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Abstract

Background: Integration of high throughput DNA genotyping and RNA-sequencing data allows for the identification of
genomic regions that control gene expression, known as expression quantitative trait loci (eQTL), on a whole

genome scale. Intramuscular fat (IMF) content and carcass composition play important roles in metabolic and

physiological processes in mammals because they influence insulin sensitivity and consequently prevalence of
metabolic diseases such as obesity and type 2 diabetes. However, limited information is available on the genetic variants

and mechanisms associated with IMF deposition in mammals. Thus, our hypothesis was that eQTL analyses could identify
putative regulatory regions and transcription factors (TFs) associated with intramuscular fat (IMF) content traits.

Results: We performed an integrative eQTL study in skeletal muscle to identify putative regulatory regions and factors
associated with intramuscular fat content traits. Data obtained from skeletal muscle samples of 192 animals was used for
association analysis between 461,466 SNPs and the transcription level of 11,808 genes. This yielded 1268 cis- and 10,334
trans-eQTLs, among which we identified nine hotspot regions that each affected the expression of > 119 genes. These
putative regulatory regions overlapped with previously identified QTLs for IMF content. Three of the hotspots respectively
harbored the transcription factors USF1, EGR4 and RUNXTT1, which are known to play important roles in lipid metabolism.
From co-expression network analysis, we further identified modules significantly correlated with IMF content and
associated with relevant processes such as fatty acid metabolism, carbohydrate metabolism and lipid metabolism.

Conclusion: This study provides novel insights into the link between genotype and IMF content as evident from
the expression level. It thereby identifies genomic regions of particular importance and associated regulatory
factors. These new findings provide new knowledge about the biological processes associated with genetic
variants and mechanisms associated with IMF deposition in mammals.
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Background

High-throughput genotyping and gene expression ana-
lysis combined with increased computational capacity
and robust statistical methods allows for the identification
of expression quantitative trait loci (eQTL). This approach
can identify genomic regions that are associated with gene
expression level [1-3] and can help to elucidate molecular
mechanisms whereby genomic variants exert their effects
on phenotypes or disease incidence [4, 5].

Adipose tissue is the largest endocrine organ in the
body [6]. Within skeletal muscle, adipose deposition can
occur within (intramyocellular) and external to (extra-
myocellular) skeletal muscle fibers. Lipid stored in skel-
etal muscle plays important roles in metabolic processes
such as energy homeostasis, expression and secretion of
hormones and proinflammatory cytokines, and in signal-
ing pathways [7].

In humans, excessive fat deposition in skeletal muscle has
been associated with metabolic diseases such as obesity,
diabetes and coronary heart disease [8]. In contrast, in bo-
vine, swine, and sheep, intramuscular fat (IMF) is positively
associated with meat quality and consumer satisfaction [9],
and can affect the final product price. Furthermore, the
quantity and the fatty acid profile of the IMF present in
edible red meat have both been positively and negatively
associated with human health [10-12].

It is important to gain additional knowledge about the
biological processes associated with IMF deposition and
composition because of the important role of IMF de-
position in areas such as human health and meat quality.
Previously, Uemoto et al. [13], Ishii et al. [14], and our
group have reported the identification of several quanti-
tative trait loci (QTL) and putative candidate genes asso-
ciated with IMF using high density SNP chip data [15].
In addition, we reported the identification of differentially
expressed genes and putative candidate regulatory genes as-
sociated with IMF from RNA sequencing data (RNA-Seq)
[16]. Furthermore, we have reported the identification of
differentially expressed genes and gene networks associated
with fatty acid composition in skeletal muscle [17]. How-
ever, so far there is no information on how genetic variation
can influence gene expression and phenotypic variation as-
sociated with IMF content traits and composition [18—20].
Additional information can be gleaned by integrating the
data of gene expression and whole genome association.
Thus, the aim of this study was to perform eQTL analysis
to identify putative regulatory regions and transcription
factors (TFs) associated with intramuscular fat (IMF)
content traits.

Results

Phenotypic, genotypic and RNA-Seq data

After the application of quality control filters, 461,466
markers and 11,808 genes from 192 animals were used
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in these analyses. The descriptive statistic of all phenotypes
related to fat deposition and composition are shown in
Additional file 1. The variance components and genomic
heritability of these phenotypes for the whole population of
this study have been estimated and previously reported by
Cesar et al. [15] and Tizioto et al. [16]. The heritability of
these phenotypes ranged from 0.09 to 0.46 (Table 1).

Identification of eQTLs and the genomic location of
variants

In total, 10,334 trans-eQTLs (variants that were located
more than 1 Mb from an associated gene) and 1268
cis-eQTL (variants located within 1 Mb of the associated
gene) were identified herein (5% false discovery rate,
FDR) (see Additional files 2 and 3) by MatrixeQTL R
package. Figure 1 shows a scatter plot of gene location
(MD) relative to its significant corresponding eQTL pos-
ition (Mb).

The cis-eQTLs were located in intronic (46%),
intergenic (30%), upstream (11%), downstream (10%),
and 3" UTR (1%) regions (see Additional file 4A).
The trans-eQTLs were located in intergenic (61%),
intronic (30%), upstream (4%) and downstream (4%)
regions (see Additional file 4B). Analysis of the asso-
ciated SNPs located in coding regions (less than 1
%) revealed that 66 and 34% of cis-eQTLs (see Add-
itional file 5) and 52 and 48% of trans-eQTLs (see
Additional file 6) were either synonymous (not causing
a change in the protein sequence) or missense (causing
a change in the protein sequence) variants, respectively.

Table 1 Posterior means of variance components for IMF
deposition and composition in Nellore by Bayes B

Trait Genetic Residual Total Genomic
variance variance variance heritability®

BFT (mm)° 078 287 365 021

IMF (%) 0.16 048 0.64 0.25
Myristic (%) 0.06 0.23 0.29 0.2
Myristoleic (%) 0.03 0.02 0.05 0.25
Palmitic (%) 242 547 7.89 0.31
Palmitoleic (%) 0.1 03 04 024
Stearic (%) 123 528 6.51 0.19
Oleic (%) 6.08 7.1 13.19 046
Linoleic (%) 0.00007 0.0003 0.00037 0.19
CLACOt1T (%) 0.0003 0.002 0.0023 0.12
SFA (%) 136 1554 169 0.08
MUFA (%) 1.67 15.18 16.85 0.1

PUFA (%) 0.09 0.54 0.63 0.14
Sum_n-3 (%) 0.004 0.013 0017 025
Sum_n-6 (%) 0.0005 0.003 0.0035 0.15

®Cesar et al. [15]
bTizioto et al. [16]
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Fig. 1 A scatter plot of gene location (Mb) versus significant eQTL position (Mb). The vertical blue lines denote individual chromosomes. Points
distributed diagonally indicate cis-eQTLs. Points distributed vertically indicate trans-eQTLs

Overlap test between eQTLs and QTLs

Previous studies observed that many QTL are not lo-
cated within coding regions [17, 21, 22], which might
indicate that the causative mutations control gene ex-
pression level rather than altering gene function as
would a non-synonymous exonic mutation. To deter-
mine if the eQTLs identified in this study overlap (see
Additional file 7) with annotated QTL in Cattle QTLdb
[23], a permutation test (p-value <0.05) was performed
using the regioneR package [23]. We observed that 2920
eQTLs (24%) overlapped QTLs in the Cattle QTLdb [23]
with a total basewise overlap of 927.2 Mb, which corre-
sponds to 61% of the genomic regions covered by eQTLs.
In 47.4% of the cases, the eQTLs completely overlapped
with QTL regions from Cattle QTLdb. A permutation test
was conducted to evaluate if eQTL overlapped with each of
the general QTL classes reported in Cattle QTLdb. In all
cases, eQTL overlapped QTL in all general QTL classes to
a significantly larger extent than expected by chance. The
QTLs (see Additional file 8) associated with deposition and
composition of intramuscular fat previously reported by
our group [15] (Fig. 2) as well as QTLs associated with beef
production and carcass and beef quality also had an overlap
with eQTLs significantly larger than expected by chance.

Identification of eQTL hotspots, their functional
annotation and effect on IMF content traits

Mutations that influence the expression of several genes
(eQTL hotspots) can modulate metabolic pathways and as
a result can cause changes in phenotype [25]. Based on this
definition of a hotspot, a permutation test was performed
(p < 0.05), which indicated that a given variant needed to be

associated with the expression level of at least 119 genes.
We identified 12 significant hotspots on BTA3, BTA4,
BTA11, BTA14, BTA16, BTA17 and BTA28 (Fig. 3). Be-
cause some of these eQTL hotspots were located near each
other, we examined the linkage disequilibrium (LD) among
them and refined the eQTL hotspot regions to nine, located
on BTA3 (8 Mb), BTA4 (108 Mb), BTA11 (11 Mb), BTA14
(73 Mb), BTA16 (59 Mb), BTA17 (55 Mb) and BTA28
(20 Mb, 32 Mb). The LD observed for hotspots on BTA11,
BTA28, and also between each pair of the hotspots are
shown in Additional files 9 and 10, respectively. The associ-
ation test to verify the effect of all eQTL hotspots on the
IMF content traits were performed using an ANOVA test
(Table 2) (see Additional file 11) with correction for mul-
tiple tests by calculating the false discovery rate (FDR 5%).

