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Abstract

Background: Bacterial genomes have characteristic compositional skews, which are differences in nucleotide
frequency between the leading and lagging DNA strands across a segment of a genome. It is thought that these
strand asymmetries arise as a result of mutational biases and selective constraints, particularly for energy efficiency.
Analysis of compositional skews in a diverse set of bacteria provides a comparative context in which mutational
and selective environmental constraints can be studied. These analyses typically require finished and well-annotated
genomic sequences.

Results: We present three novel metrics for examining genome composition skews; all three metrics can be
computed for unfinished or partially-annotated genomes. The first two metrics, (dot-skew and cross-skew) depend
on sequence and gene annotation of a single genome, while the third metric (residual skew) highlights unusual
genomes by subtracting a GC content-based model of a library of genome sequences. We applied these metrics to
7738 available bacterial genomes, including partial drafts, and identified outlier species. A phylogenetically diverse
set of these outliers (i.e., Borrelia, Ehrlichia, Kinetoplastibacterium, and Phytoplasma) display similar skew patterns
but share lifestyle characteristics, such as intracellularity and biosynthetic dependence on their hosts.

Conclusions: Our novel metrics appear to reflect the effects of biosynthetic constraints and adaptations to life
within one or more hosts on genome composition. We provide results for each analyzed genome, software and
interactive visualizations at http://db.systemsbiology.net/gestalt/skew_metrics.

Keywords: Nucleotide skew, Leading strand, Lagging strand, Obligate intracellular, Compositional bias, Genome
metrics, Lyme disease

Background
Bacterial genomes display significant compositional biases,
both in terms of G + C content and in compositional
skews, i.e., strand asymmetries in ‘T’ vs. ‘A’ and ‘G’ vs. ‘C’
usage [1]. These biases are proposed to arise from the
complex interplay of differential mutation rates and mul-
tiple selective constraints [2, 3], particularly for energy
efficiency [4], involving the replication, repair, and tran-
scription enzymes. Bacterial chromosomes are replicated
in both directions, from the origin of replication site to
the terminator site; the “leading” strand is replicated
continuously while the “lagging” strand is replicated in
segments by different enzymes. Some genes are tran-
scribed in the same direction as they are replicated

(“leading strand genes”) while others are transcribed in
the reverse direction (“lagging strand genes”). Each en-
zyme mediates both mutational and selective constraints,
resulting in different compositional biases in different
replicative, transcriptional and translational contexts [4].
Analyses of skews in each context have the potential to
expose multiple compositional constraints and their inter-
actions, and ultimately inform about the DNA repair
capacity, metabolism, and lifestyle of the species [5, 6].
Compositional bias and strand asymmetry have been

measured and analyzed in a variety of ways and contexts
[5, 7]. These methods include the original definitions
(GC skew, (G-C)/(G + C); AT skew, (A-T)/(A + T)) [8],
slight variants (e.g. G/(G + C)) [1], variants based on the
three independent axes of Z Curves (x = R-Y, y = M-K,
and z = S-W) [9, 10], ANOVA [11], correspondence ana-
lysis of codon bias metrics [12, 13], and competing muta-
tional and selective parameters in an explicit evolutionary
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model [4], and have involved comparison of leading versus
lagging contexts, transcribed versus intergenic regions,
and restriction to each codon position.
Early examples of extreme compositional biases and

asymmetries were found among species in the family
Borreliaceae, tick-borne spirochetes including species caus-
ing Lyme disease (genus Borreliella, formerly Borrelia) as
well as relapsing fever (genus Borrelia) [14]. Since its dis-
covery in 1982 [15], the Borreliella burgdorferi spirochete
has been of particular interest in the United States as the
primary causative agent of Lyme disease. The sequencing
of B. burgdorferi B31 in 1997 allowed an in depth explor-
ation of the many intriguing features of the genome of
this bacterium, from its small size and unusual structure
(one large linear chromosome, several linear and circular
plasmids) to its very low G + C content [16].
Significant skews in the third position of codons have

been reported on both the leading (increased G and T)
and lagging (increased A and C) strands in B. burgdorferi
[12, 17]. Among the first 43 genomes investigated [1], B.
burgdorferi had the most extreme difference between
leading and lagging strand nucleotide compositions. Both
mutation and selection biases, variously induced by replica-
tion, transcription and translation constraints, have been
suggested to play a role in B. burgdorferi [18, 19] and more
generally, across all prokaryotes. The loss of some DNA re-
pair genes may also contribute to the low G + C content
and heightened skew seen in B. burgdorferi [6, 20].
Thanks to the much expanded availability of complete

