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Abstract

Background: Alternative polyadenylation (APA) results in messenger RNA molecules with different 3′ untranslated
regions (3’ UTRs), affecting the molecules’ stability, localization, and translation. APA is pervasive and implicated in
cancer. Earlier reports on APA focused on 3’ UTR length modifications and commonly characterized APA events as
3’ UTR shortening or lengthening. However, such characterization oversimplifies the processing of 3′ ends of
transcripts and fails to adequately describe the various scenarios we observe.

Results: We built a cloud-based targeted de novo transcript assembly and analysis pipeline that incorporates our
previously developed cleavage site prediction tool, KLEAT. We applied this pipeline to elucidate the APA profiles of 114
genes in 9939 tumor and 729 tissue normal samples from The Cancer Genome Atlas (TCGA). The full set of 10,668
RNA-Seq samples from 33 cancer types has not been utilized by previous APA studies. By comparing the frequencies
of predicted cleavage sites between normal and tumor sample groups, we identified 77 events (i.e. gene-cancer type
pairs) of tumor-specific APA regulation in 13 cancer types; for 15 genes, such regulation is recurrent across multiple
cancers. Our results also support a previous report showing the 3’ UTR shortening of FGF2 in multiple cancers.
However, over half of the events we identified display complex changes to 3’ UTR length that resist simple
classification like shortening or lengthening.

Conclusions: Recurrent tumor-specific regulation of APA is widespread in cancer. However, the regulation pattern that
we observed in TCGA RNA-seq data cannot be described as straightforward 3’ UTR shortening or lengthening. Continued
investigation into this complex, nuanced regulatory landscape will provide further insight into its role in tumor formation
and development.
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Background
Alternative polyadenylation (APA) is a widespread
regulatory mechanism that yields mRNAs with different
3′ untranslated regions (3’ UTRs) [1–5]. APA affects
both normal cellular functions, such as proliferation and
differentiation [6–8], and diseases [9, 10], including

cancer [11–13]. For at least six genes, cancer cells favor
mRNAs with shorter 3’ UTRs relative to normal cells;
these mRNAs exhibit higher stability, potentially con-
tributing to oncogenesis [11]. For most genes, however,
mRNA stability may have a limited influence from
3’UTR isoforms [14].
APA is commonly characterized as length modulation

of 3’ UTRs [6, 13, 15–17]. Shortening of 3’ UTR indi-
cates that for a given gene, a transcript isoform with a
shorter 3’ UTR is overexpressed relative to an isoform
with a longer 3’ UTR given two conditions; lengthening
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of a 3’ UTR refers to the opposite scenario. Hence, APA
is a form of differential isoform expression that pertains
to the 3′ end. However, this paradigm is limited in scope
as it considers only pairs of cleavage sites (CSs), com-
monly referred to as the proximal and distal CSs. Such
characterization used to be sufficient when the number
of annotated CSs was small (29,283 in human [18]), and
most genes with APA had only two CSs [15]. However,
with high-throughput sequencing methods, our under-
standing of the number of potential CSs a gene may
have has increased significantly. For example, a study
using a specialized sequencing protocol, PolyA-Seq, re-
ported 439,390 CSs in human, where 49.3% of the genes
have three or more CSs [19]. With more than two CSs,
naming them proximal/distal is ambiguous and ina-
dequate. In one case, only the most distal CS is called
distal while all others are proximal [16]; in another case,
proximal and distal CSs refer only to those from the top
two most abundant isoforms [17]. Furthermore, 3’ UTR
shortening/lengthening is relative and contextual. For
example, when only the medium-length 3’ UTR is up-
or down-regulated, neither shortening nor lengthening is
appropriate.
While specialized high-throughput 3′ end sequencing

protocols have been developed for CS profiling, they are
not as widely adopted as RNA-Seq [13] and provide only
limited transcriptomic data. Given that standard
RNA-Seq libraries contain sufficient read evidence to
identify APA events [13, 20, 21], the vast RNA-Seq data-
sets of The Cancer Genome Atlas (TCGA) have the po-
tential to enable comprehensive APA analysis for both
normal and tumor samples. A previous study on this
topic introduced the DaPars model using a regression
algorithm [13]. However, it imposes a fixed number of
CSs for all genes, which is overly restrictive; in the re-
ported results, it considered only two CSs, which is an
oversimplification, as stated above. Furthermore, DaPars
requires matched normal and tumor samples as input;
thus, it effectively ignored the majority of tumor samples
from TCGA since normal samples are highly under-
populated. In contrast, prediction tools like KLEAT [21]
and ContextMap 2 [20] have no presumption of how
many CSs a gene may have. They both leverage
RNA-Seq reads with poly(A) tails. KLEAT uses de novo
transcriptome assembly to identify contigs with poly(A)
tails, which serve as high-confidence CS evidence [21].
Nonetheless, due to isoform overlap and complex
mapping between CSs and stop codons, quantifying the
isoform expression corresponding to the predicted CSs
is still a challenge with RNA-Seq data.
Data analysis at the TCGA-scale is challenging. The