Among the 244 genes identified within the hotspots
(4 Mb windows), there were four transcription factors:
EGR4, RUNXITI, NRII3 and USFI; four miRNAs:
bta-mir-2294, bta-mir-1584, bta-mir-2322, bta-mir-584-3;
two nuclear receptors: NCOR2 and NRBF2; three small
nuclear RNAs: SNORA70e, SNORA19 and SNORAY; and
several important genes associated with cellular signaling
and translation initiation such as: CACYBB CASP2, DIA-
BLO, FSBP, GEM, RGSS and EIF2B1.

In order to better understand the underlying biological
processes associated with the hotspot eQTLs, PANTHER
[26] was used to perform functional enrichment analysis,
which uses the over-represented test (nominal p-value
<0.05, before correction for multiple tests of pathways). In
this analysis, the list of all genes expressed in skeletal
muscle (data from this study) was used as the background
or reference gene list. Additional enrichment analysis was
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Fig. 2 QTLs of the Cattle QTLdb associated with deposition and composition of intramuscular fat that overlap with eQTLs regions. Red bars

correspond to the mean overlap size (in Mb) of the eQTL regions that was observed for eQTL regions for respective trait (y-axis), while the cyan
bars indicate the mean overlap size (in Mb) estimated after 1000x random resamplings (x-axis). The error bars indicate the standard deviation,

while permutation p-values are listed on the right

conducted with the list of all annotated genes har-
bored within 4 Mb (2 Mb for each side) of cis (243
genes), trans (1453 genes) and hotspot (133 genes)
eQTL regions (see Additional file 12A, B and C, re-
spectively). Based on the results from functional en-
richment, we suggest that the genes harbored within
the eQTL regions are likely to be involved in modula-
tion of transcription, translation and catalytic activity
based on the GO terms associated with the genes in
eQTL regions (see Additional file 12).

Transcription factor binding sites
Transcription factors modulate gene expression by binding
to specific DNA regions [27]. To confirm that the identified

transcription factors found in the eQTL hotspot re-
gions (EGR4, RUNXITI and USFI) were modulating
the differentially expressed genes, we determined the
presence of TFBS in the promoter regions of the af-
fected genes by LASAGNA (Length-Aware Site Align-
ment Guided by Nucleotide Association, algorithm)
Search 2.0 [28]. Based on LASAGNA results, about
98% of the promoters of genes in regions associated
with a hotspot region had a TFBS (p-value <0.05) for
the respective TF (see Additional files 13, 14 and 15,
respectively). The Circos plot in Fig. 4 shows the links
between the eQTL hotspots that contained the tran-
scription factors, EGR4, USF1, and RUNXITI, and
their associated target genes. The over-represented
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Table 2 Association test between the three eQTL hotspots that harbor TF in their region, and IMF content traits

eQTL hotspots rs135914685- hotspot 1(USFT)

15110242967 - hotspot 2 (EGR4)

rs134095631 - hotspot 3 (RUNXITT)

Traits p-value FDR' p-value FDR p-value FDR

BFT® 1.89E-06 747E-06 2.77E-06 830E-06' 8.30E-06 2.07E-05'
IMF®(%) 3.55E-02 6.61E-02 761E-02 8.15E-02 3.24E-02 3.74E-02
Myristic (9) 5.45E-04 230E-03' 151E-05 2.84E-05' 1.40E-05 263E-05'
Myristoleic (%) 2.73E-05 1.14E-04' 361E-04 541E-04' 5.65E-04 7.71E-04
Palmitic (%) 537E-07 747E-06 5.34E-07 2.00E-06' 555E-07 2.08E-06'
Palmitoleic (9) 1.21E-05 5.45E-05' 9.73E-06 2.09E-05' 1.20E-05 2.58E-05'
Stearic (%) 1.38E-01 1.89E-01 1.21E-01 121E-01 161E-01 161E-01
Oleic (%) 204E-14 5.17E-13' 211E-14 1.06E-13' 1.76E-14 882E-14
Linoleic (%) 2.74E-02 427E-02' 3.65E-02 421602 422E-02 453E-02'
CLACOt11(%) 2.20E-16 330E-15' 2.20E-16 330E-15' 220E-16 330E-15'
SFAY(9%) 4.78E-06 3.75E-05' 4.62E-06 1.16E-05' 4,09E-06 1.23E-05'
MUFAS(%) 1.72E-05 881E-05' 1.66E-04 2.76E-04' 141E-04 235E-04'
PUFA'(%) 3.09E-04 1.26E-03' 4.03E-04 549E-04' 4.03E-04 6.04E-04'
Sum_n3°(%) 2.20E-16 330E-15' 2.20E-16 165E-15 2.20E-16 1.65E-15'
Sum_n6"(%) 1.24E-02 3.80E-02' 1.10E-02 1.38E-02' 9.68E-03 1.21E-02'

?Backfat thickness

Pintramuscular fat

‘conjugated linoleic acid cis9 trans11
dsaturated fatty acid
®monounsaturated fatty acid
fpolyunsaturated fatty acid

9sum of omega-3, and

Psum of omega-6

iSignificant FDR 5%

'FDR - Adjusted p-value using the false discovery rate method by Benjamini and Hochberg 1995

TFBS motifs of EGR4, RUNX1T1 and USFI observed
in the promoters of genes within hotspot eQTL re-
gions are shown in Additional file 16.

Co-expression networks and correlation with traits
We used weighted correlation network analysis (WGCNA)
to further explore how the three eQTL hotspot regions that
harbor the TFs could affect gene expression and phenotype.
For that, in each hot spot region, we selected the SNP with
lowest p value to compare alternative genotypes for the
hotspot. Unfortunately, we could not compare alternative
homozygous genotypes because there were only two or
three BB animals. So, the comparison was made between
the homozygous AA vs heterozygous AB genotypes. This
approach allowed us to identify the pattern of co-expressed
genes assigned to various co-expression modules for both
AA and AB genotypes and correlate them to the different
traits related to IMF content traits. This correlation can
represent the set of co-expressed genes that are associated
with biological processes involved in lipid metabolic process
in skeletal muscle.

The eQTL hotspot region that harbored the USFI TF
(rs135914685) presented 17 and 25 modules for AA (n =
175) and AB (n = 17) genotype, respectively (Fig. 5a and b).

The EGR4 TF (rs110242967) presented 18 modules for the
AA (n=174) and 16 for AB (1 = 18) genotype, respectively
(Fig. 6a and b). The eQTL hotspot region that harbored the
RUNXITI TF (rs134095631) presented 16 and 25 modules
for AA (n=176) and AB (n=16) genotype, respectively
(Fig. 7a and b). After estimating the correlation values (r)
between the modules and each trait of interest, modules
that were correlated with at least three different traits were
selected for functional enrichment analysis (p-value < 0.1).
While the number of animals with a given hotspot geno-
type was very similar among the hotspot groups, the set of
animals within a given hotspot genotype was different. It is
important to point out that there is no selection for fat de-
position or composition in this population.

Hotspot 1 - rs135914685, BTA3: 8117390-10117390, USF1
The AA-modules named “black”, “blue”, “green”, “mid-
nightblue”, “pink”, “purple”, “salmon”, and “tan” were
correlated (p-value <0.10) with at least three different
traits as shown in Fig. 5a. The “midnightblue” module
presented higher correlation values (greater than 0.17)
and was significantly correlated (p-value <0.10) with

eight of the 15 phenotypes studied.
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For the AB-modules the “black”, “brown”, “cyan”,
“darkturquoise”, “lightyellow”, “pink”, “purple”, “royal-
blue”, “salmon”, “tan”, and “turquoise” were correlated
(p-value <0.10) with at least three traits (Fig. 5b). Dif-
ferently than what was observed in co-expression ana-
lysis of AA group, the AB-modules showed higher
correlation values (negative or positive) for IMF, palmi-
toleic, oleic and linoleic acids.

