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Abstract

Background: N6-methyladenosine (m6A) is an important epigenetic modification which plays various roles in mRNA
metabolism and embryogenesis directly related to human diseases. To identify m6A in a large scale, machine learning
methods have been developed to make predictions on m6A sites. However, there are two main drawbacks of these
methods. The first is the inadequate learning of the imbalanced m6A samples which are much less than the non-m6A
samples, by their balanced learning approaches. Second, the features used by these methods are not outstanding to
represent m6A sequence characteristics.

Results: We propose to use cost-sensitive learning ideas to resolve the imbalance data issues in the human mRNA
m6A prediction problem. This cost-sensitive approach applies to the entire imbalanced dataset, without random
equal-size selection of negative samples, for an adequate learning. Along with site location and entropy features,
top-ranked positions with the highest single nucleotide polymorphism specificity in the window sequences are taken
as new features in our imbalance learning. On an independent dataset, our overall prediction performance is much
superior to the existing predictors. Our method shows stronger robustness against the imbalance changes in the tests
on 9 datasets whose imbalance ratios range from 1:1 to 9:1. Our method also outperforms the existing predictors on
1226 individual transcripts. It is found that the new types of features are indeed of high significance in the m6A
prediction. The case studies on gene c-Jun and CBFB demonstrate the detailed prediction capacity to improve the
prediction performance.

Conclusion: The proposed cost-sensitive model and the new features are useful in human mRNA m6A prediction.
Our method achieves better correctness and robustness than the existing predictors in independent test and case
studies. The results suggest that imbalance learning is promising to improve the performance of m6A prediction.
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Background
Amongmore than 140 kinds of post-transcription modifi-
cations (PTMs) [1, 2], N6-methylation (m6A)—themethy-
lation at 6th nitrogen of adenosine, is one of the most
abundant modifications [3, 4]. This methylation has been
widely found in species such as Arabidopsis thaliana,
Saccharomyces cerevisiae, bacteria, virus, human, and
mouse [5–8]. More exactly, these methylation events
have occurred in the mRNAs at the 3’ untranslated
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regions (UTRs) close to the stop codon, following a con-
served sequence motif DRACH, [G/A/C] [G/A] A* C
[U/A/C], (where A* stands for the m6A site) [9, 10]. The
dynamic m6Amethylation involves many proteins such as
METTL3, METTL14, WTAP, ALKBH5 and YTHDF2 [3,
11–13]. With intensive investigation on this dynamic and
reversible methylation in mRNAs recently, the functions
of m6A in biological processes have been significantly
redefined. It is reported that m6A disruption can effect
translation efficiency [14], cell viability [15] and cell devel-
opment [11]. The level changes of m6A in mRNA can
lead to abnormality of RNA export, protein translation or
RNA editing, causing cancer, obesity, and other human
diseases [16–19]. For example, strong relationships have
been observed between m6A and HIV-1 [20, 21], Zika
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virus infection [22] and breast cancer stem cell phenotype
[23]. The identification of m6A sites is crucial for under-
standing the disease mechanisms and identifying novel
medicine targets.
Experimental approaches including two-dimensional

thin layer chromatography [24], high performance liquid
chromatography [25], and high-throughput methods (e.g.,
m6A-seq [9] and MeRIP-Seq [10]) have been applied to
identify m6A sites in mRNAs. However, they can only
detect m6A-containing transcript fragments instead of
identifying the exact methylated adenines [26]. Based on
the single-nucleotide resolution m6A maps in mRNAs,
researchers have explored computational methods with
sequence features and machine learning algorithms to
make m6A sites prediction. For instance, iRNA-Methyl
[27], m6Apred [6] and RAM-ESVM [28] are predic-
tors aiming at yeast m6A site prediction [29]; meth-
ods SRAMP [30], Methy-RNA [31] and RAM-NPPS [32]
are built on human and mouse m6A maps [33, 34].
There are also some predictors developed for Arabidopsis
thaliana [35–37].
One critical issue of this challenging prediction prob-

