNAs. The two alignment-based
pipelines that we have tested were a widely-adopted align-
and-count pipeline (HISAT2+featureCounts) [3, 9] and a
custom gene-counting procedure with multi-step itera-
tive alignments (TGIRT-map; Additional file 1); the two
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tested alignment-free pipelines were k-mer counting tools
with and without bias corrections (Salmon [6] and Kallisto
[5]). We have tested these four pipelines on quantification
of both long and small RNAs in a novel benchmark-
ing dataset generated by a thermostable group II intron
reverse transcriptase (TGIRT) [15]. This dataset is unique
in that small non-coding RNAs are highly represented,
while the quality of long RNA quantification is compa-
rable to that of other widely-adopted RNA-seq methods
[15]. Using this dataset, we have found that while all four
pipelines perform similarly on long and highly-expressed
RNAs, alignment-free tools have clear limitations for
small and lowly-expressed RNA quantification.

For long gene quantification, we have found that all four
pipelines quantify common gene targets (e.g. ERCC spike-
ins and protein-coding genes) with similar results, con-
firming a previously benchmark study on poly-A selected
RNA-seq [13]. Generally, gene quantification tends to be
more similar between pipelines of the same type (i.e.,
HISAT2+featureCounts and TGIRT-map, or Kallisto and
Salmon) than pipelines of the other type (alignment-
based versus alignment-free). This result further sup-
ports a previous finding which showed more similar
transcript isoforms quantifications were found among
alignment-free or among alignment-based pipelines than
among pipelines of the different types [14], suggest-
ing that alignment-based pipelines may have somewhat
different quantification biases than do the probabilis-
tic models of alignment-free pipelines. Regardless of
the difference in gene quantification, our results on
differentially-expressed gene detection for long genes
showed that all four pipelines performed comparably for
ERCC spike-ins and protein-coding genes when compared
to their expected fold-changes (ERCC spike-ins) [22]
or MAQC TagMan assay measurements (protein-coding
genes) [18]. This result further confirmed previous bench-
mark studies where alignment-free and alignment-based
tools gave similar results for differentially-expressed gene
detection [13, 14].

For total gene quantification and differential expres-
sion analysis, all tested pipelines generally have performed
similarly, with most disagreements occurring between
pipeline comparisons of different pipeline types (i.e. an
alignment-based pipeline vs an alignment-free pipeline).
In the analyses of genes that were inconsistently quanti-
fied among pipelines, our results have confirmed that both
high gene expression and long gene length were crucial to
consistent abundance estimation, as suggested previously
[13, 27]. Using fold-change analyses for comparisons in
quantification accuracies, we have found that alignment-
based tools were more accurate in quantifying lowly-
expressed or small genes. This result likely reflects the
nature of probabilistic assignments of k-mers and the
inferences of TPM values. Although we have found that
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alignment-free pipelines were unreliable for quantify-
ing extremely small RNAs (with shorter gene lengths)
in total transcriptome analysis, alignment-free tools per-
formed comparably to alignment-based tools for most of
the small RNA types, such as snoRNAs or other sncR-
NAs, in differential expression analyses. This disagree-
ment between small non-coding RNAs and small mRNAs
is possibly due to their differences in secondary structures
and their different sensitivities to RNA fragmentation
prior to RNA-seq library construction, such that overly-
fragmented mRNA fragments may be too short to be
usable in alignment-free quantifications.

Even though we have found that all pipelines performed
similarly on the majority of small non-coding RNAs,
our results have revealed that pipelines involving read-
alignment steps were superior to alignment-free tools in
quantifying tRNAs specifically. We initially hypothesized
the differences in performance were due to the choice of
k-mer size in the alignment-free pipelines and we have
found an improvement in small gene quantifications when
a moderately smaller k was chosen (k = 21). However, we
have also found that the performance of alignment-free
quantification at this optimal k& was still not compara-
ble to alignment-based pipelines for small genes. Using
tRNA as a model, our results suggested that this per-
formance difference was likely due to a combinatorial
effect of the choice of k-mer size and misincorporations
introduced by post-transcriptionally-modified RNA bases
during reverse transcriptions. We reason that a relatively
large k-mer size and erroneous sequencing reads likely
impede matching to the indexed transcriptome even when
these sequencing reads are shredded into k-mers, since all
k-mers inherit the same errors or mismatches. Since mis-
matches on sequencing reads can either be reverse tran-
scription errors or biological variations on small RNAs
[28], we expect the same phenomenon may occur if the
small RNAs contain single-nucleotide polymorphisms or
other biological variations.

