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Abstract

Background: Infections with the West Nile virus (WNV) can attack neurological tissues in the host and alter gene
expression levels therein. Several individual studies have analyzed these changes in the transcriptome based on
measurements with DNA microarrays. Individual microarray studies produce a high-dimensional data structure with
the number of studied genes exceeding the available sample size by far. Therefore, the level of scientific evidence of
these studies is rather low and results can remain uncertain. Furthermore, the individual studies concentrate on
different types of tissues or different time points after infection. A general statement regarding the transcriptional
changes through WNV infection in neurological tissues is therefore hard to make. We screened public databases for
transcriptome expression studies related to WNV infections and used different analysis pipelines to perform
meta-analyses of these data with the goal of obtaining more stable results and increasing the level of evidence.

Results: We generated new lists of genes differentially expressed between WNV infected neurological tissues and
control samples. A comparison with these genes to findings of a meta-analysis of immunological tissues is performed
to figure out tissue-specific differences. While 5.879 genes were identified exclusively in the neurological tissues, 15
genes were found exclusively in the immunological tissues, and 44 genes were commonly detected in both tissues.
Most findings of the original studies could be confirmed by the meta-analysis with a higher statistical power, but
some genes and GO terms related to WNV were newly detected, too. In addition, we identified gene ontology terms
related to certain infection processes, which are significantly enriched among the differentially expressed genes. In
the neurological tissues, 17 gene ontology terms were found significantly different, and 2 terms in the immunological
tissues.

Conclusions: A critical discussion of our findings shows benefits but also limitations of the meta-analytic approach.
In summary, the produced gene lists, identified gene ontology terms and network reconstructions appear to be more
reliable than the results from the individual studies. Our meta-analysis provides a basis for further research on the
transcriptional mechanisms by WNV infections in neurological tissues.
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Background
Epidemiology of West Nile fever
West Nile virus [(WNV); family Flaviviridae, genus Fla-
vivirus] is one of the most important emerging virus
infections in Europe. Repeated outbreaks in Europe and
the dramatic spread of the virus in the United States in the
past years [1–3] have illustrated the high potential of this
virus to spread globally. Global trade and travel activities
further increase the risk ofWNV import to formally unaf-
fected region for example Germany and Central Europe
[4, 5]. Since its first isolation in Uganda in 1937 [6], WNV
has been isolated from mosquitoes in Eurasia [1] and
Australia [7, 8]. Moreover, following a single introduction
in New York in 1999, WNV has spread throughout the
Americas [2, 3]. In nature West Nile virus is maintained
in an enzootic cycle involving ornithophilic mosquitoes
and birds but can infect humans, equines and other verte-
brates as illustrated by repeated cases of WNV encephali-
tis in horses and humans [7, 9–11]. Human infection of
WNV usually results in a mild febrile illness including
fever, headache and fatigue which last from 1 to a few
days (West Nile fever) [12]. However, severe cases with
cognitive dysfunction and flaccid paralysis have also been
observed [13, 14]. The initial mechanism by which WNV
spreads in the body and finally reaches the central nervous
system (CNS) following a mosquito bite is not completely
clear. It is thought that initial replication of the virus at
the bite site takes place in skin epithelial cells and regional
lymph nodes. Following primary viremia, WNV spreads
to the reticuloendothelial system (RES; e.g kidney, spleen)
[15]. This may lead to the onset of unspecific symptoms
and a secondary viremia due to replication of the virus
within the RES. In rare case of CNS involvement, the virus
spreads from the secondary viremia into the CNS. The
mechanism by which the virus crosses the blood brain
barrier (BBB) is not entirely clear, although some evi-
dence points to an involvement of tumor necrosis factor
alpha (TNF-α)-mediated changes in endothelial cell per-
meability, which enables the virus to enter the CNS [16].
MatrixMetalloproteinase 9 (MMP9) enhances the perme-
ability of the BBB, as well [17]. In contrary to these infec-
tion promoting genes, IFN-λ shows protective effects by
strengthening the BBB-integrity [18]. Other studies with
mice indicate that infection or passive transport through
the endothelium or choroid plexus epithelial cells, infec-
tion of the olfactory neurons and spread to the olfactory
bulb, transport by infected immune cells, or direct axonal
retrograde transport from infected peripheral neurons
might also allow WNV to cross the BBB [19–22]. How-
ever, the exact mechanisms as well as the involvement
of the immune response mounted by CNS cells towards
WNV are still under heavy investigation (reviewed in
Winkelmann et al. 2016 in [23]). The analysis of tran-
scriptional responses initiated in different tissues after

infection withWNV greatly aids further understanding of
diseases development.