genome sequences of bacterial species, it is now possible
to perform large-scale comparative genomics studies
[2, 4, 21, 22]. A much larger number of bacterial ge-
nomes are in draft form, assembled to different levels of
contiguity (contigs, scaffolds) and tentatively annotated
using automated pipelines. Most of the existing methods
for analyzing compositional biases and skews rely on fully
or mostly contiguous genomic sequence and on the
availability of precise and detailed annotation of genes and
direction of replication; such methods are much less applic-
able to the study of incomplete draft genomes. Furthermore,
existing methods largely assess the skews in individual ge-
nomes, without taking advantage of the vast knowledge
available on the genomes of other bacterial species.
To address these difficulties, we present here three novel

metrics for quantitative analysis of genome skews. Our
metrics address dependence of skew metrics on G + C
content and focus on the differences between nucleotide
usage on the leading versus lagging strands, which under-
lie interpretation of nucleotide skews in terms of both
selective and mutational processes. Our skews are also
robust to assembly status and can be computed on incom-
plete genomes with draft annotation, greatly increasing
the range of species that can be analyzed. Using these
metrics, we analyzed a large collection of bacterial

genomes—both complete and draft. We identified several
groups of species and genera as outliers on one or more
metrics. These outlier species include many pathogens
and tend to have unusual lifestyles, like B. burgdorferi.
In addition, we have generated and made publicly

available an interactive online resource for exploring the
skew metrics for thousands of bacterial genomes, and a
tool for generating visualizations of skew plots for any
bacterial genome of interest with available annotation.

Methods
Genomes studied
We obtained from the National Center for Biotechnology
Information (NCBI) the genome sequence (in FASTA for-
mat) and current annotation (in General Feature Format,
GFF) for 7948 bacterial species. We downloaded the
“assembly_summary.txt” file from NCBI’s genome FTP
site. This file provided various details on 86,822 genome
assemblies including the organism name, RefSeq category
(whether the genome considered “reference” for the
species, “representative”, or otherwise) and assembly level
(whether the genome is considered “completed”, or
whether it is “incomplete” - assembled to chromosome,
scaffold or contig level). Studying this file, we selected and
downloaded:

1) 1581 “completed” genomes, (125 “reference”, 1456
“representative”),

2) 3303 “incomplete” genomes, (2 “reference”, 3301
“representative”), and

3) 3064 additional genomes, not repeating species
names from the previous two sets, and prioritizing
more advanced levels of completion where multiple
assemblies are available for a given species.

For each genome, we included in the analysis all chro-
mosomes, plasmids and sequence contigs at least 100 kb
long. We removed from further analysis 210 genome
assemblies for which the longest available sequence was
shorter than 100 kb. The final set of genomes analyzed
included 7738 assemblies.

Identification of origins of replication and terminator sites
For each sequence (chromosome, plasmid, scaffold and
contig) in each genome assembly, we computed likely
origins of replication and replication terminator sites
using the GC disparity method [23, 24], namely by
identifying the minimum and maximum difference be-
tween the cumulative count of G and C along the gen-
ome. This method works well as long as replichores are
long [7] and is independent of gene annotation and ar-
bitrary window sizes; it can also efficiently determine
the likely direction of replication for sequence frag-
ments (scaffolds and contigs), whether or not they
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include an origin of replication or a terminator site (see
below for evaluation by simulation). When the resulting
origin or terminator site lay within 1% of either end of
the sequence, we corrected the location to coincide
with the nearest sequence end. Where available, we
used existing annotations of origin of replication. We
obtained the most recent version of the DoriC database
of origins of replication [25]. We compared the loca-
tions of origins of replication as predicted using the GC
disparity method to those annotated in DoriC and eval-
uated the discrepancy between the two as a fraction of
chromosome size, i.e., 0 for no discrepancy and 0.5 for
diametrically opposite annotations. DoriC includes
2733 annotations of origins of replication. For 532 spe-
cies, there are multiple origins annotated on the same
chromosome, in which case we retained the one with
lowest discrepancy score, i.e., nearest the location pre-
dicted by GC disparity. We observed 85 species (3.87%)
with discrepancy larger than 0.25 (red points, Add-
itional file 1: Figure S1) and an additional 88 species (4%)
with discrepancy larger than 0.1 (green points, Additional
file 1: Figure S1). Since DoriC does not include annota-
tions of terminator sites, when using DoriC annotations
for origins of replication we assumed the terminator site
to be located 0.5 chromosome lengths away from the
origin.

