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Abstract

their dependence on reads mapping.

k-mer table for circular RNA detection.

efficiency in many simulated and real datasets.

Background: While RNA is often created from linear splicing during transcription, recent studies have found that
non-canonical splicing sometimes occurs. Non-canonical splicing joins 3"and 5" and forms the so-called circular RNA.
It is now believed that circular RNA plays important biological roles such as affecting susceptibility of some diseases.
During the past several years, multiple experimental methods have been developed to enrich circular RNA while
degrade linear RNA. Although several useful software tools for circular RNA detection have been developed as well,
these tools are based on reads mapping may miss many circular RNA. Also, existing tools are slow for large data due to

Method: In this paper, we present a new computational approach, named CircMarker, based on k-mers rather than
reads mapping for circular RNA detection. CircMarker takes advantage of transcriptome annotation files to create the

Results: Empirical results show that CircMarker outperforms existing tools in circular RNA detection on accuracy and

Conclusions: We develop a new circular RNA detection method called CircMarker based on k-mer analysis. Our
results on both simulation data and real data demonstrate that CircMarker runs much faster and can find more circular
RNA with higher consensus-based sensitivity and high accuracy ratio compared with existing tools.

Keywords: Circular RNA, High-throughput sequencing, Genomics, RNA-Seq

Background

In most eukaryotic genes, coding regions (exons) are sep-
arated from noncoding regions (introns) [1]. During RNA
splicing, introns are removed and exons are joined to form
a contiguous coding sequence called messenger ribonu-
cleic acid (mRNA). This “mature” mRNA is ready for
translation, and those contiguous coding sequences are
called transcripts [2]. Splicing often occurs in a linear way,
which generates the so-called linear RNA. Recent studies
show that sometimes circular RNA may be generated dur-
ing transcription [3]. Circular RNA (or circRNA) is a type
of RNA which forms a covalently closed continuous loop.

*Correspondence: yufeng.wu@uconn.edu

'Department of Computer Science and Engineering, University of
Connecticut, Storrs 06269, CT, USA

Full list of author information is available at the end of the article

That is, the 3’ and 5’ ends normally present in an RNA
molecule are joined together [4, 5]. This feature leads to
numerous properties of circular RNAs [6]. However, since
the amount of circular RNA is often much lower than lin-
ear RNA, circular RNA has not been thoroughly studied
until recently. During the past several years, several papers
report that circular RNA may be associated with diseases
and traits [7]. More and more circular RNAs have been
identified recently [8, 9].

Since circular RNAs do not have 5 or 3’ ends, they
are resistant to exonuclease-mediated degradation and
are presumably more stable than most linear RNAs in
cells. Based on this feature, some benchmark experimen-
tal methods have been developed to degrade the linear
RNA while enriching the circular RNA. For example, one
method is treating samples with RNase R, an enzyme
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which degrades linear RNAs but not circular RNAs. This
treatment can enrich circular RNAs [10, 11].

Computational tools for circular RNA detection have
been developed. Currently, there are several existing tools
for circular RNA detection, such as Find_circ [12], CIRC-
explorer [13] and CIRI [14]. Find_circ is one of the first
tools for circular RNA detection. Since it is difficult to
map the joint position of circular splicing back to the ref-
erence genome, Find_circ tries to collect all un-mapped
reads based on reads mapping results from Bowtie [15].
Then, all unmapped reads are converted to new short
reads by combining the head and the tail parts of current
reads together. Then Find_circ maps the new short reads
back to the reference. CIRCexplorer performs reads map-
ping using Bowtie and TopHat. The main idea is using
the concept of fusion gene to detect circular RNA. First,
CIRCexplorer tries to find the un-mapped reads. Then,
those un-mapped reads are mapped back to the reference
using TopHat-Fusion [16] to detect potential circular RNA
candidates with the back-spliced junction reads. CIRI uses
BWA [17] for reads mapping, trying to find circular RNA
by analyzing CIGAR signatures in the SAM file. Some of
these tools such as CIRCexplorer depend on transcrip-
tome annotation, while others support de novo circular
RNA detection, such as Find_circ. Note that often circu-
lar RNA comes with the splicing signals of “AG” or “AC”
as starting while “GT” or “CT” as the ending for direction
“+” and “-” respectively [18]. This can be useful for circular
RNA detection.Prior literature also tries to evaluate these
tools in terms of their performance, such as precision and
sensitivity [19].