High-throughput gene expression studies onWest Nile
virus infection
Modern technologies for biological research such as DNA
microarrays [24] or high-throughput RNA-sequencing
(RNA-seq) [25] allow to simultaneously measure gene
expression levels of thousands of genes in biological sam-
ples. With such methods of gene expression profiling it is
possible to identify genes involved in the pathogenesis of
diseases and the data can contribute to the understand-
ing of the molecular mechanisms in cells and tissues. In
the context of infectious diseases it is often of interest to
compare gene expression profiles between infected and
non-infected individuals, between different stages after
infection or between different tissues. Gene expression
studies can help to better understand the role of the
transcriptome in immune response [26] or immune dys-
regulation [27]. In the research on WNV infections many
gene expression studies have been performed to corre-
late expression profiles with different experimental factors
such as genetic background [28], infected tissue [29], time
after infection [30] or expression of specific genes in the
host [31].

Meta-analysis of high-throughput gene expression studies
and public databases
Individual scientific experiments or studies that are based
on small sample sizes— such asmanymicroarray or RNA-
seq studies — usually have only a small statistical power
and thus a limited level of scientific evidence. As a conse-
quence, the reproducibility of study results is difficult and
methods for research synthesis become more and more
important [32, 33]. As one approach of research synthesis,
individual studies are often combined by meta-analysis.
Employing meta-analysis is widespread in the area of
clinical trials and it has also become more important in
the field of molecular high-throughput data. Since high-
throughput data typically exhibits thousands of features
(e.g. genes, mRNAs, proteins, etc.) that are observed on a
much smaller number of independent biological samples,
results of data analysis are even less robust than analysis
of low-dimensional data [34]. Methods for meta-analysis
of molecular high-throughput data were for example pro-
posed for DNA microarray data [35, 36] or RNA-seq
experiments [37]. The design of individual studies that are
aggregated in meta-analyses is usually restricted to stan-
dard two-group comparisons (e.g. diseased versus control)
[35]. In some rare cases, the correlation of expression data
with patient survival is also considered [38]. Most of the
proposed methods for meta-analysis of gene expression
studies concentrate on either the combination of p-values,
the combination of effects sizes (the log2 fold change in
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the case of gene expression data), or the direct merging
of the individual expression data sets [36]. In contrast to
meta-analysis of clinical trials, data merging is a possible
approach for meta-analysis of transcriptome expression
data since many journals ask their contributing authors
to submit their gene expression data to public reposito-
ries such as ArrayExpress (AE) [39] or Gene Expression
Omnibus (GEO) [40].

Meta-analysis of gene expression after West Nile virus
infection
In order to identify genes that show an altered expres-
sion due to WNV infection and to obtain findings with an
increased level of evidence, we performed a meta-analysis
of high-throughput gene expression data currently avail-
able in public repositories. So far, no such comprehensive
analysis has been published. A first approach of a meta-
analysis in the context of WNV infections was conducted
by Lim et al. (2017) [41], which was however only a
comparison of their own transcriptome expression data
with external literature findings by means of Venn dia-
grams. They did not merge the data or individual results
by statistical methods. We are further interested in find-
ing gene ontology (GO) terms (categorizing molecular
functions, biological processes and cellular components)
that are linked to the selected genes which play a role in
WNV infections. Therefore, we use gene set enrichment
analysis (GSEA) as a further part of our meta-analysis.
From the top selected genes, we derive relevance networks
that characterize the correlation between these genes. We
compare the network derived in the infected samples with
that from the control samples. In summary, our analysis
provides a holistic approach to study the transcriptome
of neurological, but also immunological tissues during
WNV infection. Since meta-analysis of high-dimensional
expression data is not straightforward, we implement dif-
ferent approaches (e.g. direct merging of the expression
data from the individual studies or p-value combination
methods). We take the overlap of the results of the differ-
ent approaches as final result. With this we decided to run
a conservative analysis that aims to reduce false positive
finding by allowing much more false negative results.
In this article, we first describe the database screen-

ing and selection of appropriate data sets, as well as the
bioinformatics methods and tools for meta-analysis. The
results section details the outcome of different variants
of meta-analysis and compares our findings with those
of the individual studies. Finally, we critically discuss our
findings as well as the benefits and limitations of our
meta-analyses.

Methods
In this section, we describe the databases searches
and selection process for comparable studies and detail

the bioinformatics methods and approaches for meta-
analysis.

Database search and grouping of samples
The two databases AE and GEO were searched for gene
expression data using the search term 〈“west nile” OR
“west nile virus” OR WNV〉. On 10-11-2017 the GEO
query with this search term returned 51 studies, while the
AE query returned 36 entries of which 35 were already
included in the GEO results. The identified datasets
reflect a variety of experimental designs and different
study questions. In order to combine comparable studies,
we grouped the datasets based on several criteria, includ-
ing the species from which the samples were taken, the
organ system the samples belong to, the type of the experi-
ment (gene expression profiling or other high-throughput
screenings) and the sample material (e.g. full organ, iso-
lated cells or cell lines).
Not all samples of an individual study were necessarily