Segmentation and analysis
We used available gene annotation (in the GFF files)
to segment each sequence 100 kb or longer into a
series of contiguous and disjoint segments (of variable
lengths) which can be genes (including CDS, tRNA,
and rRNA) or intergenic segments. We stratified
intergenic segments by considering the relative orien-
tations of the flanking genes: between two genes in
the same orientation, or between two genes in oppos-
ite orientations (“head to head” or “tail to tail”). Infre-
quently, consecutive gene segments may be annotated
as overlapping. We excluded such overlapping seg-
ments from computation of skews since they have
overlapping and likely contradictory constraints.
We computed for each segment (genic or intergenic)

its length, G + C content, GC skew, and TA skew. We
further determined for each oriented segment (namely
genes and intergenic segments between genes transcribed
in the same orientation) whether their orientation is the
same or opposite to the direction of replication, i.e.,
whether they are on the leading or lagging strand, relative
to origin and terminator sites predicted as described
above. As described below, skew computations are
done relative to the sense strand of each transcript,
but stratified by whether the transcript is on the leading
strand during replication (by Pol III) or the lagging strand
(replicated by Pol I).

Computation of characteristic skews
Given a set of comparable segments in a genome assembly
(e.g., all genes on the leading strand), we computed skews
(GC skew = (G-C)/(G + C) and TA skew = (T-A)/(T + A))
for the set as the average of the corresponding individual
segment skews, weighted by segment length. We thus
computed four characteristic skews for each species:
leadGC and leadTA for leading strand genes, and lagGC and
lagTA for lagging strand genes. We also evaluated weighted
medians instead of weighted averages, which yielded very
similar results (not shown).

Computation of the cross-skew and dot-skew
The four characteristic skews for a species can be inter-
preted as two characteristic skew vectors: one for the
leading strand genes (leadGC, leadTA) and the other for
the lagging strand genes (lagGC, lagTA). We computed
the cross-skew as:

cross‐skew lead; lagð Þ ¼ leadj j• lagj j• sin θð Þ ð1Þ
where |lead| = sqrt(leadGC

2 + leadTA
2), |lag| = sqrt(lagGC

2 +
lagTA

2), and θ is the angle between the two vectors.
Similarly, we computed the dot-skew as:

dot‐skew lead; lagð Þ ¼ leadj j• lagj j• cos θð Þ ð2Þ

Computation of the residual skew
We modeled each of the four characteristic skews
(leadGC, leadTA, lagGC and lagTA) as a function of the G + C
content for 7738 bacterial genome assemblies. For each
characteristic skew we separated the genome assemblies
with G + C content below or above 50% G + C (3635 and
4103 genomes, respectively), and fitted a robust regression
line to each subset using the R function MASS::lqs()
(least trimmed sum of squares, [26]). We then computed
a single skew deviation magnitude metric (the residual
skew) for each genome as the root mean square devi-
ation (RMSD) from the regression line across the four
characteristic skews.

Identification of outliers
For dot-skew and cross-skew, we identified outliers at
both ends of the distribution using the MAD-Median
Rule [27] at a significance threshold of 1%. Residual
skew has a non-negative distribution, and only atypically
high values are of interest; we observed that distribution
of residual skew is well approximated by a χ2-distribution
with 5.8 degrees of freedom, divided by 100 (5.8/100 is the
mean observed residual skew value). We therefore used
the 99th percentile of this model distribution (0.1647) as a
1% significance threshold.
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Simulation of draft genomes
Starting from a completed genome sequence, we simu-
lated progressively less finished draft genomes by ran-
domly choosing from 1 to 100 cut sites, subdividing the
sequence and annotation into contigs based on the cut
sites, and computing all metrics as above. We ignored
annotations straddling cut sites and, as above, resulting
contigs shorter than 100 kb.