All of these methods mentioned above depend on
reads mapping. These mapping based methods have some
inherent issues. The first issue is computational efficiency:
the existing tools use BWA, Bowtie or TopHat for reads
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mapping. Although BWA and Bowtie are widely used in
sequence analysis, reads mapping is still time-consuming
for circular RNA detection. This is because reads mapping
tries to map every read, even when the read is not rele-
vant for circular RNA detection. In addition, since some
new short sequences may be created in the middle by
circRNA detection tools for the second round mapping,
reads mapping can become very slow when TopHat-fusion
is used, due to the large length of sequences. Moreover,
these tools may miss circular RNA in some cases due to
errors in reads mapping. For example, some reads related
to circular RNA may be un-mapped due to reads error.

In this paper, we develop a new computational method,
called CircMarker, for circular RNA detection. The objec-
tive of CircMarker is finding the presence of circular
RNA (in particular the join of two known exons). Cir-
cMarker doesn’t reconstruct the complete sequence of
circular RNA. The key idea of CircMarker is that it
doesn’t rely on reads mapping. Instead, CircMarker ana-
lyzes short sequence segments, called k-mers, for circular
RNA detection. The main advantage of using k-mers is
efficiency: finding k-mers from reads is much faster than
reads mapping. Another advantage is that k-mer tolerates
more errors in reads and carries useful information about
the presence of circular RNA, which may be missed by
reads mapping. Empirical results show that CircMarker is
more accurate than (or as accurate as) existing methods
on simulated and real datasets in calling circular RNA.
CircMaker runs much faster than existing methods.

High-level approach

The overall approach of CircMarker is shown in Fig. 1.
CircMarker is based on analyzing k-mers in the sequence
reads. That is, CircMarker doesn’t perform reads map-
ping. CircMarker only considers the circular RNA which

Fig. 1 The procedure of the circular RNA detection. a A fast check for finding circular RNA relevant reads by sampling. The blue arrow stands for
reads and the dots within it present the sparsely sampled k-mers. Gray dot: k-mer with no hit in the k-mer table from annotation. Red dot: k-mer
which finds a hit in k-mer table. Reads inside green box: pass quick check. b Scanning k-mer sequentially from the beginning to the end for each
read. Yellow arrow: k-mer. ¢ Calling circular RNA using various criteria and filters. Green bar: exon along the reference. Two transcripts are listed here.
The upper: with 3 exons, and the red arrow identified a potential circular RNA. The lower: with 2 exons, and the gray arrow stands for linear RNA
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comes from the exons identified by annotation file. We
do not consider de novo circular RNA cases in this
paper. CircMarker uses three types of inputs, including
the reference genome, the transcription annotation file
and sequence reads. Note that all circular splicing that we
consider here occurs at the boundary of exons identified
by the given annotation file. CircMarker first processes the
annotation file and the reference genome. It extracts and
stores all k-mers that are located near the exon bound-
aries. To speed up, CircMarker first performs a fast check
to find the reads that are likely to be relevant for circular
RNA detection. Then it processes each read and compares
k-mers in the read with the stored k-mers to identify cir-
cular RNA based on the signatures from circular RNA.
When two k-mers from a single read are out of order rel-
ative to the reference, CircMarker considers this as an
evidence for the existence of circular RNA.