download and storage alone can be a substantial under-
taking. But with cloud computing, all data storage, trans-
fer, and analysis could take place within a scalable cloud

environment, avoiding most local storage cost and slow
Internet communication. The cloud can provide thousands
of CPUs in a short time for massively parallel processing,
which could speed up large-scale analysis substantially.
Here, we built a cloud-based, targeted de novo tran-

script assembly pipeline that incorporates KLEAT, which
we developed previously [21]. We executed the pipeline
on the ISB Cancer Genomics Cloud, a cancer genomics
cloud pilot based on the Google Cloud Platform (GCP,
https://cloud.google.com/) [22], and predicted the CS pro-
files of 114 cancer-related genes for 10,668 RNA-Seq sam-
ples (totaling 67 TB in data size) in three days. Then, in
the subsequent analysis on local servers, we applied a
novel CS usage quantification approach by calculating the
frequency per CS within a group of samples, leveraging
the hundreds of samples available for each TCGA cancer
cohort. By comparing the CS frequencies between normal
and tumor sample groups, we identified widespread
tumor-specific APA regulations that are recurrent across
multiple cancer types. Over half of the identified events of
tumor-specific regulation do not fall under the simplistic
3’UTR shortening and lengthening paradigm, but instead
reveal a more intricate APA modulation of 3’UTRs in
cancer.

Results
Cleavage site prediction on the cloud
To select a cleavage site (CS) prediction tool, we bench-
marked DaPars [13], KLEAT [21] and ContextMap 2 [20]
with a universal human reference RNA-Seq library
(https://basespace.illumina.com/datacentral, dataset name:
“HiSeq 2500: TruSeq Stranded mRNA LT (SEQC: UHR &
Brain)”, sample ID: mRNA-UHRR-C1), and then com-
pared their predictions to the CSs reported by PolyA-Seq,
a data type also derived from the universal human
reference and which served as the ground truth for tool
evaluation [19] (Additional file 1: Figure S1). DaPars
underperforms compared to the other two methods, most
likely due to the limitation imposed by its two-CS model.
ContextMap 2 has a limited sensitivity despite extensive
parameter tuning, consistent with the authors’ own
benchmark [20]. Hence, we used KLEAT to build a CS
prediction pipeline (Fig. 1a).
We predicted the CS profiles of 114 cancer-related

genes [11, 23] (Fig. 1b and Additional file 2: Table S1), in
9939 tumor and 729 normal TCGA paired-end
RNA-Seq samples across 33 cancer types (Fig. 1c and
Additional file 2: Table S2). To show the genes’
relatedness to cancer, we confirmed that all select genes
have at least one pathogenic mutation (Additional file 1:
Figure S2A), and they undergo fusion (F), mutation (M),
overexpression (O) or underexpression (U) in different
diseases (Additional file 1: Figure S2B), according to
COSMIC v80 [24].
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The pipeline was designed for the GCP, a scalable
cloud computing environment, and packaged as a
Docker (https://www.docker.com/) image for easy de-
ployment and results reproducibility. We reached
massive parallelism with a peak usage of over 3800
4-vCPU virtual machines running concurrently. In total,
the samples consist of 1.6 trillion reads (53 bp average
length) and amount to 67 TB of data after compression.
We processed all samples in three days.
We filtered and clustered raw predictions from

KLEAT to remove off-target and low-confidence CSs
(Additional file 1: Figure S3A and Methods). Compar-
ing the refined results to the Ensembl gene annota-
tions (GRCh37.75) [25], we find that 66% of the
predicted CSs are within 15 bp of an annotated site
(Fig. 1d); 79% have a polyadenylation signal (PAS) hexamer
motif within a 50 bp upstream window. Consistent with
previous reports [26, 27], the distribution of distances
between CSs and PAS hexamers peaks at around 21 bp

(Fig. 1e and Additional file 1: Figure S3B), and the top
two motifs are AATAAA (52%) and ATTAAA (13%)
(Additional file 1: Figure S3C).

Recurrent tumor-specific APA regulation
We quantified the usage of each predicted CS by calcu-
lating its frequency within a group of samples, leveraging
the availability of tens or hundreds of normal and tumor
samples per cancer type within TCGA. The usage
frequency is defined as the fraction of normal/tumor
samples within a cancer type predicted to use a given CS
(Methods). We refer to all CS frequencies within one
gene in a sample group as a cleavage pattern. When
comparing a tumor cleavage pattern to a normal one, we
identify an event (gene-cancer type pair) of tumor-specific
APA regulation if one CS has a significantly higher fre-
quency in tumor while another CS has a significantly
lower frequency (P < 0.01 Fisher’s exact test, False Disco-
very Rate (FDR) < 0.002, Methods). Such analysis is applied