Results
Overview of the strategy
We have developed a method for analyzing bacterial
genome sequences in four main steps. First, we identify
the origin of replication (ori) and terminator sites (ter),
either using the GC discrepancy method or, where avail-
able, existing annotation; these determine the direction
of replication (leading or lagging strand) for each seg-
ment of the genome (Fig. 1a). For draft genomes, each
contig or scaffold is analyzed separately to determine the
presence of ori/ter sites and to estimate direction of rep-
lication (Fig. 1b). Second, we segment the genome based
on gene annotation, classify genes according to their dir-
ection of transcription (on the leading strand or on the
lagging strand) and compute GC and TA skews for each
segment (Fig. 1c). Third, we aggregate the skews of all
genes by strand (leading or lagging), compute four
characteristic skews and interpret these as two vectors
(Fig. 1d). Finally, we compute three skew metrics, either
based on the parameters of one genome (dot-skew and
cross-skew) or by integrating information from many
genomes (residual skew) (Fig. 1e).

Robustness to fragmentary status of draft sequences
A significant advantage of our method for determining
origins of replication and terminator sites based on GC
disparity is that it can be applied to finished and draft
sequences alike. Since the GC disparity changes nearly
monotonously along chromosomes, particularly for highly
skewed species (Fig. 1a), it is possible to hypothesize a dir-
ection of replication for any fragmentary sequence (Fig. 1b).
We evaluated robustness by simulation: starting from the

finished sequences of the large (4.6 Mb) E. coli genome and
the small (910 kb) B. burgdorferi main chromosome, we
simulated progressively less finished draft versions of these
genomes. The resulting cross-skew and dot-skew metrics
were well approximated from simulated draft versions;
skew metric variation increased with decreasing simulated
genome draft length (Additional file 1: Figure S2). Other
skew parameters were also robust to significant fragmenta-
tion of the genome (Additional file 1: Figure S3).

The characteristic skews of B. burgdorferi genes
In B. burgdorferi, the majority of genes are transcribed
in the same direction as they are replicated (‘leading

strand genes’, blue in Fig. 1) while some are transcribed
in the direction opposite to replication (‘lagging strand
genes’, orange in Fig. 1). Leading strand genes tend to
display stronger GC skew (Fig. 1c), while lagging strand
genes have strong TA skews. In intergenic segments, the
two skews tend to be positively correlated (not shown).
Using the strategy delineated above, we computed the

four characteristic skews for B. burgdorferi: leadGC = 0.258,
leadTA = 0.022, lagGC = 0.015 and lagTA = 0.211. These four
characteristic skews can also be represented in polar coor-
dinates as two vectors (Fig. 1d). The vector corresponding
to leading strand genes has magnitude 0.259 at angle
4.75°, while the vector corresponding to lagging strand
genes has magnitude 0.211 at angle 86.08°. In comparison
with many other bacterial species (see a few examples in
Fig. 2), we observed that such pattern of strong, nearly
orthogonal vectors is unusual. For example, we observed
small-magnitude vectors in Spirochaeta thermophila and
Mycobacterium tuberculosis, and nearly diametrically
opposed vectors in Fusobacterium periodonticum and
Anaplasma phagocytophilum. Some bacterial species
(including Blochmannia floridanus and Ehrlichia canis)
had a similar pattern to that observed in B. burgdorferi.
We discuss these in more detail in subsequent sections.
To quantify the unusual pattern observed in B. burgdor-

feri, we defined two metrics, which we call the cross-skew
and dot-skew (see Methods). The cross-skew metric reflects
the orthogonality and magnitude of the vectors, and thus is
expected to be particularly strong for B. burgdorferi. The
dot-skew metric emphasizes the collinearity of the vectors.
We computed the cross-skew and dot-skew for B. burgdor-
feri: cross-skew = 0.0541, dot-skew = 0.0083. For other
species within the Borrelia and Borreliella genera, these
respectively ranged from 0.0509 to 0.0727 and from 0.0044
to 0.0314. These cross-skew values are much larger than
observed for other bacteria, as detailed below. In contrast,
we computed much smaller cross-skew values for S. ther-
mophila (0.0051), M. tuberculosis (7.2 10− 5), F. periodonti-
cum (− 0.0028) and A. phagocytophilum (0.0089), reflecting
their small magnitude skew vectors and/or their angles.