Implementation

Processing the reference genome and annotations
CircMarker creates a table for storing the k-mers within
the reference genome that are near the exon boundaries as
specified by the annotations. The k-mer table is designed
to be space-efficient. We only record the following five
types of information for each k-mer, including chromo-
some index, gene index, transcript index, exon index and
the part tag as shown in Fig. 2. The “part tag” specifies
whether the k-mer comes from the head (i.e. beginning)
part or the tail (i.e. ending) part of the exon. Due to the
relative small ranges of index, a record on a k-mer only
needs eight bytes. We call it the annotation position. One
k-mer may contain a group of annotation positions. 32 bits
integer is used to store the information of a k-mer, which
means the maximum length of a k-mer should be shorter
than 16 bp, and all k-mers which contain invalid letters
such as “N” are discarded.
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When extracting k-mers from annotated exons in the
reference genome, we only consider the exons with circu-
lar splicing signal in either head or tail part. And we only
consider the k-mers which come from the left and right
boundaries of the exon. The length of the boundary region
Lp is defined as below:

LB=LRXRC
Lo, =2xLp+2xK—1

Here K is the length of the k-mer. L, is the length of reads,
and R, represents the percentage of reads that should be
covered in each boundary. Since we expect more than half
reads to be considered, we set the default value of R, as
30% (2 * 30% = 60% > 50%). L, is the length of current
exon. If L, < L,,, we use the whole exon to create k-mer
and set the part tag as “S” if it located in the first half part
and “E” for the second half. Otherwise, we use the head
boundary and tail boundary of current exon to extract k-
mers and set the part tag to “S” or “E” respectively.

Processing sequence reads

Once the k-mer table of the annotated exons is created,
we now process each sequence read. Here we examine k-
mers contained in a read and search for a match in the
k-mer table. This way, we obtain the “hitting status’, which
means which transcript can be hit by current reads. “hit
exon” means the exon that is hit by the k-mer in the reads
in the k-mer table. Each read may be related to more than
one hitting status. Each hitting status contains at least one
hit exon, and each hit exon should be supported by at least
one k-mer. We scan all reads to check their hitting status.
In order to skip irrelevant reads, we first perform basic
check by sampling eight k-mers from 10% to 80% position
of the current read. The read passes the sampling check
only if at least two k-mers can find a hit in the k-mer table.
If so, we examine all of k-mers from start to end, collecting
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Fig. 2 Collecting k-mers from annotated exons in the reference genome. These k-mers are stored in a table that will be used to compare with the
reads. a Annotations from one chromosome. Green bars stand for valid exons while gray bars stand for the invalid ones which do not contain any
circular splicing signal. b Extracting K-mer. Yellow arrows stand for the k-mers from the boundary (red frame) of each exon. All of k-mers from short
exon will be considered (the second case). “S" or “E" is the value of part tag. € Showing all annotation positions of the k-mer with purple box in B.
Green box: all information kept for one annotation position
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all hitting status in this order. Since each hitting status is
contributed by multiple k-mers, the “best hitting case” is
defined as:

Ny, —PreBestHitNum > 5 or
|Nj, — PreBestHitNum| <5 and ) L}, < PreBestHitLen

Nj, specifies the number of k-mers which supports all
of hit exons in one hitting status. The PreBestHitNum
means the Nj, of previous best hitting status. L;, means
the length of one hit exon in current hitting status,
and PreBestHitLen means the summary length of the hit
exons in previous best hitting status. If Nj, is larger than
PreBestHitNum+5, the current hitting status will be set as
the previous best hitting case, which means we prefer the
hitting status with conditional larger number of k-mers
supporters. Otherwise, the hitting status with the shorter
total length of the hit exon will be chosen. We set the pre-
vious best hitting status as the final best hitting case when
all of hitting status been processed. Finally, the N}, of best
hitting case should be at least 5. Otherwise it is discarded.

Filtering

The previous step identifies best hitting cases. Due to the
inherent noise in the data (e.g. read errors and duplica-
tions), we perform the following filtering step to improve
the accuracy. There are two main filtering procedures.