Fig. 1 Cleavage site predictions. (a) Schematic diagram of the CS prediction pipeline. See Additional file 1: Figure S3A for a description of the CS
post-processing step. (b) Count of gene types. (c) Count of TCGA RNA-Seq samples across 33 cancer types (sorted in decreasing order of normal
and tumor samples). Sufficient normal: ≥15 samples. Alphabetically, ACC: adrenocortical carcinoma; BLCA: bladder urothelial carcinoma; BRCA:
breast invasive carcinoma; CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL: cholangiocarcinoma; COAD: colon
adenocarcinoma; DLBC: lymphoid neoplasm diffuse large B-cell lymphoma; ESCA: esophageal carcinoma; GBM: glioblastoma multiforme; HNSC:
head and neck squamous cell carcinoma; KICH: kidney chromophobe; KIRC: kidney renal clear cell carcinoma; KIRP: kidney renal papillary cell
carcinoma; LAML: acute myeloid leukemia; LGG: brain lower grade glioma; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma;
LUSC: lung squamous cell carcinoma; MESO: mesothelioma; OV: ovarian serous cystadenocarcinoma; PAAD: pancreatic adenocarcinoma; PCPG:
pheochromocytoma and paraganglioma; PRAD: prostate adenocarcinoma; READ: rectum adenocarcinoma; SARC: sarcoma; SKCM: skin cutaneous
melanoma; STAD: stomach adenocarcinoma; TGCT: testicular germ cell tumors; THCA: thyroid carcinoma; THYM: thymoma; UCEC: uterine corpus
endometrioid carcinoma; UCS: uterine carcinosarcoma; UVM: uveal melanoma. (d, e) Validation of our pipeline for predicting CSs. (d) Distribution
of the distances between predicted and the closest annotated CSs. (e) Distribution of the distances between a predicted CS and the PAS
hexamer motif found within 50 bp upstream. A high-resolution version of this figure is available for download in Additional file 5
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to all gene-cancer type pairs available. In total, we identified
77 events that involve 33 genes across 13 cancer types. For
15 of these genes, the tumor-specific regulations are recur-
rent in multiple cancer types.
In our work, we highlight eight events. The first set of four

events involves three genes, FGF2, CCNE1, RNF43, whose
tumor-specific APA regulations indicate clear length modula-
tions of the 3’ UTR in cancer (Fig. 2). The second set of four
events involves the genes, CDKN2A, EZH2, and PTCH1, and
show more complex modulations that do not fit the shorten-
ing/lengthening paradigm (Fig. 3). All other events are
depicted in Additional file 3: Figure S4. Gene-level and
CS-level summaries of all 77 events are provided in
Additional file 2: Tables S3 and S4, respectively. In addition,
we presented all 1596 (114 genes × 14 cancer types)
gene-cancer pairs, including non-reported events, via an
interactive web interface at http://bcgsc.ca/downloads/tasrk-
leat-static/off-cloud/results_data/all-apa-cases.html [28].
The FGF2 gene (Fig. 2a) presents a 3’ UTR shortening

event that has been reported previously in several cancer
cell lines [11]. We label CSs by a letter from the gene
name, followed by its relative index on the positive
strand. FGF2 is a positive strand gene with a single an-
notated stop codon, so an increment in the index (e.g.
F2 to F3) indicates an increase in 3’ UTR length. In four
TCGA cohorts (LUAD, BRCA, LUSC, and PRAD), the
frequency of F2 increases in tumor samples, while that
of F3 decreases, both significantly (p = 0.0004 and 0.001,
respectively). We conclude that FGF2 undergoes 3’ UTR
shortening in these cancers. The F1 site is over 2 kb
from the closest annotated CS, and demonstrates the
ability of our analysis to detect potential novel CSs.
However, its usage frequency is low (typically less than
20%, Additional file 2: Table S4), and does not undergo
significant change (p > 0.01, Fisher’s exact test) from
normal to tumor; hence it is ignored for interpreting the
3’ UTR length modulation.
CCNE1 (Fig. 2b) presents a 3’ UTR lengthening example

in six cancer types (LUAD, BRCA, HNSC, KIRP, LIHC, and
LUSC). It has three predicted CSs (C1, C2, C3) and a single
annotated stop codon. C1 and C2 are associated with
shorter 3’ UTR isoforms, and their respective frequency de-
creases, while the longer-3’UTR associated C3 increases in
frequency in tumor samples, indicative of a 3’UTR length-
ening in the aforementioned cancer cohorts.
In contrast to FGF2 and CCNE1, the RNF43 gene

(Fig. 2c, d) has two annotated stop codons. It shows
both 3’ UTR shortening and lengthening, depending
on the tissue of origin. RNF43 has four predicted
CSs. Since it is a negative-strand gene, an increment
in the index indicates a decrease in 3’ UTR length,
for CSs that share the same stop codon (R1, R2, and
R3). Among them, R2 and R3 undergo significant
shifts in their frequencies from normal to tumor in

both KIRC and UCEC. However, these shifts occur in
opposite directions, indicating 3’ UTR shortening in
KIRC, but 3’ UTR lengthening in UCEC. As for R4,
which is associated with a different stop codon, its
frequency decreases significantly in KIRC, indicating
decreased expression of its corresponding isoforms in
KIRC tumor.
Unlike the above events that can be characterized as 3’