Learning from thousands of genomes
We computed characteristic skews, angles and skew met-
rics for 7738 bacterial genome assemblies (see Methods,
Additional file 2: Table S1). We observed genomes with
strong skews and with negligible skews, at all possible an-
gles between the characteristic skew vectors. We also cre-
ated a web interface for generating species-specific skew
plots and exploring their skew metrics, available at [28].
Visualization of these species-specific parameters demon-
strates the wide diversity of bacterial genome composition.
We compared the angles of the characteristic skew vectors
(Fig. 3) and found that both tend to be constrained in
low-GC bacteria (blue circles in Fig. 3, upper panels in
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Additional file 1: Figure S4), while they can present all
possible values in high-GC bacteria (red circles in Fig. 3,
lower panels in Additional file 1: Figure S4). Nevertheless,
we found that the combination of these two angles is
highly constrained: there is a clear avoidance of a large
range of possible angular combinations in which the
leading-strand and lagging-strand angles are both simul-
taneously in the range [90°..270°]. Of the few species that
display these combinations, most have strong discrepan-
cies between their annotated and computed origins of
replication (Additional file 1: Figure S5).

We compared the four characteristic skews of 7738 bac-
terial genome assemblies with their corresponding G + C
content (Fig. 4). We observed that all four skews are
correlated with G + C content, and largely decrease in
absolute value with increasing G + C content. While the
mechanism behind this remains unclear, it could be
largely explained by the high frequency of cytosine de-
amination experienced by many bacteria [20, 29].
Single-stranded DNA is susceptible to oxidative damage
during both replication and transcription, leading to
cytosine deamination and increased occurrence of C → T

a

b

c d

e

Fig. 1 Overview of the method, using B. burgdorferi as example. a: In the absence of annotated origins of replication, the minimal value of the
cumulative G-C graph is used to determine the likely origin of replication (ori) and hence the predicted directions of replication (black arrows)
leading to terminator sites (graph maxima). Genes transcribed in those directions (blue arrows) are considered to be on the leading strand, while
genes transcribed in the opposite directions (orange arrows) are on the lagging strand. b: Treatment of draft genome assemblies. Each contig is
analyzed separately to determine likely directions of transcription, from minimal to maximal values of cumulative G-C. Putative origins of replication,
terminator sites and gene orientations are determined as above. c: For each gene on the leading strand (blue) or lagging strand (orange), TA and GC
skews are computed relative to the leading strand. Circle area is proportional to gene length. The vectors point from the origin (zero skews) to the
weighted average of skews for genes on the leading strand and genes on the lagging strand. d: definition of the characteristic skews (leadGC, leadTA,
lagGC and lagTA), and the angle θ between the two vectors. e: The three metrics computed based on the characteristic skews and the angle θ. The
multiple arrows leading to the third metric (residual skew) denote that this metric integrates information from many genomes

Joesch-Cohen et al. BMC Genomics  (2018) 19:528 Page 5 of 12



mutations. Replication-related mutations appear on the
leading strand and transcription-related mutations occur
on the coding strand, which is the leading strand for most
bacterial genes [30]. This produces GC skew values that
are higher (typically: larger positive values) on the leading
strand and lower (typically: larger negative values) on the
lagging strand, TA skew values that are lower (more nega-
tive) on the leading strand and higher (more positive) on
the lagging strand, and lower overall G + C content. These
trends are all observed here. However, if there are a
significant number of genes oriented with the coding
strand on the lagging strand, and if the level of
transcription-related mutation is high, outliers may occur.
This is also observed here for a small number of genomes
at the low end of the G + C scale. As previously reported
([6, 22], Fig. 4), the relationships between skews and

G + C content are different for bacterial genomes
with low vs. high G + C content. We also observed a
largely bimodal distribution of G + C content among
sequenced bacterial genomes (Fig. 5, lower panel). We
therefore fitted lines to the characteristic skews separately
for bacterial genomes below and above 50% G + C con-
tent, and computed the deviations from the expected
skews for each bacterial genome assembly. We used the R
function MASS:lqs(), the leading robust linear regression
method, to ensure that these lines accurately reflected the
typical pattern, ignoring outliers.
The leadGC and lagTA values of Borreliaceae genomes

are large and are clear outliers relative to the entire data
set of 7738 genomes (Fig. 4). On the other hand, while
the Borreliaceae leadTA and lagGC are close to zero and
are not outliers relative to the entire data set, they are

Fig. 2 Examples of TA vs. GC skew plots for several bacterial species. Leading strand genes in blue, lagging strand genes in orange, intergenic segments
flanked by genes in equal orientation in green, and intergenic segments flanked by genes in opposite orientations in red; circle area is proportional to
segment length. Each plot displays skews in the range [− 0.5, 0.5]. Lower-left inset for each plot: average genomic G + C content for that species
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unusual for bacterial species with low G + C content,
which tend to have negative values for these characteristic
skews (Fig. 4). Thus, Borreliaceae genomes are unusual for
all four characteristic skews. The deviations of characteristic
skews for B. burgdorferi from the skews predicted by the
fitted lines at the G + C content for B. burgdorferi are
0.091, 0.120, 0.106 and 0.124 for leadGC, leadTA, lagGC and
lagTA, respectively. Borrelia species that cause relapsing
fever have even larger deviations from the expected values.