used to build a group. We did not consider studies which
were provided by the same authors and representing the
same experiment. In these cases it could not be clarified
whether the same experiment was conducted twice and
which version was the correct one.When ‘time after infec-
tion’ was an experimental factor, we tried to select samples
that were taken at approximately the same time as in
other experiments. In the same way, cell or organism line
and breed were taken into account were possible. Fig. 1
summarizes the study selection process which resulted in
three suitable groups (see Table 1). These groups were
all related to samples from mice. No group could be
formed for human samples because the identified stud-
ies appeared to be replications from the same group of
authors. For other species, the number of studies was too
small to find comparable experimental settings. Group 3
is the only one using isolated cells or cell cultures. As
isolated cells would enhance certain characteristics com-
pared to a more heterogeneous cell population in whole
tissues, these studies can not be included in group 2
despite originating from similar tissue types. Focusing on
neurological aspects, we decided to omit group 3 from
further analysis because of this lack of comparability. In
contrast, group 2 was used to compare the expression pro-
files of the two distinct organ systems and possibly identify
genes that would be specific to neurological tissues. All
selected studies were based on DNAmicroarray measure-
ments, none of the studies was conducted by means of
RNA-seq.
Throughout this manuscript we use the initials of the

personwho uploaded the data to AE orGEO. For three out
of five studies in group 1, a publication is available. Study
‘PC’ focuses on the comparison of the expression profiles
after flavivirus- (WNV and JEV) and reovirus-infections
[42]. The most conspicuous pathways were distinguished.
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Fig. 1 Flow diagram representing the dataset selection process. 87 records were found in total in GEO and AE using the search term 〈“west nile” OR
“west nile virus” OR WNV〉. Here a group refers to a set of records originating from the same organism and organ system with the same probe type.
A subgroup is a set of records belonging to the same group and having similar experimental factors and comparable experiment type. Subgroups
are refered to as groups in the paper since groups as defined here are only relevant in the selection process. In the end, 3 subgroups containing 9
records in total were considered for a meta-analysis. Horizontal arrows indicate exclusion relying on the criterion in the box they originate from.
SuperSeries are entries of the GEO database that comprise multiple subseries. As the relevant subseries were already found individually by the
search terms, the SuperSeries were removed

Table 1 Groups of studies that were built after database searches and selection processes

Name Organism Organ system Probe type Included studies

group 1 Mus musculus Neurological tissue Tissue 5

group 2 Mus musculus Immunological tissue Tissue 2

group 3 Mus musculus Immunological tissue Isolated cells or cell culture 2

Group 1 and group 2 are based on tissue samples and were considered for meta-analysis. Group 3 was not utilized the further analysis, but mentioned here for the sake of
completeness
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In Study ‘YV’ the recovery from WNV-infections and
the ensuing neurocognitive deficits were analyzed [43].
Study ‘HH’ depicted the relevance of genes involved in
immune and cell death pathways afterWNV- andCHIKV-
infections [41]. For study ‘H1’ and ‘H2’ no publication
could be found. In group 2, only study ‘MK’ was described
in a publication outlining the role of RIG-I like receptors
(RLR) and type I interferons (IFN) in the restriction of
WNV tissue tropism [29].

Data processing
For group 1 and 2, the raw expression data, i.e. before
background correction and normalization of all samples
was imported from GEO using RStudio [44] with the
GEOquery package [45]. Expression data fromAffymetrix
chips was processed using the RMA method [46]. This
method includes background correction with signal and
noise close-form transformation, quantile normalization
and expression level summarization using medians. We
used similar processing strategies for the other types of
microarrays included in the groups. Data from Agilent
arrays was background-corrected with an implementa-
tion of the RMA background correction algorithm in the
R-package ‘limma’ [47] and normalized using the quan-
tile method [48]. Illumina BeadArrays data was processed
using the ‘neqc’ algorithm which is very similar to RMA,
except that there is no summarization step [49]. Summa-
rization is not needed for data from Illumina and Agilent
chips since they measure each transcript using a single
long probe instead of many short probes targeting the
same transcript as on Affymetrix chips [46, 50]. Gene
transcripts represented by more than one feature are then
aggregated using the median expression value. Only those
genes common to all studies in the group were kept in
each dataset. Samples that were not retained in the selec-
tion process because their experimental factors were not
consistent with the rest of the group’s ones were removed.
Besides using the individual data sets, a merged dataset

combining all individual datasets was generated for
group 1 and 2. To remove batch effects in these cross-
platform integrated data, the ComBat algorithm [51] was
applied. For exploring grouping of samples and homo-
geneity between sample groups, principal component
analysis (PCA) was used.