Hotspot 2 - rs110242967, BTA11: 10540044-12540044,
EGR4
The “magenta” and “purple” AA-modules were correlated
(p-value < 0.10) with at least three different traits as shown
in Fig. 6a. “Purple” presented the highest correlation values
(greater than 0.17) as well as a significantly correlated
(p-value < 0.10) with eight of the 15 phenotypes studied.
“Yellow”, “brown”, “pink” and “blue” AB-modules were
respectively correlated (p-value <0.10) with the following
traits: BFT (r=-0.52), myristic (r=0.50) and sum of
n3 (r=0.41); stearic (r=-0.35), oleic (r=0.45), CLA
cis9 tranll (r=0.55), SFA (r=-0.38); IMF (r=-0.39),
sum of n3 (r=-0.36) and sum of n6 (r=-0.42); BFT
(r=-0.47), CLA cis9 tranll (r=0.46) and palmitoleic
(r=10.37) (Fig. 6b).

Hotspot 3 - rs134095631, BTA14: 79693309-74693309,
RUNXI1T1

“Greenyellow”, “black”, “blue”, “magenta”, “midnightblue”,
“pink”, “purple”, and “salmon” AA-modules were corre-
lated (p-value < 0.10) were correlated (Fig. 7a) with at least
three traits. “Darkgreen”, “darkred”, “green” and “yellow”
AB-modules were correlated (p-value < 0.1) with at least
three different traits as shown in Fig. 7b. As observed for
the other two hotspots, the AB-modules showed higher
correlation values (negative or positive), however for dif-
ferent traits such as BFT, myristic, palmitoleic, oleic acids
and PUFA.

Hotspot’s functional enrichment analysis, network
construction and visualization

Functional enrichment analysis was performed from a
list of genes within each module that were significantly
correlated (p-value <0.10) with at least three different
traits according to the Cytoscape plugin BINGO [29].
Network construction and visualization for each eQTL
hotspot genotype (see Additional file 17, sheets 1, 2, 5, 6,
9, 10) (Figs. 8, 9 and 10) were performed by Cytoscape
3.5.1 [30] connecting the top 20 hub genes [most con-
nected genes, higher values of the module membership
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Fig. 5 a Correlation between network module eigengene (ME) values and traits. Colors to the left represent the 17 gene expression modules
identified from AA genotype (rs135914685) individuals. b Correlations between network module eigengene values and traits. Colors to the left
represent the 25 modules in the AB genotype (rs135914685) network. For each module, the heatmap shows ME correlations to traits. Numbers in
each cell report the correlation coefficients and student asymptotic p-value (parentheses) for significant ME-trait relationships. The scale bar, on
the right, indicates the range of correlations from positive (red, 1) to negative (green, — 1)

(MM)] of each module by the common significant (FDR
5%) biological process (BP) gene ontology (GO) terms.

Functional enrichment analysis for hotspot 1 identified
the following BP GO term for the AA (Fig. 8a) genotype:
immune system process, lipid metabolic process, cellular
carbohydrate metabolic process, fatty acid metabolic
process, electron transport chain, oxidation reduction,
and mitochondrial ATP synthesis coupled electron
transport. For the AB (Fig. 8b) genotype, the following
BP GO terms were identified: translation, gene expres-
sion, regulation of transduction, regulation of cell com-
munication, and cellular process (see Additional file 17,
sheets 3 and 4).

For hotspot 2, the following BP GO terms were
identified for AA (Fig. 9a) genotype: intracellular
membrane-bounded organelle and cytoplasm, protein
folding, response to temperature stimulus, muscle struc-
ture development, cell differentiation, striated muscle
cell differentiation and muscle cell differentiation. BP
were as follows for the AB (Fig. 9b) genotype: signal
transduction, lipid metabolic process, carbohydrate
metabolic process, cellular lipid metabolic process, fatty
acid biosynthetic process, gene expression, lipid biosyn-
thetic process, RNA metabolic process (see Additional
file 17, sheets 7 and 8).

For hotspot 3, the following BP GO terms were identi-
fied for AA (Fig. 10a) genotype: electron transport chain,
ATP metabolic process, protein binding, glucose meta-
bolic process, and immune response. BP were as follows
for the AB (Fig. 10b) genotype: and positive regulation
of cell migration, T cell differentiation, protein binding,
and lipid metabolic process (see Additional file 17,
sheets 11 and 12).

Discussion

Identification of eQTL and their overlap with QTL regions

To our knowledge, this is the first eQTL analysis per-
formed for complex phenotypes such as IMF content
traits in bovine species. The association analysis between
each of the 461,466 SNPs and the expression level of
11,808 genes expressed in muscle identified 1268
cis-eQTLs and 10,334 trans eQTLs that affected 243 and
1453 genes, respectively. These results agree with Witt-
kopp and Kalay [31] that described cis regulators that af-
fected only a few genes and trans regulators having
pleiotropic effect on many genes. The higher number of

trans-eQTLs than cis-eQTLs was also reported by
Ramasamy et al. [32].

The overlapping test between eQTL and previous
QTL regions support the hypothesis that many
SNP-trait associations are mediated by changes in the
expression level. Previous studies demonstrated that
untranslated gene regions (UTR), such as 5° and 3’
UTRs, introns and intergenic regions are involved in
the regulation of expression [33] and that variation
within these regions produce phenotypic variation
[34-36].

In this study, although we used a panel of SNPs, in
which most of the mutations are in introns and inter-
genic regions, we observed a enrichment of the inter-
genic regions for the identified trans-eQTLs. These
findings corroborate the expected biologic function of
the trans-eQTLs as potential distant regulators of gene
expression [37].

Functional annotation of genes located near (2 Mb) cis
and trans-eQTLs revealed biological processes GO terms
such as transcription factor binding, protein binding,
translation regulatory and transporter activities. Because
of the presence of regulatory genes near eQTL regions,
we suggest that these regions could be involved in
modulation of gene expression and thus influencing
quantitative traits [38, 39].

Hotspot eQTLs and transcription factors

Cis-eQTLs are in general considered more important
than trans-eQTL because of their local activity [40, 41];
however, recent studies have demonstrated that both
cis- and trans-eQTLs are important to better understand
the expression variation in different species [42, 43].
Among the trans-eQTL, some were associated with the
expression levels of many different genes [see Additional
file 3], which were defined as eQTL hotspots as de-
scribed previously [44, 45]. This pleiotropic effect can be
explained by the presence of a TF in the hotspot eQTL
region [46]. Even though the annotation of the bovine
genome for TF is not complete, we identified three anno-
tated (JASPAR database) [47] TFs near (2 Mb) the follow-
ing eQTL hotspots: USF1 (BTA3: 8117390-10117390),
EGR4 (hotspot on BTAI1l: 10540044—12540044) and
RUNXITI (BTA14: 79693309-74693309). The involve-
ment of these TF was supported by the presence of TFBS
in the promoter region of differentially expressed genes.
In another study, authors also demonstrated that many of
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Fig. 6 a Correlation between network module eigengene values and traits. Colors to the left represent the 18 modules in the AA genotype
(rs110242967) network. b Correlation between network module eigengene (ME) values and traits. Colors to the left represent the 16 modules in
the AB genotype (rs110242967) network. For each module, the heatmap shows ME correlations to traits. Numbers in each cell report the
correlation coefficients and student asymptotic p-value (parentheses) for significant ME-trait relationships. The scale bar, on the right, indicates the

range of correlations from positive (red, 1) to negative (green, — 1)

the harbored TFs identified within trans-eQTLs regions
mediate the effect of inheritance of these loci on gene ex-
pression levels [46, 48]. In addition, the association test
performed between these eQTL hotspots and the pheno-
types confirmed the significant (FDR 5%) effect of these
eQTLs on phenotypic variances of IMF content traits
(Table 1).

The three annotated TFs identified near the eQTL
hotspots were previously reported to be associated with
lipid metabolism. USFI (Upstream Transcription Factor
1) encodes a member of the basic helix-loop-helix leu-
cine zipper family and has been linked to familial com-
bined hyperlipidemia (FCHL) [49]. A recent report
pointed USFI as a new molecular link between lipid me-
tabolism and energy expenditure, which is a potential
therapeutic target for cardiometabolic disease in humans
[50]. EGR4 (Early Growth Response Protein 4) is one of
the prototypes of a family of zinc-finger transcription
factors, which activates the transcription of target genes
whose products are required for processes such as mito-
genesis and differentiation [49]. EGR4 is an important
TF in neuronal maturation and its expression is induced
by cerebral ischemia and inflammation [51, 52]. Inter-
action of EGR4 and fatty acids with EGRI and the PPAR
pathway was associated with cardiovascular risk [53]. Fi-
nally, the TF RUNXITI (Runt Related Transcription
Factor 1 Translocation Partner 1) is a transcriptional
co-repressor that acts as a negative regulator of adipo-
genesis [49]. A recent study reported that RUNXITI is
an inhibitor of brown adipogenesis (associated with a
lean and healthy phenotype), which was associated with
obesity and suggested that the miRNAs that downregu-
lates this TF could be part of novel therapeutics to in-
crease BAT (brown adipose tissue) in humans [54].
RUNXITI has been also implicated in epigenetic regula-
tion as demonstrated in genome-wide methylation study
following prenatal and postnatal dietary omega-3 fatty
acid supplementation in pigs, which was differentially
methylated between the treatments [55].