Three novel metrics for analyzing genome skews
We described above several parameters for quantifying
skews in individual bacterial genomes: the four charac-
teristic skews and the magnitudes and angles of the
vectors they define. Using these parameters, we defined
two interrelated metrics for comparing and contrasting
the skews of leading strand vs. lagging strand genes: the
cross-skew and the dot-skew (see Methods). Further-
more, taking advantage of the availability of many

Fig. 3 Relationship between the leading-strand angle and the lagging-strand angle for 7738 bacterial genomes. Colors denote GC content,
ranging from low (blue) to high (red). Point sizes are proportional to the product of the magnitudes of the leading-strand and lagging-strand
vectors. Overlaid arrows denote the interpretation of the angles as in Fig. 1 (blue = leading strand, orange = lagging strand)
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thousand bacterial genome assemblies, we estimated ex-
pected values for each characteristic skew, as a function
of the G + C content. We then used the observed devia-
tions from these expected values to define a third metric:
the residual skew.
We computed these three metrics for 7738 bacterial

genome assemblies (available at [28]) and evaluated their

relationship with G + C content (Fig. 5). All three are
more independent of G + C content than the four char-
acteristic skews; however, a large number of low G + C
taxa have significantly negative dot-skew. Since G + C is
not necessarily correlated with metabolism or lifestyle,
these statistics may be more closely related to metabol-
ism or lifestyle. For high G + C content bacteria, we
observed that the cross-skew and the dot-skew are much
more constrained than for lower G + C content species;
these two metrics are most diverse for bacterial genomes
under ~ 35% G + C. Compared to these two metrics, the re-
sidual skew is more diverse for all levels of G + C content.
Borreliaceae genomes are clear outliers for all three metrics.
We compared dot-skew, cross-skew, and residual skew

across 10 large clades on the same species discussed in [4]
(Additional file 1: Figure S7). Dot-skew and cross-skew
values were clustered at zero for the largest and most G +
C diverse clades (e.g., Proteobacteria, Firmicutes); dot-skew
clusters below zero only for certain very low G + C groups
(Tenericutes, Thermotogae). Clade therefore provided little
ability to explain dot- or cross-skew. In contrast, residual
skew had a broader distribution within each clade, and
clade-specific typical values. In contrast to results reported
from the Z-curve correlation metric [22], which observed
similar skews in Firmicutes, Tenericutes, and Thermotogae
relative to other large clades, including Proteobacteria,
dot-skew and cross-skew distributions for Proteobacteria

Fig. 4 Relationship between the four characteristic skew values and G + C content, for 7738 bacterial genomes, highlighting Borreliaceae species
(red points). Red lines represent robust regression lines computed by least quantile of squares method

Fig. 5 A: Skew metrics vs. G + C content for 7738 bacterial genomes,
highlighting Borreliaceae species (red points). From top to bottom:
cross-skew, dot-skew, residual skew, and histogram of number of
species studied
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are highly similar to their distributions in Firmicutes, and
overlap significantly with Tenericutes and Thermotogae.

The landscape of bacterial skews
Finally, we combined all three metrics to generate a map
of genome skews for all bacterial genomes (Fig. 6). In this
map, most high G + C content bacteria are restricted to
near the origin, while low G + C content bacteria show a
more diverse spread.
We identified outlier taxa for each skew metric inde-

pendently at a 1% significance level (see Methods,
Additional file 1: Figures S8, S9; identified taxa are listed
in Additional file 3: Table S2). Even at this stringent
significance level, 1666/7738 (21.5%) of all taxa were
considered outliers with negative dot-skew values,
with a clear trend toward more negative dot-skew
with decreasing G + C content for a subset of taxa.
In summarizing the relationship between genus and skews
(Additional file 3: Table S2a), we excluded outliers with
negative dot-skew from consideration, and focused on
association between genus and outliers of any other type.
The most extreme outliers observed are Borreliaceae,

particularly the group of Borrelia genomes that cause
relapsing fever. Borreliaceae species have a low G + C
content genome suggesting an increased indifference
towards GC rich codons and thus energetically cheaper
amino acids. This is further supported by the fact that
they lack amino acid and nucleotide synthesis pathways.