Meta-analysis
The meta-analysis was performed in two different ways.
In the first variant, differentially expressed genes were
detected in the individual studies. Then a p-value combi-
nationmethod was used to combine the individual results.
Here, we used the weighted inverse normal p-value com-
bination implemented in the ‘MetaMA’ R-package [35] to
account for the varying samples sizes between the stud-
ies. This method uses one-sided p-values and therefore

guarantees that no genes with contradictory fold changes
in the individual studies are selected. In the second anal-
ysis variant, differentially expressed genes were selected
based on the merged data set. In either variant, the linear
models implemented in the R-package ‘limma’ [47] were
used for differential testing. Finally, resulting p-values
were adjusted to control a false-discovery rate (FDR) of
0.01 using the procedure of Benjamini and Hochberg [52].
We call the analysis variant based on the combination of
the results from the individual studies the ‘late merging’
approach, and the variant based on the merged data set
the ‘early merging’ approach.
As an additional analysis, GSEA was performed to iden-

tify gene sets that play a role in WNV infections. See
Subramanian et al. (2005) [53] for a detailed description of
the GSEA-algorithm, based on the Kolmogorov-Smirnov
test. The gene sets were derived using Gene Ontology
(GO) terms [54], assigning to each gene a molecular
function (MF), a biological process (BP) or a cellular com-
ponent (CC). Only those gene sets for which at least two
genes were available in the datasets were selected. GSEA
was performed on both the list of differentially expressed
genes selected in the early merging approach (i.e., the
merged data set) and on the list generated in the late
merging approach (i.e., merged results from individual
differential analyses (DA) by p-value combinations). For
GSEA, another analysis variant for the meta-analysis is
possible. Besides the early merging of the data and the
late combination of the p-values, an ‘intermediate’ variant
can be considered. In the intermediate merging approach,
the individual data sets were first analyzed to identify the
differentially expressed genes and the resulting lists are
directly used for GSEA. Finally, the GSEA results itself are
combined by the p-value combination method.
In order to study how the WNV infection changes the

correlation among the top selected genes, relevance net-
works based on the infected and control samples were
derived using the R-package ‘minet’ [55]. For the network
construction, only the early merged data set was used.

Results
In this section, we describe the results of the meta-
analyses performed on the studies of group 1 and group 2.
First, the meta-analysis of expression data from neurolog-
ical tissues is presented. Next, we describe the results of
meta-analysis of immunological tissues. For both groups,
we describe first the group composition and then the
findings of the meta-analysis.

Meta-analysis of group 1: neurological tissues
Group composition
Table 2 lists the datasets that were used for ameta-analysis
of gene expression in neurological tissues during WNV
infection in mice. Each of the experiments followed a
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Table 2 Studies included in group 1 (neurological tissues)

ID Databank ID Mice line Tissue Sampling time Platform Selected samples Citation

H1 GSE77192 C57Bl/6 Cerebellum 6 dai Agilent 2× 5 (out of 60) n.a.

H2 GSE77193 C57Bl/6 Cortex 6 dai Agilent 2× 5 (out of 60) n.a.

HH E-MTAB-5832 C57Bl/6 Cerebellum 5 dai Affymetrix 2× 6 (out of 29) Lim et al. (2017)

PC GSE53784 SW Brain 5 to 6 dai Affymetrix 2× 3 (out of 12) Clarke et al. (2014)

YV GSE72139 C57Bl/6 Hippocampus 25 dai Illumina 4 + 2 (out of 12) Vasek et al. (2016)

The second column gives the databank ID from either GEO or ArrayExpress. The last column provides the number of samples selected from each study. Not each sample of a
study qualified to be included into the meta-analysis. The first four studies had balances sizes of infected and control samples, study five had 4 samples in the infection group
and 2 in the control group. For the last three studies, publications are available. Abbreviations: dai = days after infection; SW = Swiss Webster

two-group design comparing samples of infected subjects
with those of uninfected ones. In total, 44 samples were
selected for meta-analysis. Microarray platforms from
three different manufacturers (Affymetrix, Agilent and
Illumina) were used in these experiments. Although we
tried to identify similar studies in the selection process,
some heterogeneity between the studies remained. In the
case of group 1, heterogeneity was incorporated by dif-
ferent mice lines and different times after infection of the
samples. Studies H1 and H2 were published by the same
authors.

Findings of themeta-analysis
The analysis comprised 15.162 genes common in the
44 selected samples from all five studies. On the other
hand, between 5.135 and 9.000 genes were excluded,
depending on the size of the individual studies. The PCA
plot shows a clear separation between the infected and
the uninfected samples in the first principal component
(Fig. 2). The differential analysis on the merged dataset

with the ‘limma’-procedure yielded 6.759 differentially
expressed (DE) genes after FDR-correction. The weighted
inverse normal p-value combination yielded 7.345 differ-
entially expressed genes (DEG). Figure 3 shows the overlap
between the DEGs that could be detected in all of the
individual studies and by either merging the data (early
strategy) or by combining the p-values (late strategy). The
great majority of DEGs, 6.082, could be identified in all
three categories. 3.304 genes were found DE in the union
of the individual studies, whereas 695 DEGs were only
found DE in the meta-analysis variants. Slightly less DEGs
(6.759) could be identified in the data merging approach
compared to the 7.345 DEGs in the p-value combination
approach.
For a more detailed analysis of specific genes, we ranked