UTR shortening or lengthening, over half of the identified
events of tumor-specific APA regulation indicate more
complex modulation to 3’ UTRs. The CDKN2A gene,
like RNF43, also displays multiple disease-dependent
frequency shifts in KIRC and HNSC (C2, C3, and C6,
Fig. 3a,b). However, CDKN2A is much more complex
because it has seven annotated stop codons, and
some of its CSs could exhibit one-to-many relation-
ship to certain stop codons (C1, C2, and C3), while
others have a one-to-one relationship to separate stop
codons (e.g. C4, C5, and C6) (Fig. 3, arcs plots).
One-to-many relationships blur the 3’UTR length as-
signment for the involved CS; correspondence to sep-
arate stop codons confounds the length comparison
due to limited or no overlap among the involved 3’
UTRs. In addition, one stop codon (matched to C3)
belongs to a transcript involved in nonsense mediated
decay (NMD), which is a surveillance mechanism for
removing prematurely transcribed mRNAs [29, 30].
NMD transcripts have longer 3’ UTRs than protein coding
transcripts (P = 6.5 × 10− 16, Kolmogorov–Smirnov test)
(Additional file 1: Figure S5), which could facilitate its
detection by the decay machinery [31]. We observe the
implication of NMD to be common (Figs. 3 and
Additional file 3: Figure S4), which adds further complex-
ity to the interpretation of APA. The intricate pattern of
tumor-specific APA regulation of CDKN2A in KIRC is
also identified in COAD, KICH, KIRP, LIHC, PRAD and
THCA, but describing such regulation by 3’ UTR length
modulation would be inadequate.
Much like CDKN2A, the EZH2 gene (Fig. 3c) displays a

recurring regulation in seven cancer types (BRCA, KIRC,
KIRP, LIHC, LUAD, PRAD, THCA). Besides, it illustrates
another level of complexity, as its second stop codon (near
E3) is shared by both protein coding and NMD transcripts.
Thus, EZH2 presents a many-to-many-to-many relation-
ship among CSs, stop codons, and transcript types.
Finally, we show PTCH1 in BRCA (Fig. 3d). Despite

complex mappings between CSs and stop codons, this
event can be characterized as 3’ UTR shortening. Ignor-
ing CSs that were mapped either to a separate stop
codon (P5, P6, and P7), or to multiple stop codons (P2),
we are left with three CSs. Among these, P4 (shorter 3’
UTR) increases in frequency, while P1 and P3 (longer 3’
UTRs) decrease in frequency in tumor samples, implying
3’ UTR shortening.
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For all identified 77 events of tumor-specific APA
regulation, we identified equal numbers (16) of 3’ UTR
shortening and lengthening events, and we labeled the
remaining 45 events as having complex trends (Fig. 4).

Discussion
The current paradigm of APA characterization revolves
around analyzing two CSs at a time, namely proximal
and distal CSs, and emphasizes 3’ UTR length change,

Fig. 2 Selected events of tumor-specific APA regulations that indicate clear 3’ UTR length modulations in cancer. (a) FGF2 in LUAD, a 3’
UTR shortening event. (b) CCNE1 in LUAD, a 3’ UTR lengthening event. (c, d) RNF43 in KIRC (3’ UTR shortening) and UCEC (lengthening).
(a-d) Inside each left-hand panel, each group of bars represents the frequency of a specific CS in normal (blue) and tumor (red) samples.
Bar groups are ordered by corresponding CS genomic coordinates. The text box shows the number of normal (N) and tumor (T) samples
that were used for frequency calculation. The label box color indicates the trend of 3’ UTR length modulation in cancer. At the top, we
indicate the number of cancer types with recurrent tumor-specific APA regulations. For example, “4 cancers” means that besides LUAD,
tumor-specific APA regulation of FGF2 is also observed in three other cancer types with consistent patterns (see text and Additional file
3: Figure S4 for details). Inside each right-hand panel, the diagram represents a depiction of the 3′ end region of each gene with 3’ UTR
models directly below the genome axis. The axis direction (right/left) indicates the relative DNA strand (plus/minus); the axis coordinates
are offset by that of the gene’s first stop codon. On the axis, arcs show the relationship between CSs and stop codons based solely on
annotation. Below the axis, vertical arrows indicate the positions of predicted CSs. Annotated and predicted CSs match well, but they are
not expected to overlap exactly. An arrow pointing upwards (downwards) represents an increase (decrease) in frequency from normal to
tumor. Arrow height represents the difference (Δ) of the increase/decrease. Bars and arrows of insignificant difference are colored gray.
For clarity, CSs with frequencies lower than 5% in both normal and tumor samples, and that do not undergo any significant change in
any cancer type considered herein are not shown. For a comprehensive view of all CSs with distribution of gene expression levels, see
Additional file 3: Figure S4. A high-resolution version of this figure is available for download in Additional file 5