Filtering procedure one. The first filtering procedure
is checking the hitting number. The minimum hitting
number Ny, is defined as below:

N | DLe—K+5if YL, <L,
hn =\ Lg x 1.2, if YLy, > L,

The key is that short exons should be fully covered by the
reads more than one time. Otherwise, we need to ensure
the reads to be within both boundaries of the hit exons.
Any best hitting case is discarded if the Nj, is smaller
than N, .

Filtering procedure two. Based on the number of hit
exons in best hitting case, we divide all cases into two
types: the case of self-circular if the number of hit exons is
equal to 1, and the regular-circular case otherwise.

For self-circular case, only the exon containing the cir-
cular splicing signal in both sides will be considered. Then,
the best hitting case will be considered as the self-circular
RNA candidate if L, < L, . Otherwise, we collect the
part tags from begin to end, and condense the tags which
belong to the same exon based on the number of hitting.
For example, we define S(#) as n continuous tag “S” in
one exon (similar for E(n)). If we have S(1) and E(10) in
one exon, then we condense them to E(10). This may help
us to filter some random hits. We consider a candidate a
valid self-circular RNA only if there are two tags that are
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arranged from E to S sequentially (i.e. going backward at
the circular RNA join junction).

For the regular-circular case, the best hitting case will
be considered only if it contains two exons. First, an exon
will be skipped if its hitting time is at most 3 in order to
remove some random hits. Then, we try to condense the
tags. Here the method described in the self-circular case
will be applied at first. After that, for the first exon we
condense SE to E while condensing SE to S for the second
exon. This condensation logic may help for the case where
some of exons are fully covered by current reads. The best
hitting case will be kept only if the number of condensed
tag in both exons is equal with 1 and the tags arranged
from E to S sequentially.

Calling circular RNA
There are two cases for calling circular RNA: the self-
circular case and the regular-circular case.

Self-circular RNA. First, a self-circular RNA candidate
will be discarded if the length of current exon is shorter
than the read length while the N}, is smaller than L, —K+1.
Otherwise, the best hitting case will be considered to be
a valid self-circular RNA candidate if it contains circular
splicing signals in both sides.

Regular-circular RNA. For the direction “+’; the candi-
date will be dropped if the exon index increases mono-
tonically. Otherwise, we try to identify the breakpoint at
the position of the first deceasing and set it to be the
joint junction of circular RNA. We call the exon with large
index as the head exon while another one as the tail exon.
Based on this definition, the head exon is located in the
later part of the reference, while the tail exon is located
in the earlier part, and the circle should connect the head
exon back to the tail exon. The candidate will be viewed
as a valid regular-circular RNA candidate only if the head
exon and tail exon have the tail and head circular splic-
ing signal respectively. We set the end position of the head
exon and the start position of the tail exon as the position
of this called regular-circular RNA.

For the direction “-’, the procedures is almost the same
as the direction “+”. The only difference is how to choose
the joint junction. In this case, the candidate will be
dropped if the exon index decreases monotonically. Oth-
erwise we try to identify the breakpoint at the the first
increasing and set it to be the joint junction of circular
RNA. The exon with small index is viewed as the head
exon while the big index exon is set as the tail exon.

Refining circular RNA candidates. We count how
many reads support each circular RNA candidate. Only
the candidate with support number smaller than the pre-
defined threshold will be viewed as the correct one. Since
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the maximum coverage of circular RNA is unknown in
most cases, we set the default value to be a large number
to allow all of valid circular RNA candidates.

Results

Since the study of circular RNA is still at an early stage,
there is no widely accepted benchmark data for evaluat-
ing the circular RNA calling at present. Recently, there
are some public circular RNA databases which collect
different types of circular RNA from published papers.
Some databases come with the recommended circular
RNA detection tool, such as CircBase [20]. Others focus
on collecting the relationship between circular RNA and
diseases or traits, such as Circ2Traits [21].