Conclusions

In summary, we have shown that different types of
pipelines performed similarly for common differentially-
expressed gene targets such as protein-coding genes.
However, accurate quantification of lowly-expressed or
small RNA is difficult to achieve with alignment-free
pipelines. Using tRNA as a model, we have also found
that k-mer counting algorithms are not compatible for
quantifying small genes with abundant biological varia-
tions regardless of the choice of k-mer size.

Methods

Data and reference preparation. Raw sequencing reads
for TGIRT-seq data generated from the well-studied
MAQC samples were downloaded from the NCBI
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Sequence Read Archive, accession number SRP066009
[15]. In brief, this dataset includes triplicates of four dif-
ferent human total RNA samples (called A-D) spiked with
External RNA Control Consortium (ERCC) transcripts.
ERCC spike-in transcripts are 92 in vitro transcripts with
250-2000-nt long [22]. Two ERCC spike-in mixes (mixes
1 and 2) with different concentrations for each transcript
were spiked into RNA samples A (universal human RNA)
and B (human total brain RNA), respectively, to provide
known fold-changes of these spike-in transcripts between
these two samples [18, 22]. By design, these two spike-
in mixes establish four different differentially-expressed
gene groups with relative ratios of 0.67:1, 1:1, 1:2, and 1:4
between samples A and B. Samples C and D are mixes of
samples A and B in ratios of 3:1 and 1:3, respectively. For
detailed library preparations, please refer to Nottingham,
etal. [15].

ERCC spike-in sequences were downloaded from
the vendor’s website (ThermoFisher; https://
tools.thermofisher.com/content/sfs/
manuals/cms_095047.txt). Transfer RNA (tRNA)
annotations and sequences were downloaded from
the Genomic tRNA Database (http://gtrnadb.
ucsc.edu/GtRNAdb2 /genomes/eukaryota/
Hsapi38/hg38-tRNAs.tar.gz) [29]. For tRNA
sequences, introns were removed, and all sequences were
de-duplicated at the sequence level to reduce multiply-
mapped reads and improve tRNA counting. 5S rDNA
(GenBank accession: X12811.1) and complete rDNA
repeat unit (GenBank accession: U13369.1) sequences
were downloaded from GenBank (NCBI). Human
genome sequences and annotations were downloaded
as FASTA and GTF files from Ensembl (human genome
build version GRCh38.88) [30], combined with ERCC
spike-in sequences and rDNA sequences, and indexed by
HISAT2 v2.1.0 [9]. A HISAT? splice-site file was created
using the human genome build GRCh38.88 GTF file
[9]. ERCC and rRNA records were then added to the
GTF file and human transcriptome reference sequences
were extracted using gffread (https://github.com/
gpertea/gffread). After appending mature tRNA
sequences to the human transcriptome reference, the
transcriptome reference sequence file was indexed with
Kallisto v0.43.0 [5] and Salmon v0.8.2 [6] using the default
k-mer size (k = 31). Transcriptomic sequences and
annotations were deposited to Zenodo (https://doi.org/
10.5281/zenodo0.1219203).