Xue et al. BMC Genomics  (2018) 19:536 Page 5 of 12



namely shortening or lengthening [15]. However, at the
age of high-throughput sequencing, we now know that
the majority of human genes may have more than two
CSs [19], and considering only two CSs needlessly limits

the scope of APA analysis. Our analysis considered all
known CSs and 3’ UTRs (tandem, overlapping, mutually
exclusive or NMD) for a list of cancer-related genes. We
found that 40% (31/77) of the reported APA events have

Fig. 3 Selected events of tumor-specific APA regulations that do not fit the 3’ UTR length modulation paradigm. (a,b) CDKN2A in KIRC and HNSC.
(c) EZH2 in LUAD. (d) PTCH1 in BRCA. (a-d) The legend of Fig. 2 applies. In addition, when the 3’ UTR length change is too complex to be
resolved into a shortening or lengthening trend, the corresponding text box is left uncolored. NMD-related transcript elements are colored in
cyan. An orange arrow indicates that a predicted CS with a significant frequency change is mapped to multiple stop codons, with its associated
3’ UTR length being ambiguous. A high-resolution version of this figure is available for download in Additional file 5
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three or more CSs undergoing significant frequency
changes (p < 0.01, Fisher’s exact test). While we also
report 3’ UTR shortening and lengthening events, in-
cluding the independent identification of a previously
published observation (FGF2) [11], over half of our iden-
tified events of APA regulation deviate from simple 3’
UTR length modulations. The deviation is due to the
inherent complexity of APA analysis, which will be dis-
cussed below, and it suggests that 3’ UTR length alone
may not be a major factor in its function, consistent with
a previous study that reported the limited effects of
various 3’ UTR isoforms on mRNA stability [14].
While a CS is essentially a single point (after clustering) on

the genome axis, and quantifying its frequency is relatively
straightforward, the analysis quickly becomes complex once
we considered their corresponding 3’ UTRs. The complexity
of APA analysis is multifold. First, in the 77 events of
tumor-specific APA regulation reported here, 33/297 (11%)
CSs are mapped to more than one stop codon. In such a
multi-mapping situation, CS frequency cannot represent the
usage of any of the corresponding isoforms, neither can an
expression-level type of quantification from a specialized 3′
end sequencing protocols [16, 19, 32, 33]. Instead, it only
provides an aggregate measure of usage for all the 3’ UTRs
cleaved at the same CS. Second, when the CS-to-stop
codon mappings are one-to-one, the interpretation of 3’
UTR length modification can still be difficult, especially
when the 3’ UTRs are associated with different stop co-
dons and have limited or no overlap (e.g. CDKN2A). In
addition, 16/33 of the reported genes have stop codons

related to NMD transcripts; in some genes (e.g. EZH2), a
stop codon can be used in both protein coding and NMD
transcripts, which complicates the implications of regula-
tion by APA even more. Describing APA regulation by 3’
UTR length change is mostly inadequate, and comprehen-
sive characterization will require techniques that can dis-
ambiguate the relationship between a gene’s 3’ UTRs and
CS repertoire. At a deeper level, APA is a partial view of
the differential expression of isoforms at the 3′ end.
We recognize that, despite its limitations, the old para-

digm of 3’ UTR shortening and lengthening is sufficient
within specific contexts. For example, CD47 has only
two CSs and one stop codon, and its two APA isoforms
have identical upstream sequence compositions; thus,
proximal and distal CSs, short and long 3’ UTRs all have
concrete meanings. Remarkably, the CD47 protein trans-
lated from the long isoform is relocated to the cell mem-
brane while the protein corresponding to the short
isoform remains in the endoplasmic reticulum [34].
Our APA analysis on RNA-Seq data is analogous to

that using PAS-Seq [32] and 3’READS [33] data. While
these studies both used read count per CS (vertical
measure) per sample, we used frequency per sample
group (horizontal measure), leveraging the large number
of samples available within TCGA. All three studies used
Fisher’s exact test to identify significance of APA regula-
tion. However, our analysis considers all CSs instead of
only proximal and distal ones.
To report an event (gene-cancer type pair) of