In this paper, we use both simulated and real data to
compare CircMarker with three existing tools, including
CIRI, Find_circ, and CIRCexplorer in terms of the number
of called circular RNA, accuracy, consensus-based sensi-
tivity, bias and running time. We note that all three tools
we compare have customizable parameters. In addition,
since all these methods depend on the mapping results
coming from different mapping tools, including BWA,
Bowtie, TopHat and Tophat fusion, mapping results may
impact the accuracy as well. Some tools, such as CIR], dis-
cussed how to optimize the parameters, while other didn’t.
None of them provided explicit guideines on how to set
parameters for different types of genomes. Therefore, we
use the default parameters for these tools including Cir-
cMarker in comparison, and we notice that this may
lead to some biases to comparision. When comparing the
genomic positions of circular joint junction, we allow up
to five bp tolerance. Since CircMarker is based on k-mers
and each chromosome has its own k-mer table, the run-
ning time can be reduced significantly by parallelization
(i.e. running analysis on each chromosome in parallel).We
compare the performance of these tools on the first three
chromosomes individually. Because some existing tools
do not support parallelization, we use a single core to run
each program for circular RNA detection, and use 10 to 12
cores to run the reads mapping programs such as BWA,
Bowtie and TopHat.

Simulated data

We first use simulated data for evaluation. To gen-
erate simulated data, we use the simulation script
(called “CIRIsimulator.pl”) released by CIRI. The refer-
ence genome is the chromosome 1 in human genome
(GRCh37). The annotation file is the version 18 (Ensembl
73). Two different cases are simulated as follows: (1)
pair-end reads with 13,856,032 sequences, which roughly
lead to 10X coverage for circular RNA and 100X cover-
age for linear RNA, and (2) pair-end reads contains with
9,400,036 sequences, which lead to us 50X coverage for
both circular and linear RNA. The goal of the case 1
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simulation is simulating the regular RNA-seq, while the
case 2 focuses on the situation when the coverage of cir-
cular RNA is higher. The reads length is 101 bp and the
insert size is 252 bp in both cases. The total number of
simulated circular RNA in benchmark is 8033 and 8071
for those two cases respectively. Note that the true circu-
lar RNA is known in simulated data, which can be used in
comparison. Since the coverage of circular RNA is known
in simulated data, we set the “maximum support reads”
to be 10 and 50 in CircMarker respectively. We use the
following three statistics for comparison: (1) hit number
Nj;: the number of called circular RNA that are true, (2)
accuracy: % where N is the total number of called circular
RNAs by a method, (3) running time.

The results of the four tools being compared are shown
in Fig. 3. Our results show that CircMarker outperforms
the existing tools in terms of hit number, accuracy and
running time. This is especially evident in case 1 (Fig. 3a),
where CircMarker has fewer false positives and also calls
more correct circular RNA than other tools. For case 2,
the accuracy of CircMarker decreased to 32.04% from
70.90% in case 1. This is likely due to the week per-
formance of the option “coverage filter’, for the similar
coverage in both linear and circular RNA. Still, Circ-
Marker is slightly more accurate than existing tools in
this case. Moreover, CircMarker runs much faster than
existing tools.

Real data
We use two types of real data to evaluate the performance
of the four tools.

Real RNase R treated sequence reads with public database
information

As described before, some public databases contain cir-
cular RNA called by published papers. In those papers,
the authors usually only validate parts of the computation-
ally detected circular RNA using biological experiments.
The final result will be released only when the accuracy
of those randomly chosen candidates meets certain stan-
dard. Therefore, we consider those released circular RNAs
in these databases are reliable in this paper.

Data collection We choose CircBase [20] as the standard
circular RNA database of homo sapiens. We use the circu-
lar RNAs recorded in this database as “benchmark” The
reference genome and annotation file come from homo
sapiens GRCh37 version 75. The RNA-Seq reads are from
SRR901967. These RNA-Seq reads are used to examine
circular RNAs from RNase R treated poly(A)-/ribo- RNAs
in human embryonic stem cells. There are total 41,342,095
single-end reads in this data.