Other important candidate regulators were also
identified in the hotspot eQTLs regions, such as nu-
clear receptors (NRII3, NCOR, NRBF2), miRNAs
(bta-mir-2294,  bta-mir-1584, bta-mir-2322, and
bta-mir-584-3) and small nuclear RNAs (SNORA70e,
SNORA1I19 and SNORAY).

The nuclear receptor subfamily 1 member 3
(NRI1I3) is an important regulator of xenobiotic, bile

acid, and cholesterol/HDL metabolism, energy homeo-
stasis [56]. While, nuclear receptor binding factor 2
(NRBF2) is associated with the mTORCI1 activation
by lysosomal cholesterol, which is directly dependent
of fatty acid content [57].

The transcriptional corepressor NCOR, interacts with
nuclear receptors and mediates the silencing of retinoid
and thyroid receptors [58]. LXRs demonstrate higher af-
finity for NCOR in biochemical assays, which when
up-regulated increases the synthesis of long chain FAs
(PUFA). These FAs, such as palmitoleic acid, eicospen-
taenoic acid (EPA), and docosahexaenoic acid (DHA),
are involved in anti-inflammatory activity [59].

Both small nuclear RNAs and miRNAs are non-coding
regulatory RNAs, which utilize a similar set of process-
ing enzymes. They are involved in several biological pro-
cesses such as cell differentiation, cell proliferation, cell
death, metabolic control, and transposon silencing [60].
It was interesting to observe that eQTL analysis also
identified trans-eQTLs that act as post-transcriptional
regulators.

Correlation between the eQTL hotspots and IMF content
traits

It is known that DNA polymorphisms can alter com-
plex phenotypic traits by modulating gene expression
[4, 5]. Here we showed that genetic variation can in-
fluence gene expression, but the question of how al-
teration of gene expression could influence the
phenotype remains unanswered. To further explore
this question, we performed co-expression analysis
that used the expression profile data between the two
most frequently observed genotypes (AA and AB) of
the three eQTL hotspot regions. Furthermore, we cor-
related the constructed modules with the phenotypes.
These regions harbored the annotated TFs and are
not in LD. WGCNA has been successfully used to in-
vestigate how gene expression changes are coordi-
nated across transcripts and how these changes are
associated with phenotype [61, 62].

Our results revealed significant differences in the pat-
tern of the network construction (modules) for AA ver-
sus AB genotypes, as well as for correlation between
network module eigengene (ME) values and phenotypic
traits for all the three hotspots. The change in the num-
ber of modules present for each genotype may be attrib-
uted to the significant difference in co-activation of
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Fig. 7 (See legend on next page.)
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(See figure on previous page.)

Fig. 7 a Correlation between network module eigengene values and traits. Colors to the left represent the 16 modules in the AA genotype
(rs134095631) network. b Correlation between network module eigengene (ME) values and traits. Colors to the left represent the 25 modules in
the AB genotype (rs134095631) network. For each module, the heatmap shows ME correlations to traits. Numbers in each cell report the
correlation coefficients and student asymptotic p-value (parentheses) for significant ME-trait relationships. The scale bar, on the right, indicates the

range of correlations from positive (red, 1) to negative (green, — 1)

genes expressed in skeletal muscle, potentially due to
regulation or mutation in these transcription factors.
This would explain the differences in module content
and GO enrichment results across genotypes. These
findings also support the hypothesis that re-wiring of

gene expression modulates pathways that can influence
the traits under study.

Recent studies showed that hub genes (highly con-
nected) tend to play important roles in co-expressed net-
works (modules) acting as potential regulators [63, 64].
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Fig. 8 Co-expression networks show the top 20 hub genes of AA (a) and AB-modules (b) of hotspot 1 correlated (p-value < 0.10) with at least
three different traits associated with lipid deposition and composition in skeletal muscle of Nellore steers. Colored octagons represent the hub
genes within each module, and blue octagons represent the biological processes associated (FDR 5%) with the genes
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Many hub genes and candidate genes for phenotypic
variation were identified in this study such as
TMEM39B, BCARI1, MED19, LIN37, TRIM54 and PPAR
(see Additional file 17), were previously identified as dif-
ferentially expressed genes between groups of animals
with extreme values of IMF deposition and composition
[17, 18]. The module-trait correlation analysis revealed
connected modules and hub genes associated with BP
such as immune response, leukocyte proliferation, lipid
metabolism, and fatty acid biosynthesis for the different
genotypes and hotspots. Some of these hub genes could
be indicated as candidate biomarkers because they

probably share similar functions. Second, several hub
genes (RPL4, RPL5, BCL7C, KCNN3, DNAJBI, COX1I9,
UBA6, UBAS) were associated with BP such as gene ex-
pression, nucleic acid metabolic, and RNA metabolic
processes suggesting they play an important role in gene
expression regulation. Based on the genotype specific
differences in number of modules, module-trait relation-
ships pattern, co-expression networks constructed, and
the functional enrichment between the two genotypes,
some hub genes identified in this study are plausible bio-
markers for fatty acid variability such as TMEM39B and
PPAR.
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Genetic variation in the protein-coding region of a
TF could modify the interaction of TF with TFBS.
However, in our data we did not find any SNP in the
coding regions of USFI, EGR4 and RUNXITI associ-
ated with the AA and AB genotypes, but one could
not exclude the possibility that the observed effects
result from linkage disequilibrium with a SNP not
represented in the Illumina bovine chip. Alternatively,
genetic variation in the promoter region of a TF
could influence the abundance of the TF and thus
alter expression of downstream genes. The low ex-
pression level of these TFs in our study could explain
the lack of difference in TF gene expression between
the AA and AB genotypes. Thus, further research is
necessary to determine the causative mutation associ-
ated with the TF identified.

Conclusion

We identified several regions across the genome that
affect gene expression level (expression quantitative trait
loci, eQTL) and overlap with QTL regions associated
with the deposition and composition of IMF. Some of
these regions harbor TF and control the expression of
several genes (hotspots). Results obtained supported the
hypothesis that eQTL analysis can be used to identify
putative regulatory regions and transcription factors as-
sociated with important phenotypic traits that are con-
trolled by modulation of gene expression profile.

Methods

Animals, phenotype and genotype data

The animals (# =192), phenotype and genotype data used
in this study was comprised of Nellore steers sired by 34
unrelated sires, selected to represent the main genealogies
used in Brazil according to the National Summary of Nel-
lore produced by the Brazilian Association of Zebu Breeders
(ABCZ) and National Research Center for Beef Cattle to en-
sure compliance with international guidelines for animal
welfare as described previously by Cesar et al. [15]. A cap-
tive bolt pistol was used for stunning the animals prior to
slaughter. SNPs with call rate < 95%, minor allele frequency
(MAF) <5%, those located on sex chromosomes or not
mapped in the Bos taurus UMD 3.1 assembly were re-
moved. The MAF threshold was chosen based on the sam-
ple size in order to minimize the number of false-positive
and false-negative associations [65]. After filtering, a total of
461,643 SNP was utilized in eQTL mapping.

RNA extraction and sequencing

Total RNA was extracted from 100 mg of frozen LD
muscle from 192 animals that were collected at slaugh-
ter using the TRIzol reagent (Life Technologies, Carls-
bad, CA). RNA integrity was verified by Bioanalyzer
2100 (Agilent, Santa Clara, CA, USA). Only samples
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with RIN > 8 were used. A total of 2 pg of total RNA
from each sample was used for library preparation ac-
cording to the protocol described in the TruSeq RNA
Sample Preparation kit v2 guide (Illumina, San Diego,
CA). Average library sizes were estimated using the Agi-
lent Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA)
and quantified using quantitative PCR with the KAPA
Library Quantification kit (KAPA Biosystems, Foster
City, CA, USA). Quantified samples were diluted and
pooled (three pools of six samples each). Three lanes of
a sequencing flowcell, using the TruSeq PE Cluster kit
v3-cBot-HS kit (Illumina, San Diego, CA, USA), were
clustered and sequenced using HiScanSQ equipment
(Ilumina, San Diego, CA, USA) with a TruSeq SBS Kit
v3-HS (200 cycles), according to manufacturer’s instruc-
tions. Sequencing analyses were performed at the Gen-
omics Center at ESALQ, Piracicaba, Sdo Paulo, Brazil.