Adaptor trimmings. Raw reads were adapter- and
quality- trimmed by atropos v1.1.16 [31] via:

atropos trim -m 15 -O 5 -n 3 -g 20 \
--minimum-length=15 \
--threads=${THREADS} \
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--error-rate=0.1 \

--overlap 5 \

--quality-cutoff=20 \

--aligner insert \

-b AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC \
-B GATCGTCGGACTGTAGAACTCTGAACGTGTAGA \
-o ${TRIMMED FQ1} -p ${TRIMMED FQ2} \
s{Fo1} ${Fo2)

HISAT2 mapping. Reads were aligned to the genome
using HISAT2 v2.1.0 [9] via:

hisat2 -k 10 --no-mixed \
-no-discordant \

-p S$STHREADS \
--known-splicesite-infile=${SPLICESITE
FILE} \

-1 ${TRIMMED FQ1} -2 ${TRIMMED FQ2}

HISAT2+featureCounts. Trimmed reads were aligned
using HISAT2 mapping. Gene counts from HISAT2 map-
ping were generated by featureCounts v1.5.3 [3] via:

featureCounts -F SAF -0 -s 1 -M -T 24 \
--largestOverlap --minOverlap 10 \
--primary -p -P -d 10 -D 10000 -B \

-C -donotsort \

-o ${OUTPUT PREFIX} \
${LIST OF BAM FILES}

TGIRT-map. Our custom pipleine TGIRT-map first fil-
ters out all trimmed reads that can be aligned to tRNA
or rRNA references to reduce multiply-mapped reads
(Additional file 1). The remaining unaligned reads are
then sequentially aligned to the human genome using a
splice-aware aligner (HISAT2) [9] and a sensitive local
aligner (BOWTIE2) [20]. A single alignment locus is
picked from the multiply-mapped fragments by assert-
ing the assumptions that (A) RNA-seq fragments are
small (smallest insert size), (B) ribosomal genes are abun-
dant in the genome (ribosomal gene loci), and (C) frag-
ments are unlikely to be originated from haplotype or
patch sequences (as defined by Ensembl annotations) of
the artificially assembled genome. Finally, gene quantifi-
cation is done on genomic loci, except for tRNA and
rRNA which require an additional step of re-aligning and
counting.

Trimmed reads were first aligned to rRNA (GenBank
accession numbers: X12811.1 and U13369.1) and tRNA
sequences with BOWTIE2 v2.3.3.1 [20] via:

bowtie2 -p ${THREADS}\
--local --score-min G,1,10 -D 20 \
-R 3 -NO -L 8 -1 S8,1,0.50 \

--no-mixed --norc --no-discordant --dovetail \
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-x ${tRNA rRNA INDEX} \
-1 ${TRIMMED_FQ1} -2 ${TRIMMED FQ2}

We define the mapped reads as tRNA and rRNA pre-
mapped reads. Unmapped reads were then aligned to
the genome with HISAT?2 as described above in HISAT2
mapping [9]. Unaligned reads from HISAT2 mapping
were then rescued by re-aligning locally to the genome
with BOWTIE2 [20] via:

bowtie2 -p ${THREADS} \

--local --score-min G,1,10 \

-D 20 -R3 -NO -L 8 -1 §,1,0.50 \

-k 10 --no-mixed --dovetail --no-discordant
-x ${GENOME_INDEX} \

-1 ${FQ1} -2 ${ro2}

All alignment pairs with > 10 nucleotides of soft-clipped
bases on either reads or were discordant pairs were dis-
carded. Multiply-mapped reads from the two genome-
mapping steps were grouped and a pair of best alignment
was chosen by the following ordered criteria: the align-
ment pair (A) had the smallest insert size, (B) was mapped
to ribosomal gene locus, or (C) was mapped to chromo-
some 1-23, X or Y. If none of these criteria was met
by a single alignment pair, a random alignment pair was
chosen from the multiply-mapped loci. These filtered
alignments were then merged with the uniquely-mapped
alignments. All reads that mapped to tRNA or rRNA
loci were extracted by BEDtools v2.26 using pairtobed
command with options -s -f 0.01 [32], combined
with tRNA and rRNA pre-mapped reads and re-aligned to
tRNA and rRNA references. Counts were generated from
the aligned BAM file. Counts for each anticodon were
aggregated. Other gene counts were calculated by con-
verting the genome alignments to fragment coordinates in
a BED file using the BEDtools bamt obed command and
counted using the BEDtools coverage command [32].
TGIRT-map pipeline is available at: https://github.
com/wckdouglas/tgirt map.