We use the first three human chromosomes for com-
parison and use four statistics for comparison. (1) Hit
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case 2 (50X&50X, the right cluster). Yellow bars: the number of un-hit (i.e. incorrectly called) circular RNA. Blue bars: the number of hit (i.e. correctly
called) circular RNA. b The accuracy of each tool in cases 1 and 2. € The running time (in minutes) of each tool in both cases

number Nj,,: the number of circular RNA which has a
matched circular RNA in the database. These matched
circular RNA are called reliable circular RNA. (2) Inter-
section: the intersection of reliable circular RNA between
CircMarker and other tools. This value could be used to
evaluate the bias. (3) Reliability ratio: %. This measures
the fraction of the number of matched circular RNA with
regard to the total called ones N. (4) Running time. The
best tool is expected to have large intersection with other
tools (low bias), large number of reliable circular RNA
with high reliability ratio and fastest running time.

The number of circular RNAs in CircBase from chro-
mosome 1 to chromosome 3 is 9142, 7530 and 5320
respectively. The results show that CircMarker finds more
“benchmarked” circular RNAs and runs much faster than
others (Fig. 44, c). For the reliability ratio, there is a trade
off with hit number. CIRI obtains the highest reliable ratio,
but has the smallest hit number. The reliability ratio of
CircMarker is similar to those of Find_circ and CIRCex-
plorer (Fig. 4a). CircMarker has the largest hit number.
In addition, CircMarker has the large intersection with
the results from other tools in all three chromosomes,
which means it has low bias (Fig. 4b). As a result, Circ-
Marker outperform the other tools in this data. Moreover,
during this experiment, there is no preference for either
database selection or comparison approach, therefore,
“CircMarker” could be applied to other database as well.

Real RNase R treated/untreated data

Recall that RNase R is an experimental technology that
can break down linear RNA and enrich circular RNA. As
a result, one popular way for validating a circular RNA
detection tool is running the tool in two different types
of reads: one from only rRNA eliminated sample (called

untreated), and the other from RNase R treated sample.
The circular RNA which can be found in both types of
reads is considered to be reliable.

Data collection. The reference genome and the anno-
tation file are from Mus Musculus GRCm38 Release79.
The RNase R treated reads are from SRR2219951
and the untreated reads are from SRR2185851. The
library was prepared using the script Seq v2 Kit
from Epicentre [22], and this data has been used
to delineate the circular RNA complement of mouse
brain at age 8 to 9 weeks. Both datasets contain
pair-end reads, and SRR2219951 (treated) contains
44,661,952 sequences while SRR2185851 (untreated) con-
tains 65,879,618 sequences.

We use the first three chromosomes of Mus Musculus
with the two types of reads for comparison. We use the
following three statistics. (1) Reliable circular RNA: the
reliable circular RNAs are from the intersection of called
circular RNAs between the treated and untreated reads.
Each tool reports its own reliable circular RNA from chro-
mosomes 1 to 3. (2) Consensus-based sensitivity: we say a
called circular RNA to be trusted if this circRNA is called
by at least two tools. These trusted RNAs are considered
to be “benchmark” We collect these trusted circular RNA
for each chromosome. Then, we calculate the intersec-
tion between the reliable circular RNA and the benchmark
for each tool respectively from chromosome 1 to 3. The
consensus-based sensitivity is calculated by: %.
(3) Running time. Ideally, a circular RNA detection tool
should obtain large number of reliable circRNA with high
consensus-based sensitivity and fast running time in each
chromosome.
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The results are shown in Fig. 5. CircMarker finds larger
number of reliable circular RNA than others in all three
chromosomes (Fig. 5a). The number of circRNAs in
benchmark (i.e. trusted circRNA supported by at least two
tools) is 322, 353 and 186 for chromosomes 1 to 3 respec-
tively. One can see that CircMarker gets the largest num-
ber of reliable circular RNA in all three chromosomes. In
addition, it has the highest consensus-based sensitivity in
chromosome 1 and 3, but has slightly lower consensus-
based sensitivity than find_circ in chromosome 2 (Fig. 5b).
Moreover, CircMarker only needs around 15 minutes to
finish the whole analysis of teated sample while other tools
may take at least 1 hour (CIRCexploprer takes more than
9 hours). Overall, CircMarker outperforms the other tools
on this data (Additional file 1: Table S1).