Sequencing adaptors and low-complexity reads were
removed in an initial data-filtering step. Quality control
and read statistics were estimated with FASTQC version
0.10.1 software [https://www.bioinformatics.babraham.a-
cuk/projects/fastqc/].  RNA-Seq by  Expectation
Maximization (RSEM) approach was performed to esti-
mate the number of fragments originating from each
gene in each replicate library, which is capable of hand-
ling reads that map ambiguously between isoforms and
genes, and minimize the differences in total read counts
across samples (normalization procedure) [66]. The
UMD3.1 Bos taurus assembly available at Ensembl
[http://www.ensembl.org/Bos_taurus/Info/Index/] was used
as reference genome.

Identification of eQTL and hotspot regions

The Matrix eQTL R package [67] was used to identify
associations between genetic variation from genotype
(SNPchip) and gene expression (RNA-Seq) [68]. Con-
temporary group (including farm, year and slaughter
date) and lane were included in the model as fixed ef-
fects and age as a covariate. Markers associated with
variation in gene expression that were within 1 Mb of
the gene were defined as cis-eQTLs (local variants),
while markers more than 1 Mb from the gene were de-
fined as trans-eQTLs (distant variants). Matrix eQTL
tests the association between each marker (SNP) and
each gene assuming the effect of genotype as additive,
performs a separate test for each pair (marker and gene)
and corrects for multiple tests by calculating false dis-
covery rate (FDR) [69]. The estimated effect size (slope
coefficient) and the genetic variance explained by the
markers was also provided according the Matrix eQTL
package [66]. eQTL hotspots (markers that affect the
gene expression level for many genes) were identified by
permuting the distribution of eQTLs across the genome
after 1000 permutations. A hotspot threshold was
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identified that corresponded to the 95th percentile of
the value. Linkage disequilibrium (LD) analysis and
visualization by PLINK v.1.07 [70] and Haploview [71],
respectively, were used to check if the hotspots were in
LD with each other and if so to select just one as the
eQTL hotspot. The hotspot region was defined as a
4 Mb window around the hotspot eQTL, i.e. 2 Mb ex-
tended to each side of the hotspot eQTL.

Association test between eQTL hotspots and the
phenotypes

The analysis of variance (ANOVA) model containning
contemporary group (including farm, year and slaughter
date) and lane as fixed effects and age as a covariate and
was applied to test for association between a given SNP
and a corresponding phenotype. Evidence of population
stratification was not identified in this population based
on previous results reported by our group [72]. There-
fore, it was not included in the model to detect eQTL.
The statistical test was performed by R software and ap-
plied to verify the effect of the eQTL hotspots identified
in this study on the phenotypes of interest. The correc-
tion for multiple tests was applied by calculating false
discovery rate (FDR 5%).

Overlap statistics (eQTLs / QTLdb)

Overlap analysis was carried out using the Bioconductor
package regioneR [24]. The package implements a general
framework for testing overlaps of genomic regions based
on permutation sampling. We repeatedly sampled random
regions (N = 1000 permutations) from the UMD_3.1 gen-
ome assembly matching size and chromosomal distribu-
tion of the detected eQTLs. This test was performed for
QTL class, QTL associated with traits of production and
quality of carcass and meat, and QTL previously reported
by our group [15] associated with the traits of interest in
this study. In every permutation, the overlap with the cat-
tle QTLdb [23] was recomputed based on the total gen-
omic size in Mb that was overlapped.

Annotation and functional annotation of the eQTLs

The eQTL annotations were performed using Ensembl
Variant Effect Predictor, a free toolset for the analysis,
annotation, and prioritization of genomic variants in
coding and non-coding regions [73]. The reference gen-
ome assembly used was UMD3.1 Bos Taurus from
Ensembl data bank [73]. With this set of tools, the loca-
tion of an eQTL in relation to a gene can be defined as
outside of the gene, in the coding sequence, or in un-
translated regions (UTR). The functional impact was de-
termined for those eQTLs that were localized in the
coding sequences. Functional enrichment analyses were
performed with Protein ANalysis THrough Evolutionary
Relationships (PANTHER) [26] using the list of the
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genes harbored in 4 Mb eQTL regions (hotspot, cis and
trans). The statistical over-representation test by PAN-
THER was used to obtain the gene ontology association
(biological processes and protein classes) from a given
list of genes. That test was performed to compare a list
of reference genes (background, all genes expressed in
skeletal muscle identified in this study) to a list of genes
harbored within 4 Mb eQTL regions, and determine if a
particular class of gene ontology (GO) biological pro-
cesses were over-represented or under-represented
(nominal p-value <0.05).

Transcription factor binding site searching

Annotated transcription factors (TFs) by JASPAR CORE
database [42] were searched within the eQTL hotspot
region, and the transcription factor binding sites (TFBSs)
of these TFs were searched using LASAGNA-Search 2.0
[28]. LASAGNA-Search 2.0 is an integrated web tool
based on the algorithm Length-Aware Site Alignment
Guided by Nucleotide Association, which allows the
identification of TFBS from a list of target genes. To per-
form the LASAGNA-Search 2.0 program, the TFBSs and
position-specific scoring matrix (PSSM) were collected
from JASPAR CORE database; the name of the TFs were
chosen based on the Bos taurus genome annotation; and
the list of target genes was the list of gene affected by
the eQTL hotspots identified herein. This method used
by LASAGNA 2.0 can distinguish true binding sites
from other non-functional sites with similar sequences
by giving a weighted match to any given substring (com-
binations) of fixed length. The TFBS were searched in
1500 bp of length of promoter region obtained from Bio-
mart tool of Ensembl website [http://www.ensembl.org/
biomart] of those genes that were affected by eQTL hot-
spot for the specific TF.

Association between eQTL hotspots and traits by
co-expression network analysis

Hotspot eQTLs were chosen that had annotated TFs
within them to associate the hotspot eQTLs with the
traits of interest (IMF deposition and composition).
WGCNA (Weighted Gene Correlation Network Ana-
lysis), which is a systems biology network method that
describes the correlation patterns among all expressed
genes across samples, was performed by WGCNA R
package [74]. This approach was used to identify the dif-
ferences in co-expression networks between hotspot
eQTL genotypes (AA and AB, MAF > 0.05). Gene net-
works were constructed separately for each of the two
most frequent genotypes, which were assigned an arbi-
trary color. For WGCNA analysis, the correlation matrix
was built using the absolute value of the Pearson correl-
ation coefficient between all gene pairs across all sam-
ples. The Pearson correlation matrix was subsequently
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transformed into an adjacency matrix (A) using a power
function based on scale-free topology criterion, as de-
scribed [75]. A soft threshold power of 6 with scale free
fitting index of 0.9 was applied to calculate the adjacency
matrix. TOM-based dissimilarity (1-TOM) was used for
module identification using Dynamic Tree Cut algorithm
with cutreeDynamic function in WGCNA package [74]
and defining the deep split=2 and minimum module
size = 30. To make the genotype networks comparable,
for each eQTL hotspot, we scaled the TOM (Topology
Overlap Matrix) connectivity’s in genotype with the
minimum number of data such that its 95th percentile
equals the 95th percentile of the genotype with max-
imum number of data, as described by Langfelder
and Horvath [76]. To quantify co-expression similarity
of entire modules, we calculated their eigengene
values using moduleEigengenes function in WGCNA
package and clustered them based on their correlation
using height cut of 0.25, which corresponded to a
correlation of 0.75, to merge similar modules [76]. All
other WGCNA parameters remained at their default
settings. Grey-colored modules contained all genes
that were not part of any module. The associations
between individual genes with traits of interest (fat
deposition and composition of intramuscular fat, ad-
justed phenotype as described by Cesar et al. [18] was
quantified by the Gene Significance (GS) approach,
which was defined as the correlation (the absolute
value) between the gene and the trait of interest. The
quantitative measure of module membership (MM) was
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defined as the correlation of the module eigengene and
the gene expression profile. With these assumptions,
the similarity of all genes was quantified to every mod-
ule. The p-value threshold applied in this correlation
analysis was p-value <0.10 based on previous studies
that used the same approach [19, 77].

Gene Ontology (GO) annotation from a list of
genes within of each module significantly correlated
(p-value <0.10) with at least three different traits by
Cytoscape plugin BINGO [25] using the latest update
of gene ontology annotation database (GOA) [78].
The statistical significance of GO term enrichment
was measured by a hypergeometric test using the
genes in the whole network as the background (all
genes expressed in skeletal muscle). The Benjamini
and Hochberg [69] correction (p-adjusted) was used
to correct for multiple testing. Only GO terms that
were significantly over-represented (p-adjusted <0.05)
were reported. This functional enrichment analysis
was followed by network construction using the hub
genes to support the hypothesis that the expression
pattern of the modules correlated to the phenotypes
can influence the IMF content traits. The construc-
tion and visualization of the networks for each eQTL
hotspot genotype were performed by Cytoscape 3.5.1
[30] connecting the top 20 hub genes [most con-
nected genes, higher values of the module member-
ship (MM)] of each module by the common
significant (FDR 5%) BP. A workflow diagram of this
study is shown in Fig. 11.