the early and late merging results by the value of their
test statistic resulting from the ‘limma’ procedure, each.
Test statistics have been used instead of p-values, because
p-value combination can result in p-values of zero or bind-
ings (p-values with the same value). Next, we extracted
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Fig. 3 Overlap of DEGs, detected by the two approaches of meta-analysis and within the individual studies. All p-values have been adjusted to
control a FDR of 1%. Approaches for meta-analysis were the direct merging of the study data (early merging) and the combination of individual
results by p-value combination methods (late merging). Due to an increased sample size, meta-analyses had a larger power than the individual
studies yielding several thousand additional findings

the top20 genes in each ranking (Table 3) and identi-
fied an overlap of eight genes in total. Among the two
lists Rsad2 and Cd274 were the top ranked genes. We
illustrate the log fold changes of Rsad2 and Cd274 in
each individual study and in the merged data set by
forest plots (Additional file 1: Figures A5.1 & A5.2).
As can be seen in these plots, there is no disagree-
ment regarding the direction of regulation for these
genes; both genes are up-regulated in all studies. Fur-
thermore, several of the confidence intervals overlap,
indicating a good agreement between the studies. The
complete lists of p-values and test statistics is available in
Additional file 2.
Using the eight overlapping genes found in both top20

lists, a relevance network was calculated for the control
samples and for the infected samples, based on the early
merged data. In this analysis, we used only the early merg-
ing pipeline, since a late merging relevance networks from
the individual studies appeared not to be reasonable. The
overlap of the two resulting graphs is presented in Fig. 4. A
stable correlation seems to exist between the genes Rsad2,
Cxcl10 and Oasl2 (black edges). Blue edges indicate gains
through the infection while red edges indicate losses. The
gene with the largest number of losses is Oasl2 and the
gene with the largest number of gains is H2-M3. Thus, the
latter one might have a more important regulatory role in
infected tissues.

Choi et al. [56] called the proportion of genes that were
identified as DE in the meta-analysis but not in any of the
individual studies the ‘Integration-driven Discovery Rate’
(IDR). In contrast the ‘Integration-driven Revision Rate’
(IRR) describes the percentage of genes that are declared
DE in individual studies but not in meta-analysis. In the
early merging analysis, these two quantities were IDR =
9.1% and IRR = 39.0%, respectively. For the late merg-
ing variant, the IDR was 8.8%, whereas the IRR was 33.4%
(α = 0.01).
GSEA was performed in three different variants as

described above, and the intersection of significantly
enrichedGO terms from the three results was regarded. In
total, 12.627 GO terms were studied by the three analysis
pipelines. Additional file 1: Figure A5.3 shows the num-
bers of significantly enriched GO terms for each analysis
variant, as well as their overlap. In general, the diver-
gence between the pipelines was rather high: only 17 GO
terms were found commonly in each analysis (α = 0.01).
Detailed result lists from the GSEA are provided in the
Additional file 3.

Meta-analysis of group 2: immunological tissues
Group composition
Table 4 lists the studies that were used for meta-analysis
of gene expression in immunological tissues during West
Nile virus infection in mice. Since only Agilent chips
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Table 3 Top20 genes selected by the early merging strategy (first three columns) and late merging approach (last three columns) in
group 1 (neurological tissues)

Gene Symbol t-statistic logFC (range) Gene Symbol t-statistic logFC (range)