tumor-specific APA regulation, we enforced a rather

Fig. 4 Trends of 3’ UTR length modulation across all 77 tumor-specific APA events. The numbers of annotated stop codons and CSs per gene are
shown in parentheses. For example, AKT2 (8, 9) means the gene has eight annotated stop codons and nine annotated CSs
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stringent requirement; the co-occurrence of at least one
significant increase (p < 0.01, Fisher’s exact test) and one
significant decrease in the frequencies of two CSs of a
given gene. This requirement was designed to minimize
the influence of gene expression variation on the compari-
son of CS frequencies. Without this requirement, an in-
crease or decrease in the CS frequency could simply be a
result of gene up- or down-regulation in the normal or
tumor samples. For example, if a gene is down-regulated
in tumor, its corresponding CSs will be observed less fre-
quently. Conversely, if there is an increase in the usage of
at least one other CS, it implies the involvement of APA
regulation mechanisms [1–4]. While such stringency
brings down the FDR (< 0.002), it also reduces sensitivity
by excluding potential APA events, consistent with an
earlier report [11] (e.g. CCND2 in COAD, HNSC, KIRC,
KIRP, LUSC, and THCA; DICER1 in BRCA, LUSC, and
STAD; RAB10 in BLCA, BRCA, COAD, LUSC, STAD,
and UCEC, data shown at the aforementioned URL [28]).
Of the 33 genes reported herein, 18 show tumor-specific

APA regulation in a single cancer. We propose two poten-
tial reasons for the lack of recurrence for these events.
First, a gene undergoing tumor-specific APA regulation in
one cancer may not do so in another. This includes cases
where APA regulation in multiple cancer types may be fol-
lowing different patterns, as we have highlighted for
RNF43. Second, we expect the requirement of concurrent
increase/decrease in CS frequencies to reduce our sensi-
tivity in detecting APA regulation events. As a result,
some tumor-specific APA regulation events may indeed
be recurrent in other cancer types, but below the detec-
tion limit of our approach.
This work presents the results of a targeted analysis.

The 114 genes we selected are not only cancer-related,
but also display a range of 3′-end patterns from simple
(e.g. FGF2) to complex (e.g. CDKN2A); thus, they are
suitable for studying tumor-specific APA and demon-
strating the complexities of APA regulation in human
cancers. We acknowledge their limitation in showing
genome-wide tumor-specific APA regulations. Still, the
genes inspected in our study reveal that APA regulation
in cancer is more complex than previously thought.
Despite our stringent requirements for reporting a
tumor-specific APA regulation event, a sizable propor-
tion of APA genes (33/114) were identified, and about
half of them (15/33) show recurrent tumor-specific APA
regulation across multiple cancers. Therefore, we think
that the specific events reported herein represent a wider
phenomena, and that many more additional events of
tumor-specific APA regulation remain to be discovered.

Conclusions
We identified widespread recurrent tumor-specific APA
regulation across multiple TCGA cancers, using standard

RNA-Seq data. We observed a wide spread complex APA
regulatory regime, with many genes using multiple CSs.
This new perspective demands a specialized vocabulary to
describe APA, as the conventional paradigm of 3’ UTR
shortening/lengthening is insufficient to describe these
observations. Further understanding of this complex
process would also yield insight into the potential func-
tional consequences of APA in normal and disease states.

Methods
RNA-Seq data
We used a copy of the TCGA RNA-Seq data hosted by
the Institute for Systems Biology-Cancer Genomics
Cloud (ISB-CGC) pilot on the Google Cloud Storage,
part of the Google Cloud Platform (GCP), mirroring the
repository hosted at the NCI Genomic Data Commons
(GDC, https://gdc.cancer.gov/). In total, 10,668 samples
were analyzed, with each sample identified by a unique
analysis ID. Sample types are generalized as ‘normal’
(solid tissue normal) and ‘tumor’ (which includes
primary solid tumor, metastatic, recurrent solid tumor,
additional - new primary). A more detailed description
of the protocols for data collection is provided in
Additional file 4: Supplementary Methods.

Design of the targeted CS prediction pipeline
RNA-Seq reads were first filtered against the candidate genes
using the biobloomcategorizer utility from BioBloomTools
(BBT) [35]. The resulting categorized reads were then assem-
bled into contigs with Trans-ABySS [36], and these contigs
were in turn aligned to the reference human genome with
GMAP [37]. The raw reads were aligned to both the assem-
bled contigs with BWA [38], and the reference genome with
GSNAP [39]. Both contig-to-genome and read-to-contig
alignment results were used to predict CSs with KLEAT
[21], and the read-to-genome alignments were used for both
expression level quantification and assessment of KLEAT
predictions.

Implementation of the pipeline
The pipeline was implemented in Python with the Ruffus
framework [40]. The software used include SAMtools-0.1.18
[41], BioBloom tools-2.0.12 [35], Trans-ABySS-1.5.2 [36],
ABySS-1.5.2 [42], GMAP-2014-12-28 [37, 39], and BWA
-0.7.12 [38]. The source code also includes a copy of the spe-
cific version of KLEAT.py used in this study. For its use on
the GCP, a Docker image of the pipeline can be built from
the Dockerfile included in the source code.