Kallisto and Salmon. We used Kallisto v0.43.0 [5] and
Salmon v0.8.2 [6] for our alignment-free pipelines. In both
cases, adaptor-trimmed reads were used as input.

We called Salmon with the following command-line
arguments:

salmon quant \

--segBias --gcBias \
--index ${INDEX} \
--1libType ISF \
--writeMappings \
--threads=3${THREADS} \
--auxDir ${RESULTPATH} \
--numBootstraps 100 \
--matesl ${TRIMMED FQ1} \

\
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--mates2 ${TRIMMED FQ2} \
--output ${RESULTPATH}

We called Kallisto with the following command-line
arguments:

kallisto quant \

-i ${INDEX} \

-o ${OUTPUT PATH} \
--fr-stranded \
--threads=${THREADS}\
${TRIMMED FQ1} ${TRIMMED FQ2}

Salmon alignment mode Trimmed reads were first
aligned to the transcriptome using Bowtie2 [20] via:

bowtie2 --threads ${THREADS} \
--score-min G,1,10 \

-k 30 -D 20 -R3 -NO -L 8 -1 §,1,0.50 \
--no-mixed --no-discordant --dovetail \
--fr --local \

-x ${TRANSCRIPTOME INDEX} \

-1 ${TRIMMED FQ1} -2 ${TRIMMED FQ2}

Transcript quantification was done by Salmon [6] via:

salmon quant \

--segBias --gcBias \

--1libType ISF \

--targets ${TRANSCRIPTOME FASTA} \
--threads=${THREADS} \

--auxDir ${RESULTPATH}/S${SAMPLENAME} \
--numBootstraps 100 \

--useErrorModel \

--alignments ${BAM FILE} \

--output ${RESULTPATH}/${SAMPLENAME }

Differential expression analysis. DESeq2 v1.14.1 [21]
was used for all differential expression analyses.

Because DESeq2 does not accept TPM values as input,
transcript TPM values from Salmon and Kallisto were
converted to gene-level counts using Tximport v1.4.0 [33]
before any differential-expression analyses.

Predicted log, fold change between samples C and D.
Predicted fold changes between samples C and D were
computed using the following equation as described in Su,
etal. [19]:

C A A
IngB = logz(k1§ +(1—-k))— logz(kzg + (1 —ky))

where % indicates predicted fold change between samples
Cand D, % indicates measured fold change between sam-

ples A and B, k; %j_l, and kh, = z—%?» In this work,

z = 1.43 was used as suggested previously [19].
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Additional files
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Additional file 1: Flow chart of the custom pipeline TGIRT-map. As TGIRT-
seq simultaneously recovers a large fraction of small structural RNAs in
addition to regular long RNAs [15, 171, TGIRT-map was designed to optimize
the quantification of these small genes. The pipeline is similar to the
Genobee-exceRpt small RNA-seq pipeline [34], where reads are first aligned
against the tRNA and rRNA sequences to avoid ambiguous assignments in
later steps. Unaligned reads (red arrow) are iteratively aligned to the human
genome by HISAT2 [9] and BOWTIE2 [20] to minimize unassigned reads.
Multiply-mapped reads are extracted and assigned as uniquely-mapped at
loci selected by the following criteria in order: the pair of alignments (A)
has the smallest insert size, (B) is mapped to ribosomal gene loci, and (C) is
mapped to chromosome 1-23, X or Y, otherwise a random pair of
alignments is selected. From these genome alignments, reads that aligned
to tRNA or rRNA loci are extracted and combined with tRNA and rRNA
reads from the first step. Finally, these combined reads are realigned to the
tRNA and rRNA sequences to generate gene counts. (PNG 247 kb)

Additional file 2: Zip file containing several data tables in tab-separated
format, as well as a readme file that explains the contents of each data file.
(ZIP 5 kb)