Rsad2* 41.074 5.93 − 7.72 Cd274* 14.794 5.11 − 6.34

Cxcl10* 36.524 6.30 − 8.36 Casp4 14.550 1.46 − 5.62

Cd274* 35.208 5.11 − 6.34 Ccl7 14.524 1.47 − 6.37

Ifi47 34.309 4.33 − 5.78 Samd9l* 14.360 2.83 − 4.28

Oasl2* 34.289 4.57 − 6.31 Rsad2* 14.281 5.93 − 7.72

H2-M3* 34.156 2.69 − 3.52 H2-M3* 14.113 2.69 − 3.52

Igtp 33.100 4.67 − 6.34 Cxcl10* 14.091 6.30 − 8.36

Usp18 33.080 4.46 − 6.25 Ifi207 13.920 3.54 − 4.77

Trim30a 32.723 4.18 − 5.44 Trim25* 13.915 2.40 − 3.19

Gbp3 32.571 3.76 − 5.34 Ccl3 13.882 3.54 − 6.74

Trim25* 32.195 2.40 − 3.19 Trim21* 13.863 2.88 − 3.75

Serpina3g 31.434 4.55 − 5.53 Cfb 13.846 2.32 − 6.12

Ifit3 30.856 4.17 − 6.23 Isg20 13.840 1.58 − 4.35

B2m 30.582 2.37 − 3.62 Ifi27l2a 13.821 1.58 − 6.44

Batf2 30.384 3.13 − 4.17 Irgm1 13.757 3.57 − 5.34

Phf11d 30.049 3.61 − 5.72 Rtp4 13.751 1.92 − 4.38

Tlr2 29.989 3.40 − 4.69 Irf1 13.697 2.53 − 4.13

Trim21* 29.758 2.88 − 3.75 Oasl2* 13.677 4.57 − 6.31

Samd9l* 28.802 2.83 − 4.28 Rgs1 13.610 2.77 − 5.48

Ifit2 28.146 4.28 − 5.95 AA467197 13.595 4.46 − 6.30

Gene were ranked by their t-statistic since the permutation p-values did not provide sufficient precision. For each ranked list the range of logFCs of the individual studies are
given. Eight genes, flagged by *, occurred in both lists
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Kosch et al. BMC Genomics  (2018) 19:530 Page 9 of 15

Table 4 Studies included in group 2 (immunological tissues)

ID Databank ID Mice line Tissue Sampling time Platform Selected samples Citation

MK GSE39259 C57Bl/6 Liver, spleen 4 dai Agilent 2(2+ 3) (out of 40) Suthar et al. (2013)

HT GSE78888 C57Bl/6 Popliteal lymph node 4 dai Agilent 3+5 (out of 51) n.a.

The second column gives the databank ID from the GEO database. Study ‘MK’ comprises two controls and three infected samples, each for liver and spleen tissues.
Abbreviation: dai = days after infection

were used in the selected experiments, 20.213 genes
were in common between the two studies. 987 genes
were excluded from study MK; 3.949 genes from study
HT. Mice lines and the sampling times were the same,
too. However, the selected samples came from tissues
that, despite having immunological functions, are very
different from one another.

Findings of themeta-analysis
The PCA plot in Fig. 5 shows a separation between
the infected and the uninfected tissues along the second
principal component. Still, the samples from each organ
build separate groups, which probably results from the
different nature of the tissues. The differential expression
analysis of the early merged dataset yielded 60 DEG after
FDR-correction of the p-values (Fig. 6). In contrast, the
weighted inverse normal p-value combination gives 1.666
DEGs. The overlap of both methods are 60 DEGs, as well.

683 DEGs could be detected in the union of the indi-
vidual studies. Therefore, we distinguished IDRs of 18.3%
for the early data merging approach and 57.1% for the
late p-value combination approach. The IRRs were 96.5%
and 48.9%. The top20 genes for the early and the late
merging are listed in Table 5, five genes were commonly
found in both lists. Among these five genes, Oas1a was
the top-ranked gene in both lists. A forest plot for Oas1a
is given in Additional file 1: Figure A5.4. Again, there is no
disagreement regarding the direction of regulation. The
complete lists of p-values and test statistics is available in
Additional file 4.
For the GSEA, we utilized 10.337 GO terms shared in

both studies. The three pipelines for GSEA meta-analysis
resulted in an overlap of two significantly enriched GO
terms, using an α-error of 0.01 (Additional file 1: Figure
A5.5). Detailed result lists from the GSEA are provided in
the Additional file 5.

Fig. 5 Principal component plot of the three datasets included in group 2 (immunological tissues). The axes show the first two principal
components with the amount of variance these components explain from the original data. Studies are represented by different colors,
WNV-infected samples are displayed as triangles, mock-infected samples as squares. Although there is a strong variance between the studies on the
first principal component, there is also a separation of infected and control samples on the second principal component
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Rsad2

Cxcl10Cd274

Oasl2

H2−M3 Trim25

Trim21

Samd9l

Fig. 6 Overlap of DEGs, detected by the two approaches of
meta-analysis and within the individual studies. All p-values have
been adjusted to control a FDR of 1%. Approaches for meta-analysis
were the direct merging of the study data (early merging) and the
combination of individual results by p-value combination methods
(late merging)

Comparison between neurological and immunological
tissues
Results of the differential analysis of group 1 and group 2
were compared in Fig. 7. The Venn diagram also shows
the overlap of the early and late merging pipeline. Again,
we regard the overlap of both pipelines as a conservative
results, that gives true positive findings a higher weight
by allowing for more false negatives. In the end, 44 genes
could be identified as DE in the neurological and immuno-
logical tissues. On the other hand, 5.879 DEGs were found
specifically in the neurological tissues; 15 DEGs were
related only to the immunological tissues. Interestingly,
the number of changes in the transcriptome ismuch larger
in the neurological tissues than in the immunological
ones, however this could be related to different degrees of
homogeneity between the selected studies.

Discussion
In this section, we discuss our findings in the neurologi-
cal and immunological data and make a short comparison
of both. Furthermore, we critically discuss the methodical
issues of the meta-analysis.