Execution of the pipeline
We executed the pipeline on the ISB-CGC powered by
the GCP. For each RNA-Seq sample, a virtual machine
(VM) instance with four vCPUs, 20 GB of memory, and a
sample size-dependent amount of persistent disk was
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used. For each instance, we requested a sufficient disk size
for storing both input data and intermediate and final re-
sults, calculated as 30 x Size(sample) + 50 GB. The scaling
factor of 30 is based on experience in pilot runs, and the
extra 50 GB was reserved for storing reference data. Goo-
gle Genomics Pipelines API (https://cloud.google.com/
genomics/reference/rest/v1alpha2/pipelines) was used to
orchestrate all VM instance tasks including VM creation,
deletion, and data transfer, and it substantially reduced the
administrative workload.
The reference data included an hg19 reference genome

[43], the GMAP/GSNAP [37, 39] index of hg19, a pre-
built BioBloom filter [35] of all the candidate genes’
transcripts, and a specific version of the gene annotation
used by KLEAT [21] (more details on annotation are
available in Additional file 4: Supplementary Methods).
The BioBloom filter was built with the biobloommaker

utility from BBT [35]. As for the input to biobloom-
maker, all transcripts of all the candidate genes from the
Ensembl annotation [25] were used. The annotated se-
quences were augmented by 300 bp flanking sequences
on both ends of each transcript to collect RNA-Seq
reads that were partially aligned to them.
During the de novo assembly of transcripts for each

sample, three k-mer sizes were used, depending on the
corresponding read length: {22, 32, 42}, {32, 52, 72}, and
{32, 62, 92} were used for samples with read lengths of
45–50, 75–76, and 100 bp, respectively.

Annotation pre-processing
The Ensembl annotation was downloaded from http://
ftp.ensembl.org/pub/release-75/gtf/homo_sapiens/Homo_
sapiens.GRCh37.75.gtf.gz, and then pre-processed before
being used. First, we extracted the annotated CSs of all pro-
tein coding and NMD transcripts that were CDS 3′
complete (without cds_end_NF tag, https://www.gencode-
genes.org/gencode_tags.html) for all candidate genes. To
calculate 3’ UTR lengths, we also extracted the mapping in-
formation between annotated CSs and stop codons from
transcripts. A more detailed description of the extraction
process can be found in Additional file 4: Supplementary
Methods. After extraction, since a predicted CS may not
have transcript-level resolution when associated with mul-
tiple transcripts, we discarded transcript-level information
from the annotation, and removed redundant mapping re-
lationships caused by multiple transcripts sharing the same
CS and stop codon. Lastly, we clustered the annotated CSs
as described in CS Clustering below.

CS prediction and post-processing
The CSs were predicted by KLEAT with all parameters
set to default. We post-processed the KLEAT results be-
fore any CS usage frequency analysis (Additional file 1:
Figure S3A). Specifically, we parsed the 10,668 KLEAT

output files (one per sample), using the information
from the following fields: gene, transcript_strand,
chromosome, cleavage_site, length_of_tail_in_contig,
number_of_bridge_reads, and max_bridge_read_tail_-
length. In total, 67,544,140 CSs were predicted across
10,668 samples. First, we filtered out off-target CSs by
only selecting those that were associated with the candi-
date genes, keeping 17% of the predictions. After initial
filtering by genes, we reassigned each remaining CS to
the closest clustered annotated CS (See Annotation
pre-processing), and then calculated the signed distance
between them. We also calculated the location of PAS
hexamer motifs, if present, searching up to a 50 bp win-
dow upstream of a predicted CS. When multiple PAS
hexamers existed in the window, the strongest one was
picked [26]. Next, we applied another filter to select the
most confident predictions. Specifically, a predicted CS
must meet at least one of the following two criteria to
be retained:

1) Its distance to the closest annotated CS was
required to be 25 bp or less. The 25-bp threshold
was chosen by plotting the distribution of distances,
and taking a threshold at the plateau. This criterion
was designed for selecting CSs that had already
been annotated.

2) One of the two strongest PAS hexamers AATAAA
and ATTAAA [27] were required to be within a
50 bp window, and at least one of the following
conditions of polyadenylation evidence was satisfied:
length_of_tail_in_contig ≥4,
number_of_bridge_reads ≥2, or
max_bridge_read_tail_length ≥ 4. The second
criterion is an empirical one that is independent of
annotation, and it is designed mainly for selecting
potential novel CSs.

We verified that AATAAA and ATTAAA were the
two most frequent PAS hexamers associated with the
predicted CSs both before and after the second filtering
steps (Additional file 1: Figure S3C). After the two filter-
ing steps, about 5% of the CSs were retained and clus-
tered as described in the CS Clustering section. The CSs
filtered out by this process are considered not robust
enough and thus omitted from further analysis to reduce
false positives. We also confirm that there is no gene
overlap among the 114 genes investigated here. The
post-processing steps resulted in 2136 unique predicted
CSs in 114 candidate genes across all samples.