Samples
192 L. dorsi muscle from Nellore steers

Workflow diagram

Genotyping and RNA Sequencing
Bovine Bead Chip (770 k) and HiSeq 2500

!

Quality Control
BLUPF90 family program and FastQC

i

Transcript Quantification
RSEM

i
eQTL identification
Matrix eQTL R package — FDR 5%

i

Identification of hotspots
Statistical testing by permutation

i

TFBS enrichment
LASAGNA 2.0 package

i

BINGO/Cytoscape

GO Enrichment Analysis and Visualization &=

Co-expression networks
WGCNA R package

Fig. 11 A workflow diagram of eQTL study in Nellore population
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line) and trans-eQTL (blue line) using MRNA sequencing and animal genotype
data. The top horizontal grey line denotes a 5% false discovery rate significance
threshold for trans-eQTLs and the bottom one for cis-eQTLs. (DOCX 221 kb)

Additional file 3: All information about the cis and trans-eQTLs identified
from RNA-Seq and genotyping data of Nellore steers population. (XLSX 2154 kb)

Additional file 4: Variant annotation by VEP tool for cis-eQTLs (A) and
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QTLdb. Red bars correspond to the mean overlap size (in Mb) of the eQTL
regions that was observed for eQTL regions for respective trait (y-axis), while
the cyan bars indicate the mean overlap size (in Mb) estimated after 1000x
random resamplings (x-axis). The error bars indicates the standard deviation,
while permutation p-values are listed on the right. C. QTLs associated with
beef production, carcass and beef quality that overlap with eQTLs regions. Red
bars correspond to the mean overlap size (in Mb) of the eQTL regions that
was observed for eQTL regions for respective trait (y-axis), while the cyan bars
indicate the mean overlap size (in Mb) estimated after 1000x random
resamplings (x-axis). The error bars indicates the standard deviation, while
permutation p-values are listed on the right. (DOCX 171 kb)
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identified from the same dataset. (XLSX 43 kb)

Additional file 9: Haploview visualization of linkage disequilibrium (LD)
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(A) and chromosome 28 (B) are marked in red, and the D' values
estimated between the hotspots. D' value represent the percentage of
the time that the both markers are co-inherited. D' prime values of 1.0
are not shown (the box is empty). The intensity of red color indicates the
D' values estimated between the hotspot. (DOCX 954 kb)
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acid; NGS: Next generation sequencing; PUFA: Polyunsaturated fatty acid;
QTL: Quantitative trait loci; RNA-Seq: RNA sequencing; SFA: Saturated
fatty acid; TF: Transcription factor; UTR: Untranslated region;

WGCNA: Weighted gene correlation network analysis

Acknowledgements

This study was conducted with funding from EMBRAPA (Macroprograma 1,
01/2005) and FAPESP (processes number 2014/11871-5, 2014/22884-0 and
2012/23638-8). LCAR and LLC were granted CNPq fellowships. The authors
would like to acknowledge the collaborative efforts among EMBRAPA,
University of Sdo Paulo, and lowa State University.

Funding

This study was conducted with funding from EMBRAPA (Macroprograma 1,
01/2005) and FAPESP (processes number 2014/11871-5, 2014/22884-0 and
2012/23638-8). LCAR and LLC were granted CNPq fellowships.

Availability of data and materials

The dataset supporting the conclusions of this article is available in the European
Nucleotide Archive (ENA) repository (EMBL-EBI), under accession PRJIEB13188,
PRJEB10898, and PRIEB19421 [https//www.ebiac.uk/ena/submit/sra/].

Authors’ contributions

ASMC, LCAR, JMR and LLC conceived the idea of this research. ASMC
and MDP participated in the experimental design and RNA-sequencing.
ASMC, LK, DG, LG, HB, JEK, MAM, GBO, and EFW performed data analysis.
ASMC drafted the manuscript. ASMC, LLC, MDP, JEK, JMR, GCMM, PCT,
PSNO collaborated with interpretation, discussion and writing of the
manuscript. LCAR, JMR, GBM, AZN, and LLC provided the experimental
environment, phenotype and data analysis support. All authors have read
and approved the final manuscript.

Ethics approval

All experimental procedures involving steers were approved by the
Institutional Animal Care and Use Committee Guidelines from Brazilian
Agricultural Research Corporation — EMBRAPA (process number:
Macroprograma 1, 01/2005) and sanctioned by the president Dr. Rui
Machado to ensure compliance with international guidelines for animal
welfare.

Consent for publication
Not applicable.

Competing interests
Dr. James Reecy is a member of the editorial board (Associate Editor) of BMC
Genetics journal.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Department of Animal Science, University of Sdo Paulo, Piracicaba, SP
13418-900, Brazil. 2Departmem of Animal Science, lowa State University,
Ames, 1A 50011, USA. *Embrapa Pecuéria Sudeste, Sao Carlos, SP 13560-970,
Brazil. *Embrapa Informatica Agropecuaria, Campinas, SP 13083-886, Brazil.
*School of Agriculture, Massey University, Ruakura, Hamilton, New Zealand.

Received: 16 October 2017 Accepted: 14 June 2018
Published online: 27 June 2018

References

1. Michaelson JJ, Loguercio S, Beyer A. Detection and interpretation of
expression quantitative trait loci (eQTL). Methods. 2009;48:265-76.
United States


https://doi.org/10.1186/s12864-018-4871-y
https://doi.org/10.1186/s12864-018-4871-y
https://doi.org/10.1186/s12864-018-4871-y
https://doi.org/10.1186/s12864-018-4871-y
https://doi.org/10.1186/s12864-018-4871-y
https://doi.org/10.1186/s12864-018-4871-y
https://doi.org/10.1186/s12864-018-4871-y
https://doi.org/10.1186/s12864-018-4871-y
https://doi.org/10.1186/s12864-018-4871-y
https://doi.org/10.1186/s12864-018-4871-y
https://doi.org/10.1186/s12864-018-4871-y
https://doi.org/10.1186/s12864-018-4871-y
https://doi.org/10.1186/s12864-018-4871-y
https://doi.org/10.1186/s12864-018-4871-y
https://doi.org/10.1186/s12864-018-4871-y
https://doi.org/10.1186/s12864-018-4871-y
https://doi.org/10.1186/s12864-018-4871-y
https://www.ebi.ac.uk/ena/submit/sra

Cesar et al. BMC Genomics (2018) 19:499

20.

21.

22.

Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-
associated SNPs are more likely to be eQTLs: annotation to enhance
discovery from GWAS. PLoS Genet. 2010;6(4):21000888.

Innocenti F, Cooper GM, Stanaway B, Gamazon ER, Smith JD, Mirkov S,
Ramirez J, Liu W, Lin YS, Moloney C, et al. Identification, replication, and
functional fine-mapping of expression quantitative trait loci in primary
human liver tissue. PLoS Genet. 2011;7(5):21002078.

Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of
genomic structural variation: insights from and for human disease. Nat Rev
Genet. 2013;14:125-38. England

Lowe WL Jr, Reddy TE. Genomic approaches for understanding the genetics
of complex disease. Genome Res. 2015;25(10):1432-41.

Addison O, Marcus RL, Lastayo PC, Ryan AS. Intermuscular fat: a review of
the consequences and causes. Int J Endocrinol. 2014;2014:309570.

Jung UJ, Choi MS. Obesity and its metabolic complications: the role of
adipokines and the relationship between obesity, inflammation, insulin
resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci.
2014;15(4):6184-223.

Hausman GJ, Basu U, Du M, Fernyhough-Culver M, Dodson MV.
Intermuscular and intramuscular adipose tissues: bad vs. good adipose
tissues. Adipocyte. 2014;3(4):242-55.

Listrat A, Lebret B, Louveau |, Astruc T, Bonnet M, Lefaucheur L, Picard B,
Bugeon J. How muscle structure and composition influence meat and flesh
quality. ScientificWorldJournal. 2016;,2016:3182746.

Marin-Garcia J, Goldenthal MJ. Fatty acid metabolism in cardiac failure:
biochemical, genetic and cellular analysis. Cardiovasc Res. 2002,54:516-27. England
Nakamura MT, Nara TY. Essential fatty acid synthesis and its regulation in
mammals. Prostaglandins Leukot Essent Fatty Acids. 2003;68(2):145-50.
Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic
diseases and potential as drug targets. Nat Rev Drug Discov. 2008;7(6):489-503.
Uemoto Y, Abe T, Tameoka N, Hasebe H, Inoue K, Nakajima H, Shoji N, Kobayashi
M, Kobayashi E. Whole-genome association study for fatty acid composition of
oleic acid in Japanese Black cattle. Anim Genet. 2010,42(2):141-8.