Findings in neurological tissues
In the group of neurological tissues (group 1), eight
overlapping genes were found between the top20 DEGs
of the early and late analysis variant were eight DEGs:

Table 5 Top20 genes selected by the early merging strategy (first two columns) and late merging approach (last two columns) in
group 2 (immunological tissues)

Gene Symbol t-statistic logFC (range) Gene Symbol t-statistic logFC (range)

Fcgr1 12.913 1.65 − 2.28 Gzmb 8.023 2.01 − 4.29

Acod1 12.027 1.49 − 2.40 Ly6c1 7.805 1.77 − 3.58

Il10 10.055 1.15 − 1.59 Plk1 7.701 1.33 − 3.16

Oas1a* 9.377 1.95 − 2.95 Ly6a 7.693 2.09 − 2.74

Irf7* 9.340 2.27 − 3.59 Oas1a* 7.548 1.95 − 2.95

Irgm2 9.283 0.88 − 1.29 Gzma 7.547 1.98 − 4.24

Ms4a6d 9.193 1.37 − 1.48 Oas1f* 7.546 2.13 − 2.83

Oas1f* 8.670 2.13 − 2.83 Oas3* 7.514 2.50 − 2.87

Gbp6 8.635 1.06 − 2.02 Ms4a4c 7.404 0.98 − 2.48

Oas3* 8.330 2.50 − 2.87 Irf7* 7.395 2.27 − 3.59

Brip1 8.297 0.58 − 1.38 Sapcd2 7.384 1.35 − 2.15

Xaf1 8.204 1.60 − 2.27 Ifi204 7.382 1.29 − 2.10

Mlkl 8.172 0.79 − 1.38 Ly6f 7.353 1.90 − 3.11

Isg15 7.984 1.87 − 2.92 Cdk1 7.283 0.90 − 2.55

Ccl2 7.848 1.28 − 1.84 Zbp1 7.282 1.67 − 2.62

Ifit3b 7.753 1.87 − 3.38 Cdca5 7.272 1.33 − 2.89

Oasl2* 7.585 2.06 − 3.04 Oasl2* 7.266 2.06 − 3.04

Hdc 7.534 0.55 − 0.88 Ccnb2 7.252 0.98 − 2.67

Cxcl9 7.479 1.25 − 2.14 Ifitm6 7.234 0.59 − 3.06

Igtp 7.433 1.04 − 1.21 Kif22 7.219 0.76 − 2.54

Gene were ranked by their t-statistic since the precision of permutation p-values did not provide sufficient precision. For each ranked list the range of logFCs of the individual
studies are given. Five genes, flagged by *, occurred in both lists
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Fig. 7 Comparison of the results of neurological and immunological tissues. Each group is further separated by early and late merging. The numbers
show the amount of DEGs of each analysis variant, as well as their overlaps

Rsad2, Cxcl10, Cd274, Oasl2, H2-M3, Trim25, Trim21
and Samd9l (Table 3). The majority of these genes play a
role in the innate immune system. Rsad2, Cxcl10, Samd9l
and Oasl2 are involved in the type I interferon (IFN) cell
signaling pathway and are therefore part of the antivi-
ral immune system [57–59]. Rsad2 and Cxcl10 can be
induced directly by IRF3 (Interferone regulatory factor) or
on detours by IRF5 [57]. Rsad2, also known as Viperin,
has been well described for WNV by Szretter et al. [60].
The chemokine Cxcl10 is responsible for the recruitment
of CD8+ T-cells after WNV-infection [61]. CD274 (PD-
L1) is a costimulatory molecule, involved in the T-cell
response [62]. Trim21 and Trim25 are part of the tri-
partite motif family with ability to mediate ubiquitylation
events. They are also induced by interferons. It has been
suggested, that Oasl2 has the same effects as the Oasl
in humans [58]. Oasl, as well as Trim25 are responsi-
ble for the activation, more precisely the ubiquitylation
of RIG-I, which is a pattern recognition receptor, i.a. for
flavivruses [63]. H2-M3 is a molecule of the MHC class
Ib, known for the presentation of CD8+ T-cells. Similar
biological functions could have been found for significant
genes beyond the top20. We could not find a reference for
the sterile alpha motif family protein 91 (Samd9l) in the
context of WNV-infections. However, the SAMD9 gene is
a downstream target of interferon gamma and the protein
is involved in innate immunity and decreases replication
of the RNA-virus Japanese Encephalitis virus [59, 64, 65].
The important role of interferons in the context of WNV
infections was also described in two of the individual
studies [41, 42]. The top20 genes comprise additional

interferon-dependent targets, e.g. the Interferon Stimu-
lated Exonuclease Gene 20 (Isg20). The ISG20 protein
targets single-stranded RNA and displays antiviral activity
towards RNA viruses [66].
The findings in the top20 DEGs match well with the

results of the GSEA. Each of the 17 GO terms found
in by the three analysis variants (early, intermediate or
late analysis) involves a large number of genes ranging
between 137 genes for the smallest GO term and 3308
for the largest. Most of these GO terms are in accordance
with the results of the differential expression analysis.
The GO terms GO:0048583 (regulation of response to
stimulus), GO:0010033 (response to organic substance)
and GO:0002684 (positive regulation of immune sys-
tem process) fit to the context of WNV-infection, but
are rather unspecific to allow a concrete interpreta-
tion. The same is true for the enrichment of GO term
GO:0002822 (regulation of adaptive immune response
based on somatic recombination of immune receptors
built from immunoglobulin superfamily domains).