For both two verification experiments described above,
the data we used here are randomly picked out without
any preference. As a result, “CircMrker” could also be used
to predict the circular RNAs in other dataset and species if
the corresponding annotation file could be well obtained.

Discussion

CircMarker takes advantage of annotation file to deter-
mine the position of the junction point caused by back
splicing. Some existing circular RNA calling tools don’t
use annotation files. There are several advantages of using
annotation file. First of all, annotation file contains the
boundary positions of each exon, which may help to iden-
tify the junction point more accurate than only use the
position where back splicing occur, especially for the case
when the reads error is near the junction point. Sec-
ondly, it can help to filter some false positive cases if
the exons involved in the back splicing do not contain

the reasonable splicing signal as expected. Finally, we can
choose some parts of sequence from the boundary of
each exon identified by the annotation file to build the
k-mer table, which may improve the speed significantly.
Moreover, the circular RNA which is supported by anno-
tated exons should be considered as more reliable than the
de novo one.

On the other hand, a major disadvantage is that, since
CircMarker depends on annotation file, it may miss the de
novo circular RNAs which occur in unannotated exons.
As aresult, CircMarker cannot handle the case or perform
as well as expected if the annotation file is not given or the
quality of annotation file is not good. In addition, some
circular RNAs with back splicing junction points within
intron may not be detected by CircMarker.

In order to evaluate the limitation of annotation depen-
dence in regular datasets, we made some statistical cal-
culations for the circular RNAs recorded in circBase. We
find there are 91.2% circular RNA recorded in circBase
that could hit the boundary of exons recorded in annota-
tion file. In addition, when we perform comparison, the
benchmark dataset includes both de novo circRNA and
annotation based circRNA. The results show that Cir-
cMarker still outperforms other tools even the results
predicted by some of other tools include both de novo and
annotation based circRNAs.

Based on our experiments described above, a large num-
ber of circular RNAs exactly occur in annotated exons.

Conclusion

In this paper, we develop a new circular RNA detection
method called CircMarker based on k-mer analysis. Cir-
cMarker runs much faster than other tools because it
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Fig. 5 Reliable circRNA and consensus-based sensitivity. a The number of reliable circular RNAs called by each tool from chromosomes 1 to 3. The
reliable circular RNAs come from the candidates which could be found in both treated and untreated sample. b The consensus-based sensitivity of
each tool, which measures how many benchmark (i.e. found by at least two tools) circular RNA be contributed by the reliable circular RNA from

doesn’t perform reads mapping. Moreover, k-mers contain
useful information about circular RNA detection. Our
results on both simulation data and real data demon-
strate that CircMarker can find more circular RNA. It
has higher consensus-based sensitivity and high accu-
racy/reliable ratio compared with others. In addition, the
circular RNAs called by CircMarker often contain most
circular RNAs called by other tools in the real data we
tested. This implies that CircMarker has low bias.

CircMarker is easy for use. CircMarker is a stand-
alone tool (implemented by C++) and does not depend
on any third party tools. The source code is available
under the GPLv3 licence at https://github.com/lxwgcool/
CircMarker.

Availability and requirements
Project name: CircMarker.
Project home page:
CircMarker

Operating system(s): Unix.
Programming language: C++.
Other requirements: GCC.
License: GPLv3.

https://github.com/Ixwgcool/
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Additional file 1: Table S1. Contains the detailed results presented in this
paper. These include seven tables: one for the results on simulated data,
three for public database validation on real RNase R treated reads on the
first three chromosomes respectively, and three for the consensus-based
validation on real RNase R treated and untreated reads on the first three
chromosomes respectively. (XLSX 18 kb)
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