Ishii A, Yamaji K, Uemoto Y, Sasago N, Kobayashi E, Kobayashi N, Matsuhashi
T, Maruyama S, Matsumoto H, Sasazaki S, Mannen H. Genome-wide
association study for fatty acid composition in Japanese Black cattle. Anim
Sci J. 2013;84(10):675-82.

Cesar AS, Regitano LC, Mourdo GB, Tullio RR, Lanna DP, Nassu RT, Mudado
MA, Oliveira PS, do Nascimento ML, Chaves AS, et al. Genome-wide
association study for intramuscular fat deposition and composition in
Nellore cattle. BMC Genet. 2014;15:39.

Tizioto PC, Decker JE, Taylor JF, Schnabel RD, Mudadu MA, Silva FL, Mourao
GB, Coutinho LL, Tholon P, Sonstegard TS, Rosa AN, Alencar MM, Tullio RR,
Medeiros SR, Nassu RT, Feijé GLD, Silva LOC, Torres RA, Siqueira F, Higa RH,
Regitano LCA. A genome scan for meat quality traits in Nelore beef cattle.
Physiol Genomics. 2013;45(21):1012-20.

Cesar AS, Regitano LC, Koltes JE, Fritz-Waters ER, Lanna DP, Gasparin G,
Mourdo GB, Oliveira PS, Reecy JM, Coutinho LL. Putative regulatory
factors associated with intramuscular fat content. PLoS One. 2015;10(6):
€0128350.

Cesar AS, Regitano LC, Poleti MD, Andrade SC, Tizioto PC, Oliveira PS, Felicio
AM, do Nascimento ML, Chaves AS, Lanna DP, et al. Differences in the
skeletal muscle transcriptome profile associated with extreme values of fatty
acids content. BMC Genomics. 2016;17(1):961.

Sheng X, Ni H, Liu Y, Li J, Zhang L, Guo Y. RNA-seq analysis of bovine
intramuscular, subcutaneous and perirenal adipose tissues. Mol Biol Rep.
2014 Mar41(3):1631-7.

Fortes MR, Snelling WM, Reverter A, Nagaraj SH, Lehnert SA, Hawken RJ,
DeAtley KL, Peters SO, Silver GA, Rincon G, et al. Gene network analyses of
first service conception in Brangus heifers: use of genome and trait
associations, hypothalamic-transcriptome information, and transcription
factors. J Anim Sci. 2012 Sep;90(9):2894-906.

Saatchi M, Garrick DJ, Tait RG Jr, Mayes MS, Drewnoski M, Schoonmaker J,
Diaz C, Beitz DC, Reecy JM. Genome-wide association and prediction of
direct genomic breeding values for composition of fatty acids in Angus
beef cattle. BMC Genomics. 2013;14:730.

Lemos MV, Chiaia HL, Berton MP, Feitosa FL, Aboujaoud C, Camargo GM,
Pereira AS, Albuquerque LG, Ferrinho AM, Mueller LF, et al. Genome-wide
association between single nucleotide polymorphisms with beef fatty acid
profile in Nellore cattle using the single step procedure. BMC Genomics.
2016;17:213.

23.

24,

25.

26.

27.

28.

29.

30.

32.

33.

34,

35.

36.

37.

38.

39.

40.

42.

43.

45.

46.

Page 19 of 20

Hu ZL, Park CA, Reecy JM. Developmental progress and current status of
the animal QTLdb. Nucleic Acids Res. 2016;44(D1):D827-33.

Gel B, Diez-Villanueva A, Serra E, Buschbeck M, Peinado MA, Malinverni R.
regioneR: an R/Bioconductor package for the association analysis of
genomic regions based on permutation tests. Bioinformatics. 2016;32(2):
289-91.

Albert FW, Kruglyak L. The role of regulatory variation in complex traits and
disease. Nat Rev Genet. 2015;16:197-212. England

Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. PANTHER
version 10: expanded protein families and functions, and analysis tools.
Nucleic Acids Res. 2016;44(D1):D336-42.

Spitz F, Furlong EE. Transcription factors: from enhancer binding to
developmental control. Nat Rev Genet. 2012;13:613-26. England

Lee C, Huang CH. LASAGNA-Search 2.0: integrated transcription factor
binding site search and visualization in a browser. Bioinformatics. 2014;30:
1923-5. England: The Author 2014. Published by Oxford University Press For
Permissions, please e-mail: journals.permissions@oup.com

Maere S, Heymans K, Kuiper M. BINGO: a Cytoscape plugin to assess
overrepresentation of gene ontology categories in biological networks.
Bioinformatics. 2005;21:3448-9. England

Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R,
Avila-Campilo |, Creech M, Gross B, et al. Integration of biological networks and
gene expression data using Cytoscape. Nat Protoc. 2007;2(10):2366-82.

Steige KA, Reimegard J, Koenig D, Scofield DG, Slotte T. Cis-regulatory
changes associated with a recent mating system shift and floral adaptation
in Capsella. Mol Biol Evol. 2015;32(10):2501-14.

Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, De T, Coin
L, de Silva R, Cookson MR, et al. Genetic variability in the regulation of gene
expression in ten regions of the human brain. Nat Neurosci. 2014;17(10):
1418-28.

Barrett LW, Fletcher S, Wilton SD. Regulation of eukaryotic gene expression
by the untranslated gene regions and other non-coding elements. Cell Mol
Life Sci. 2012,69(21):3613-34.

Mattick JS. Introns: evolution and function. Curr Opin Genet Dev. 1994;4(6):
823-31.

Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L,
Archibald AL, Haley CS, Buys N, Tally M, et al. A regulatory mutation in IGF2
causes a major QTL effect on muscle growth in the pig. Nature. 2003;425:
832-6. England

Piraino SW, Furney SJ. Identification of coding and non-coding mutational
hotspots in cancer genomes. BMC Genomics. 2017;18(1):17.

Yao C, Joehanes R, Johnson AD, Huan T, Liu C, Freedman JE, Munson PJ, Hill
DE, Vidal M, Levy D. Dynamic role of trans regulation of gene expression in
relation to complex traits. Am J Hum Genet. 2017 Jun 1;100(6):985-6.
Gibson G, Powell JE, Marigorta UM. Expression quantitative trait locus
analysis for translational medicine. Genome Med. 2015;7(1):60.
Hasin-Brumshtein Y, Khan AH, Hormozdiari F, Pan C, Parks BW, Petyuk VA,
Piehowski PD, Brimmer A, Pellegrini M, Xiao X, Eskin E, Smith RD, Lusis AJ,
Smith DJ. Hypothalamic transcriptomes of 99 mouse strains reveal trans
eQTL hotspots, splicing QTLs and novel non-coding genes. Elife. 2016;5:
e15614. https//doi.org/10.7554/eLife.15614.

Landry CR, Wittkopp PJ, Taubes CH, Ranz JM, Clark AG, Hartl DL.
Compensatory cis-trans evolution and the dysregulation of gene expression
in interspecific hybrids of drosophila. Genetics. 2005;171(4):1813-22.
Schaefke B, Emerson JJ, Wang TY, Lu MY, Hsieh LC, Li WH. Inheritance of
gene expression level and selective constraints on trans- and cis-regulatory
changes in yeast. Mol Biol Evol. 2013;30:2121-33. United States

Meiklejohn CD, Coolon JD, Hartl DL, Wittkopp PJ. The roles of cis- and trans-
regulation in the evolution of regulatory incompatibilities and sexually
dimorphic gene expression. Genome Res. 2014;24(1):84-95.

Guerrero RF, Posto AL, Moyle LC, Hahn MW. Genome-wide patterns of regulatory
divergence revealed by introgression lines. Evolution. 2016;70(3)696-706.

Joo JW, Sul JH, Han B, Ye C, Eskin E. Effectively identifying regulatory
hotspots while capturing expression heterogeneity in gene expression
studies. Genome Biol. 2014;15(4):r61.

Tian J, Keller MP, Oler AT, Rabaglia ME, Schueler KL, Stapleton DS, Broman
AT, Zhao W, Kendziorski C, Yandell BS, et al. Identification of the bile acid
transporter Slcola6 as a candidate gene that broadly affects gene
expression in mouse pancreatic islets. Genetics. 2015;201(3):1253-62.