The observed strand specific nucleotide usage and skew
patterns in these bacteria may thus be driven by a
relaxation of the selection for energy efficiency [4]. We
computed selection coefficients for the genomes dis-
cussed in [4] and provide plots of these values against
dot- and cross-skews (Additional file 1: Figures S10,
S11). For Borreliaceae, we observe relaxation of selection
on TA biases on the lagging strand.
Our finding on the difference in genome skew metrics

among the relapsing fever and the Lyme causing species
could be associated with their unique ecological and
vector-related traits such as the variety of vectors, speed
of transmission to a new host and maintenance in nature
by transovarial transmission. For example, the vectors
for the relapsing fever Borrelia species represent a var-
iety of arthropods while for the Lyme disease causing
group, the widely known competent vectors are certain
species of the prostriate genus Ixodes [31]. In compari-
son to the Lyme disease spirochetes, most relapsing
fever Borrelia are efficiently transmitted to the host soon
after feeding by the tick begins [31, 32]. In addition,
most species in the relapsing fever Borrelia group exhibit
transovarial transmission in their tick vectors [31]. Ge-
nomes in the genus Ehrlichia (see example in Fig. 4) are
also outliers in all three metrics and show similar skew
values as Borreliella genomes. Ehrlichia are intracellular
vector-borne pathogens of vertebrates; like Borrelia, they
have diminished biosynthetic abilities [33]. Ehrlichia are

Fig. 6 Integration of skew metrics (cross-skew vs. dot-skew, point size represents residual skew) for 7738 bacterial genomes, highlighting some
genera of interest. All genomes colored by G + C content, ranging from low (blue) to high (red)
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in the Rickettsiales order and are phylogenetically unre-
lated to Borreliaceae; the genome of Ehrlichia canis has a
single circular chromosome and no plasmids [34]. Mul-
tiple other genera became evident as outliers of interest,
discussed below.

Discussion
We have devised three novel metrics to study bacterial
genome composition biases, integrating knowledge of
the nucleotide skews in annotated genes, the direction
of transcription relative to replication, and the G + C
content of the genome.
The first two metrics (cross-skew and dot-skew) are

computed based on an individual genome’s characteristic
skew vectors, and they quantify the strength and relation-
ship between the mutation and selection pressures on
genes on the leading vs. lagging strands. Since the two
metrics depend on the magnitudes of these vectors and
the angle between them, identical skew metric values
might be computed for bacterial species that differ, for
example, in leading strand angle while maintaining a
constant angle between the two vectors. We found this to
be the case only for bacteria with very small skews, leading
to cross-skew and dot-skew values near zero for all pos-
sible leading strand angles (Additional file 1: Figure S6).
Strong and positive dot-skew values (Fig. 6, right) indi-

cate similar compositional constraints on all genes, rela-
tive to the direction of replication; an example of this
pattern is observed in the obligate intracellular parasite
Chlamydia pneumoniae [35] (Fig. 2). Conversely, strong
and negative dot-skew values (Fig. 6, left) reflect oppos-
ite compositional constraints on leading and lagging
strand genes (i.e., transcribed in the same or opposite
direction as they are replicated); extreme examples of
this pattern are observed in fusobacteria including Fuso-
bacterium periodonticum [36], Leptotrichia buccalis [37],
and Streptobacillus moniliformis [38], the causal agent of
rat bite fever. Positive dot-skew values can thus be inter-
preted as reflecting constraints driven mostly by the rep-
lication process, while negative dot-skew values largely
reflect transcriptional and translational constraints that
arise from preference for nucleotides and amino acids
that are energetically cheaper to synthesize [4].
The cross-skew quantifies the strength and orthogonal-

ity of the compositional skew vectors for leading and lag-
ging strand genes. Genomes with high cross-skew values
(Fig. 6, top) demonstrate skew patterns inconsistent
with purely replicational or transcriptional constraints;
Borreliaceae and Ehrlichia species are prime examples of
this pattern. Borreliaceae and Ehrlichia species lack amino
acid and nucleotide synthesis pathways; the observed
elevated cross-skew values in these pathogens may thus
reflect a relaxation of the selection for energy efficiency
that drives nucleotide usage and thus skews [4], possibly