Additional file 3: Intersections of detected genes among tested pipelines.
Genes with TPM > 0.1 were defined as being detected. (a—d) UpSet graphs
of intersections of detected genes among pipelines. An UpSet graph
describes intersections of detected genes among subsets of tested
pipelines for samples A-D. Each UpSet graph contains a bar chart and a
sample-comparison matrix. Bars indicate the numbers of detected genes in
the specific intersection specified in the sample-comparison matrix. Each
bar indicates the number of genes detected only in the intersection of the
set of compared pipelines. The sample-comparison matrix at the bottom
describes the set of pipelines within which the comparison is made. Grey
boxes in the matrix annotate the pipelines included in the comparison. (e)
Uniquely-detected genes. The heights of the stacked bars indicate the
numbers of genes uniquely detected by the corresponding pipeline.
Stacked bars are color-coded with gene types. (PNG 428 kb)

Additional file 4: Pearson’s correlation coefficients for pairwise pipeline
comparisons in gene quantifications. For every pairwise pipeline
comparison of each sample (A-D), Pearson’s correlation coefficients were
computed using the average log2 TPM of each gene across the triplicates
for each sample. Bar heights indicate average correlations among the four
samples A-D. Error bars represent standard deviations among the four
samples A-D. Red bars represent total RNA correlation coefficients (all
genes). Grey bars indicate correlation coefficients grouped by gene type.
Each panel represents a single pairwise pipeline comparison. (PNG 207 kb)

Additional file 5: Impact of gene lengths and expression levels on gene
quantification correlations among pipelines. (a) Gene lengths influence
gene expression estimation correlations. Genes were separated into
quantile groups according to their lengths. For every quantile group from
each sample, Pearson’s correlation coefficients of average TPMs for each
gene across replicates were computed for every pairwise pipeline
comparison and then averaged across the four samples. Plotted are the
average correlations versus the quantile groups. Each line represents a
pairwise comparison and is color-coded accordingly. (b) Gene expression
levels influence gene expression estimate correlations. Genes were
separated into quantile groups according to their average expression
values (TPMs). For every quantile group from each sample, Pearson’s
correlations were computed in the same way as in panel (a). Each line
represents a pairwise comparison and is color-coded accordingly. (PNG
412 kb)

Additional file 6: Differential expression analysis of protein-coding genes.
(@) Comparison of measured fold-changes between samples A and B from
the TGIRT-seq analysis and the MAQC TagMan assay. MAQC TagMan assay
data for the same samples were downloaded from the NCBI Gene
Expression Omnibus (GEO), accession number GSE5350 [18]. 972 unique
protein-coding genes were compared. Log2 fold-changes were calculated
from MAQC data and compared to the DESeq? results for each pipeline.
Distributions of the deviations between RNA-seq and MAQC data log2
fold-changes were plotted as violin-plots. Distributions are color-coded by
pipelines. (b) ROC curves for calling differentially-expressed (DE)

protein-coding genes. MAQC TagMan assay genes were binary-labeled as
DE if absolute log2 fold-change > 0.5 and not DE otherwise (739 DE and
225 non-DE), as suggested by a previous study [10]. ROC curves for DESeq?2
results from abundance estimates computed by each pipeline were
plotted. AUCs were computed for each ROC curve to quantify
performances of the differential expression caller (DESeq2) [21] on
abundance estimates from each pipeline. ROC curves are color-coded by
pipelines. The dotted diagonal line indicates random guessing (AUC=0.5).
(PNG 352 kb)

Additional file 7: Measured versus expected log2 fold-changes between
samples C and D for Kallisto. Expected log2 fold-changes for each gene
(denoted by red line) were constructed from (A) the Kallisto-measured log2
fold-changes between samples A and B, and (B) the known sample mix
ratio of samples A and B in samples C and D, using a previously-described
algorithm [19], see method. Each panel shows a two-dimensional kernel
density estimation of the distribution of measured vs expected log2
fold-changes between samples C and D for genes grouped by quantile
groups of gene lengths. Coefficients of determination for each group of
genes are annotated as R?. Perfectly correlated log2 fold-changes are
annotated by the diagonal red lines. Panels with higher R? generally show
denser trends along the red line, indicating the log2 fold-changes between
samples C and D were accurately predicted by the software that
recapitulated the sample-mixing ratio and thus, fitted better to the model
(red line). For groups with lower R?, a denser (lighter color) horizontal trend
was observed on the right side of the red line, indicating the software either
over-estimated log2 fold-changes between samples A and B that led to
construction of an incorrect model or under-estimated log?2 fold-changes
between samples C and D that led to a poor fit to the model. (PNG 471 kb)