Findings in immunological tissues
The findings of the meta-analysis are highly compat-
ible with the conclusions of the study from the MK
dataset [29].
While group 2 (immunological tissues) had more com-

mon DEGs among the individual datasets compared to
the findings in group 1, less DEG were found both for the
late merging of individual study results and in the early
merging analysis strategy. This result hints at a higher het-
erogeneity among the datasets. However, in contrast to
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group 1, the IDRwas higher than the IRR. Thus, one could
argue that the meta-analysis had higher utility in group 2.
Regarding the biological interpretation of the DA-results,
a clear pattern like in group 1 could not be identified.
Many of the DEGs detected in group 2 are affected by
IFNs and/or have antiviral functions. Several genes from
the OAS- or OASL-family (oligoadenylate synthetase), as
well as genes coding for Ifit proteins (Interferon Induced
proteins with Tetratricopeptide repeats) can be found
[67, 68]. Again, the top20 DEGs were determined for each
analysis method (early and late merging). These top20 lists
overlapped in the following five genes: Oas1a, Irf7, Oas1f,
Oas3 and Oasl2. Oasl2 has also been found as DEG in
the neurological tissues and is described above. Except
Irf7, all genes are involved in the 2’-5’-oligoadenylate syn-
thetases. It activates the endoribonuclease RNase L, which
is responsible for the degradation of viral and cellular
RNAs [69]. It has been shown, that Irf7 plays a major role
in the regulation of Interferone response [57].
In comparison to group 1, the results of the GSEA differ

more, where the finding of the majority of detected GO
terms fit to the infection context. GO:0044194 (cytolytic
granule) and GO:0001730 (2’-5’-oligoadenylate synthetase
activity) were significantly enriched in all three pipelines
(early, intermediate, late). The importance of the 2’-5’-
oligoadenylate was already depicted. Nevertheless, the
overall interpretation of the GSEA-result is limited by this
low number of detected gene sets in the first place.

Comparison between neurological and immunological
tissues
Regarding the top20 lists (Tables 3 and 5) Oasl2 is the
only gene that is differentially expressed in the neuro-
logical tissues and in the immunological tissues. Thus,
it might be that Oasl2 is a general WNV-affected gene,
while the other detected DEGs are rather tissue-specific.
Moreover, 43 genes were detected as DE in both tissues,
beyond the top20. The much greater amount of 5.879
DEGs in neurological tissues, compared to the 15 DEGs
in immunological tissues, enhances the assumption that
WNV-infection leads to alterations in the brain.

Methodical and practical issues
Meta-analysis of high-throughput expression data has the
clear advantage of an increased sample size and thus an
increased power to detect differentially expressed genes
and enriched gene sets such as GO terms. In addition, it
can be used to clarify contradictory findings regarding the
direction of expression fold changes, i.e. up-regulation of
a gene in one study and down-regulation in another study.
Genes that are regulated in different directions in the indi-
vidual studies are not selected by the early data merging
approach and not by the weighted p-value combination
approach.

Besides the benefits a meta-analysis has, it also bears
some risks and has some limitations. Like in any meta-
analysis it is crucial to select data sets which fit to each
other regarding the study question. In the case of gene
expression data, studies must focus on approximately the
same type of biological samples (i.e. type of tissue), and
be based on the same species. This demand may lead to
a low number of final studies to be involved in the meta-
analysis, even if there is a plethora of studies available
before the selection process. Nevertheless, selecting fewer
but more suitable studies for a meta-analysis seems to be
the better choice for meaningful results.
Since the different approaches for meta-analysis (data

merging or result merging) provide clearly different
results, the researchers must still be careful with the
final biological interpretation. Here, we have chosen a
conservative approach and made only a final interpreta-
tion about the overlap of findings from different analysis
pipelines. This bears, however, the risk of making false
negative decisions. From our point of view, false nega-
tive conclusion can be acceptable when the goal is to
obtain a stable list of top differentially expressed genes.
False negatives also occur by each merging step, since
genes which do not occur in all studies are omitted from
analysis.

Conclusions
Considering the benefits and limitations of meta-analyses,
we think that our results provide a contribution to the
knowledge about gene expression in neurological tissues
after WNV infection that has a higher level of evidence
than the individual studies have. In particular, the com-
parison with immunological tissues shows which genes
may play a role afterWNV infection in general, and which
genes have a tissue-specific regulation.
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