Lee E, Bussemaker HJ. Identifying the genetic determinants of transcription
factor activity. Mol Syst Biol. 2010,6:412.


https://doi.org/10.7554/eLife.15614

Cesar et al. BMC Genomics (2018) 19:499

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Mathelier A, Fornes O, Arenillas DJ, Chen C, Denay G, Lee J, Shi W, Shyr C,
Tan G, Worsley-Hunt R, et al. JASPAR 2016: a major expansion and update
of the open-access database of transcription factor binding profiles. Nucleic
Acids Res. 2016:44(Database issue):D110-5.

Jiang G, Chakraborty A, Wang Z, Boustani M, Liu Y, Skaar T, Li L. New aQTL
SNPs for the CYP2D6 identified by a novel mediation analysis of genome-
wide SNP arrays, gene expression arrays, and CYP2D6 activity. Biomed Res
Int. 2013;2013:493019.

Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein Tl,
Nudel R, Lieder I, Mazor Y, et al. The GeneCards suite: from gene data
mining to disease genome sequence analyses. Curr Protoc Bioinformatics.
2016;54(1):1.30.1-1.30.33.

Laurila PP, Soronen J, Kooijman S, Forsstrom S, Boon MR, Surakka |, Kaiharju E,
Coomans CP, Van Den Berg SA, Autio A, et al. USF1 deficiency activates brown
adipose tissue and improves cardiometabolic health. Sci Transl Med. 2016;8:
323ra313. United States: American Association for the Advancement of Science
Decker EL, Nehmann N, Kampen E, Eibel H, Zipfel PF, Skerka C. Early growth
response proteins (EGR) and nuclear factors of activated T cells (NFAT) form
heterodimers and regulate proinflammatory cytokine gene expression.
Nucleic Acids Res. 2003;31(3):911-21.

Mengozzi M, Cervellini |, Villa P, Erbayraktar Z, Gokmen N, Yilmaz O,
Erbayraktar S, Manohasandra M, Van Hummelen P, Vandenabeele P, et al.
Erythropoietin-induced changes in brain gene expression reveal induction
of synaptic plasticity genes in experimental stroke. Proc Natl Acad Sci U S A.
2012;109(24):9617-22.

Fruchart JC. Peroxisome proliferator-activated receptor-alpha (PPARalpha): at
the crossroads of obesity, diabetes and cardiovascular disease.
Atherosclerosis. 2009,205:1-8. Ireland

Trajkovski M, Lodish H. MicroRNA networks regulate development of brown
adipocytes. Trends Endocrinol Metab. 2013;24(9):442-50.

Boddicker RL, Koltes JE, Fritz-Waters ER, Koesterke L, Weeks N, Yin T, Mani V,
Nettleton D, Reecy JM, Baumgard LH, et al. Genome-wide methylation
profile following prenatal and postnatal dietary omega-3 fatty acid
supplementation in pigs. Anim Genet. 2016;47(6):658-71.

Konno Y, Negishi M, Kodama S. The roles of nuclear receptors CAR and PXR
in hepatic energy metabolism. Drug Metab Pharmacokinet. 2008;23:8-13.
Castellano BM, Thelen AM, Moldavski O, Feltes M, van der Welle RE,
Mydock-McGrane L, Jiang X, van Eijkeren RJ, Davis OB, Louie SM, et al.
Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-pick C1
signaling complex. Science. 2017;355(6331):1306-11.

Yoon HG, Wong J. The corepressor silencing mediator of retinoic and
thyroid hormone receptorand nuclear receptor corepressor are involved in
agonist- and antagonist-regulated transcription by androgen receptor. Mol
Endocrinol. 2006 May;20(5):1048-60.

Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C, Guarda G, Tian
Z, Tschopp J, Zhou R. Omega-3 fatty acids prevent inflammation and
metabolic disorder through inhibition of NRLP3 inflammasome activation.
Immunity. 2013;38(6):1154-63.

Kim T, Reitmair A. Non-coding RNAs: functional aspects and diagnostic
utility in oncology. Int J Mol Sci. 2013;14(3):4934-68.

Jiang J, Sun X, Wu W, Li L, Wu H, Zhang L, Yu G, Li Y. Construction and
application of a co-expression network in Mycobacterium tuberculosis. Sci
Rep. 2016;6:28422.

Mina E, van Roon-Mom W, Hettne K, van Zwet E, Goeman J, Neri C,
ACtH P, Mons B, Roos M. Common disease signatures from gene
expression analysis in Huntington's disease human blood and brain.
Orphanet J Rare Dis. 2016;11(1):97.

Plaisier CL, Horvath S, Huertas-Vazquez A, Cruz-Bautista |, Herrera MF, Tusie-
Luna T, Aguilar-Salinas C, Pajukanta P. A systems genetics approach
implicates USF1, FADS3, and other causal candidate genes for familial
combined hyperlipidemia. PLoS Genet. 2009;5(9):e1000642.

Ponsuksili S, Siengdee P, Du Y, Trakooljul N, Murani E, Schwerin M, Wimmers
K. Identification of common regulators of genes in co-expression networks
affecting muscle and meat properties. PLoS One. 2015;10(4).e0123678.
Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan
KT. Data quality control in genetic case-control association studies. Nat
Protoc. 2010;5(9):1564-73.

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data
with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix
operations. Bioinformatics. 2012,28(10):1353-8.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

Page 20 of 20

Xia W, Zhu XW, Mo XB, Wu LF, Wu J, Guo YF, Zeng KQ, Wang MJ, Lin X, Qiu
YH, et al. Integrative multi-omics analysis revealed SNP-INCRNA-mRNA (SLM)
networks in human peripheral blood mononuclear cells. Hum Genet. 2017;
136:451-62. Germany

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J Roy Statist Soc Ser B
(Methodological). 1995;57:289-300.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J,
Sklar P, de Bakker PI, Daly MJ, et al. PLINK: a tool set for whole-genome
association and population-based linkage analyses. Am J Hum Genet. 2007;
81(3):559-75.

Barrett JC. Haploview: Visualization and analysis of SNP genotype data. Cold
Spring Harb Protoc. 2009,2009:pdb ip71. United States

Mudadu MA, Porto-Neto LR, Mokry FB, Tizioto PC, Oliveira PS, Tullio RR,
Nassu RT, Niciura SC, Tholon P, Alencar MM, et al. Genomic structure and
marker-derived gene networks for growth and meat quality traits of
Brazilian Nelore beef cattle. BMC Genomics. 2016;17:235.

Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, Fernandez Banet J,
Billis K, Garcia Giron C, Hourlier T, Howe K, Kahari A, Kokocinski F, Martin FJ,
Murphy DN, Nag R, Ruffier M, Schuster M, Tang YA, Vogel JH, White S,
Zadissa A, Flicek P, Searle SM. The Ensembl gene annotation system.
Database (Oxford). 2016;2016. https://doi.org/10.1093/database/baw093
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinformatics. 2008;9:559.

Zhang B, Horvath S. A general framework for weighted gene co-expression
network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17.

Langfelder P, Horvath S. Eigengene networks for studying the relationships
between co-expression modules. BMC Syst Biol. 2007;1:54.

Vallejo R, Tilley DM, Cedefio DL, Kelley CA, DeMaegd M, Benyamin R.
Genomics of the effect of spinal cord stimulation on an animal model of
neuropathic pain. Neuromodulation. 2016 Aug;19(6):576-86.

Huntley RP, Sawford T, Mutowo-Meullenet P, Shypitsyna A, Bonilla C, Martin
MJ, O'Donovan C. The GOA database: gene ontology annotation updates
for 2015. Nucleic Acids Res. 2015:43(Database issue):D1057-63.

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

o gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://doi.org/10.1093/database/baw093

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Phenotypic, genotypic and RNA-Seq data
	Identification of eQTLs and the genomic location of variants
	Overlap test between eQTLs and QTLs
	Identification of eQTL hotspots, their functional annotation and effect on IMF content traits
	Transcription factor binding sites
	Co-expression networks and correlation with traits
	Hotspot 1 - rs135914685, BTA3: 8117390-10117390, USF1
	Hotspot 2 - rs110242967, BTA11: 10540044-12540044, EGR4
	Hotspot 3 - rs134095631, BTA14: 79693309-74693309, RUNX1T1
	Hotspot’s functional enrichment analysis, network construction and visualization

	Discussion
	Identification of eQTL and their overlap with QTL regions
	Hotspot eQTLs and transcription factors
	Correlation between the eQTL hotspots and IMF content traits

	Conclusion
	Methods
	Animals, phenotype and genotype data
	RNA extraction and sequencing
	Identification of eQTL and hotspot regions
	Association test between eQTL hotspots and the phenotypes
	Overlap statistics (eQTLs / QTLdb)
	Annotation and functional annotation of the eQTLs
	Transcription factor binding site searching
	Association between eQTL hotspots and traits by �co-expression network analysis

	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