Additional file 8: Measured versus expected log2 fold-changes between
samples C and D for the shortest 25% genes from each pipeline. Expected
log2 fold-changes for each gene (denoted by red line) were constructed
from (A) the measured log2 fold-changes between samples A and B, and
(B) the known sample mix ratio of samples A and B in samples C and D,
using a previously-described algorithm [19]. Each panel shows a
two-dimensional kernel density estimation of the distribution of measured
vs expected log2 fold-changes between samples C and D for genes in the
lowest gene length quantile. Coefficients of determination for each group
of genes are annotated as R?. Perfectly correlated log2 fold-changes are
annotated by the diagonal red lines. (PNG 428 kb)

Additional file 9: Performances of Salmon using alignment-mode and
different k-mer sizes of 11, 15, 21, and 31 (default). (@) Accuracies of
fold-change estimation in quantile groups of gene lengths. All detected
genes from TGIRT-map or Salmon with different k-mer sizes were grouped
by their gene lengths into four quantile groups. For each quantile group,
R? values were computed from the expected and measured log2
fold-change values between samples C and D. Bars are color-coded by
pipelines. Coefficients of determination (R?) were computed by R2
function from R caret package [35]. (b) Cumulative absolute errors in
tRNA log2 fold-change predictions for each k-mer size for Salmon and
TGIRT-map. tRNAs were sorted in ascending order by their absolute errors
in log2 fold-change predictions. Cumulative absolute errors for all detected
tRNA were plotted. Lines are color-coded by pipeline. (PNG 286 kb)

Additional file 10: Erroneous sequencing reads may have impeded
k-mer counting for tRNAs. IGV genome browser screen-shots of three tRNA
alignments from Sample A1 aligned via TGIRT-map were shown. The three
tRNA alignments being shown are (a) TRR-CCG, (b) TRS-ACT, and (c)
TRT-AGT. Arrows on the top of each panel indicate the corresponding
tRNA transcript strands (5" to 3') and sizes. Bar charts below the arrows
represent coverages at every position along the tRNA transcripts. Read
alignments from Sample A1 aligned by TGIRT-map are shown below the
bar charts. Grey colors represent read bases that match the reference
bases. Other colors indicate bases on the read alignments that do not
match the reference bases (purple, red, green, blue, and brown colors
indicate insertions, thymidines, adenosines, cytidines, and guanosines on
the read alignments, respectively). These errors may reflect
post-transcriptionally-modified RNA bases, which interfere with canonical
base-pairings and lead to misincorporations during TGIRT reverse
transcriptions [15, 17, 26]. Errors due to misincorporations at known and
unknown sites of post-transcriptionally modified RNA bases are
highlighted with boxes (m§G26: N2,N2-dimethylguanosine at position 26;
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m?2G26: N2-methylguanosine at position 26; 134: Inosine at position 34;
m'A58: 1-methyladenosine at position 58; see also [15, 17, 36]).
Unannotated mismatches from both ends can be untrimmed adapters or
tRNA-precusor sequences. We observe that on these tRNAs, the errors
induced by RNA-base-modification occurred at positions ~ 20, 30, or 50 on
~ 75 nucleotide long tRNA transcripts. Therefore, we expect that every
k-mer originating from an erroneous sequencing read inherits at least one
of these errors, and therefore k-mers cannot be matched accurately to the
transcript database. The effect is worse when a large k-mer size is selected,
such as the default k = 31. (PNG 337 kb)

Abbreviations

AUC: area under the curve; ERCC: External RNA controls consortium; MAQC:
microarray quality control consortium; RMSE: root mean square error; ROC:
receiver operating characteristic; TGIRT: Thermostable group Il intron reverse
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