combined with more complex constraints imposed by a
life cycle that involves recurring transitions between mam-
malian and invertebrate (tick) hosts. We observed similar
skew patterns in Kinetoplastibacteria (Fig. 6), which are
endosymbionts of insect-infecting trypanosomatid flagel-
lates [39] with multiple biosynthetic adaptations to life in
the intracellular environment. Likewise, we observed dis-
tinct skew patterns among Blochmannia species (Fig. 6);
these are also intracellular endosymbionts that lost
multiple biosynthetic pathways and rely on the metabolic
machinery of their carpenter ant hosts [40]. Other groups
with a more modest, but significant enrichment for high
cross-skew include other host-associated anaerobes such
as Bacteroides, Lachnospiraceae, Eubacterium spp., and
other Clostridiales, and extremophiles such as Thermoa-
naerobacter, Thermosipho, and Thiomicrospira. In contrast,
heavily sampled clades that appear to have fewer than
expected cross-skew, residual skew, or positive dot-skew
outliers include Actinobacteria (Streptomyces, Mycobacter-
ium, Corynebacterium, Nocardia), γ-Proteobacteria
(Pseudomonas, Vibrio), and Bacilli (Bacillus, Lactobacillus,
Streptococcus, Paenibacillus).
The third metric (residual skew) capitalizes on the

current availability of thousands of complete or draft
bacterial genomes to empirically assess how unusual a
genome’s skews are relative to the expected values as
learned from other genomes. This analysis, which has
not been possible until recent times, revealed that bac-
terial genomes with low G + C content typically have
negative TA skews in leading strand genes and negative
GC skews in lagging strand genes, and that these nega-
tive skews increase in magnitude as G + C content de-
creases (Fig. 4). On the background of these trends, the
weakly positive skews observed in Borreliaceae species
are highly unusual. This pattern is not evident relative to
the global collection of genomes since the weakly posi-
tive Borreliaceae skews are comparable to those ob-
served in high G + C content bacteria.
The presence or absence of chromosomal maintenance

pathways can shape genome composition skews. Outlier
genomes such as B. burgdorferi, Candidatus Kinetoplasti-
bacterium crithidii, Ehrlichia chaffeensis, Buchnera aphi-
dicola, and Blochmannia floridanus, have reduced
genomes with more limited repair mechanisms. Yet the
major pathways are all present, even if they tend to con-
tain fewer genes than bacteria such as Escherichia coli and
Yersinia pestis (see Additional file 4: Table S3). No single
gene or simple combination of genes defines the outliers.
The outliers do lack mismatch-repair mutH, recombination
lexA, and base excision repair mug, but so do non-outlying
genomes such as Francisella tularensis. Our regression
analysis quantifies these deviations from expectation and
integrates them into a unified metric that highlights the
unusual skews in Borreliaceae species (Fig. 5) and also
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identifies other species as having skew patterns that are sig-
nificantly unusual relative to the bulk of bacterial species.
Of particular note are Phytoplasma species (Fig. 6); these
are intracellular pathogens of multiple plant species that
use insects as transmission vectors [41, 42], in similarity to
Borreliaceae and Ehrlichia for mammals.
Through analysis of all genic regions of any conserva-

tion level, our metric measurements could accurately
predict and/or support taxonomical distinctions among
closely related genomes with shared biological and genetic
features. An example is the Lyme-causing and relapsing
fever groups of spirochaetes that have long belonged to
the same genus Borrelia. The two groups have just re-
cently been split into two distinct genera [31].

Conclusions
We described here three novel metrics for quantifying
bacterial genome composition skews and presented ex-
amples of their application to identify bacterial species
with unusual skew patterns. Our metrics take advantage
both of information about the genome of a single species
and of patterns discernable from studying genomes of
thousands of species - even those not yet finished and
fully annotated. While some of the genera identified as
skew outliers are phylogenetically close (e.g., Fusobacter-
ium, Streptobacillus and Leptotrichia), our metrics iden-
tified similar skew patterns in genera of bacteria that are
phylogenetically unrelated, like Borrelia, Ehrlichia and
Kinetoplastibacterium, and (when considering the re-
sidual skew) Phytoplasma. These very disparate bacterial
species share lifestyle characteristics (intracellularity and
transmission via insect vectors), suggesting that our
novel metrics successfully capture effects on genome
composition of biosynthetic constraints and of inter-
action with the hosts.
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