CS clustering
We used the single-linkage hierarchical clustering algo-
rithm to combine CSs that were ≤ 20 bp apart, iterating
when necessary for clusters to converge. After clustering,
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we selected the mode CS coordinate within each cluster
as its representative location. If multiple modes existed,
the median of the modes was used. Then, every CS was
associated with one of the representative CSs, and mul-
tiple CSs associated with the same representative CS
were merged within each sample. The clustering method
was independently applied to both annotated and pre-
dicted CSs.
The clustering process inevitably decreases the predic-

tion resolution, so our analysis is not able to distinguish
CSs that were closer than the clustering cutoff (20 bp).
However, we verified that the clustering results were in-
sensitive to different cutoff values, even though the
number of clusters could vary.

CS usage frequency calculation
For a given CS in each gene, each cancer type and each
sample type (normal/tumor), its frequency is calculated
as the fraction of samples that were predicted to use it:

freq ¼ s
g

where s is the number of samples predicted to use the
CS, and g is the total number of samples with sufficient
gene expression level of this gene available for this
cancer type and sample type. For each sample, the gene
expression level is considered sufficient if at least one
CS was predicted within the gene; otherwise, the expres-
sion was considered insufficient, and the sample was
excluded from the frequency calculation.

Comparison of cleavage patterns between normal and
tumor samples
For every predicted CS of every gene in each cancer
type, we calculated its frequencies in both normal and
tumor samples, and then evaluated the significance of
the difference with a Fisher’s exact test. The input to the
test included the number of normal and tumor samples
with and without a CS predicted. The frequencies of
multiple CSs within one gene collectively formed a
cleavage pattern for that gene, and to report the differ-
ence in patterns between normal and tumor, we required
the co-occurrence of at least one significant increase (p
< 0.01) and one significant decrease in the frequencies of
two CSs, respectively.
To estimate the false discovery rate (FDR), we obtained

an upper bound for the p-value at the gene-cancer pair
level by multiplying the lowest p-values of its correspond-
ing significant (p < 0.01) increase and decrease in CS fre-
quency. Thus, pair-level p-values are less than 0.0001
(0.01 × 0.01). For gene-cancer type pairs that are not re-
ported, we assigned an arbitrary p-value of 1. In total 1596
hypothesis tests (114 genes × 14 cancer types) were

conducted, and applying the Benjamini-Hochberg proced-
ure [44], we obtain an FDR < 0.002. Note that our FDR
calculation is conservative since we only considered two
CSs when estimating the pair-level p-values while 40%
(31/77) of the reported APA events had three or more
CSs undergoing significant frequency changes.

Resolution of the 3’ UTR length change trends
We first mapped a predicted CS to the closest annotated
one. If it was > 25 bp away, the predicted CS was considered
potentially novel, and was ignored for length trend resolution
because of the uncertainty of its corresponding stop codon.
After trying a range of values, the 25-bp cutoff was selected
when the number of unmapped CSs reached a plateau.
After mapping we determined the associated stop co-

dons for each CS, also based on annotation. We do not as-
sume that a CS could be associated with all upstream stop
codons, in accordance with the transcript annotations,
which do not support an all-to-all type of relationship
(arcs in Figs. 2, 3 and Additional file 3: Figure S4). If a CS
was associated with only a single stop codon, its corre-
sponding 3’ UTR length was unambiguously calculated
and used for trend resolution. All CSs mapped to multiple
stop codons were ignored. A detailed description of the
trend resolution approach is provided in Additional file 4:
Supplementary Methods.

Python libraries used
In addition to the aforementioned Ruffus framework [40],
we used several other Python libraries for scientific com-
puting [45] to facilitate our analysis. The hierarchical clus-
tering algorithm implemented in SciPy-0.18.1 [46, 47] was
used for CS clustering. Pandas-0.19.0 [48] was used for
tabular data transformation and analysis. Matplotlib-1.5.3
[49] was used for plotting. Jupyter-1.0.0 notebook [50] was
used for tracking analysis steps and results.

Additional files

Additional file 1: Supplementary figures. It includes all supplementary
figures except Figure S4. Figure S1. Benchmark of DaPars, KLEAT and
ContextMap 2. Figure S2. Relevance of 114 select genes to cancer according
to COSMIC. Figure S3. Detail of CS predictions. Figure S5. Distribution of 3’
UTR lengths of protein coding and NMD transcripts. (PDF 2210 kb)

Additional file 2: Supplementary tables. It includes all supplementary tables.
Table S1.List of 114 cancer-related genes. Table S2. Summary of the 33 cancer
types. Table S3. Summary of the reported 33 genes involved in 77 events of
tumor-specific cleavage patterns. Table S4. Details of all CSs involved in the re-
ported 77 APA events. Table S5. Mapping relations between diseases in TCGA
and those in COSMIC (Supplementary Methods). (XLSX 235 kb)

Additional file 3: Figure S4. Illustration of all 77 identified events of
tumor-specific cleavage patterns. (PDF 5699 kb)

Additional file 4: Supplementary methods. Description of additional
methods. (PDF 157 kb)

Additional file 5: Figures available for download. (PDF 86 kb)
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