lem is that non-m6A sites are much more than m6A
sites in the training data. The existing computational
methods have overlooked this imbalance issue. In fact,
they trained the model with balanced datasets containing
roughly equal sizes ofm6A samples and randomly selected
non-m6A samples. Such sampling of non-m6A samples
may lead to inadequate learning and the prediction mod-
els would change when the selected non-m6A samples are
different.
Here we use a cost-sensitive XGboost classifier to

address the imbalance issue. Similarly as previous works,
m6A samples and non-m6A samples are labeled as posi-
tive and negative respectively. The classifier is then trained
with all the samples without selecting a subset of nega-
tive samples and prevents over-fitting by defining different
costs for the misclassified positive and negative sam-
ples. In the learning stage, the model minimizes the cost
function and improves the precision of classifying pos-
itive samples. Besides, ROC rather than accuracy is set
as the training cost function. Owing to training on the
whole dataset without sampling noise, our method which
is called HMpre, exhibits higher performance and better
robustness.
Another issue of computational m6A prediction is the

lack of valid features. The state-of-the-art features are
usually derived from window sequences with m6A at
the centre position. These features include binary encod-
ing sequence features [30, 35], k-mers [35], physical-
chemical properties [38, 39], position-specific nucleotide
propensities [40], pseudo nucleotide compositions [28,
41, 42], nucleotide pair spectrums [30] and multi-internal
nucleotide pair positions [32].

To improve the effectiveness of feature space, we present
three types of novel m6A features. First, we extract novel
features to capture specific single nucleotide polymor-
phism (SNP) variants in the window sequences through
the MRMRmethod and Fisher’s exact test [43]. These fea-
tures are relevant because single nucleotide variants can
effect m6A dynamics [44]. Moreover, m6A occurs richly
in some particular regions of transcripts, thus we calcu-
late the absolute and relative locations of m6A sites as
new features. To further exploit the distribution proper-
ties of nucleotides, entropy information is also considered
as new features. Together with these newly proposed fea-
tures, conventional features including 4-bit binary, over-
lapping chemical property with density and k-mers are
integrated into our feature space to describe comprehen-
sive characteristics of methylation.
In the performance evaluation of our method HMpre,

we first report specific SNP positions as new features.
Then we report a detailed comparison result with three
existing balance learning predictors on an independent
test dataset. HMpre achieves a much better performance
of precision 0.3035, F1 0.3961 and MCC 0.3329. Since
the ratio of positive sites over negative sites in a test
mRNA is unknown, HMpre and existing predictors are
also evaluated on 9 datasets containing different ratios
of positive sites over negative sites. Results show that
HMpre works better and has stronger robustness on the
ratio change. In practical use, the inputs to a predic-
tor are always individual transcripts, therefore the four
methods are then applied to make predictions on single
transcripts. Again, HMpre achieves the best overall per-
formance. Furthermore, we evaluate the features effective-
ness with 10-fold cross validation and feature importance
scores from XGBoost classifier. The new features are all
meaningful and the proposed feature space improves per-
formances notably. In the case studies, the transcript of
c-Jun gene is taken as an example to demonstrate the
prediction details. Then we evaluate our method on the
transcript of CBFB gene relating to HIV-1 infection and
our method also achieves better results than the other
predictors.

Methods
Datasets
Currently validated human mRNA m6A sites were all
obtained by Ke and Linda from single nucleotide resolu-
tion maps [33, 34]. To guarantee the reliability of nega-
tive samples, non-m6A sites conforming to the conserved
motif DRACH were all produced from these validated
transcripts. Based on these datasets, Zhou has built a
human mature mRNA m6A dataset which is the largest
human m6A dataset so far. The dataset used in our
experiments is downloaded from Zhou’s work [30]. After
removing redundant and unaligned samples, we get 7506
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humanmature transcripts in total.We reserved 6280 tran-
scripts for training and 1226 transcripts for independent
testing. For each transcript, the number of non-m6A con-
forming to the DRACH motif is much larger than m6A
sites. The training dataset contains 26512 positive samples
and 271214 negative samples, while the independent test
dataset contains 5644 positive samples and 54744 negative
samples. Each sample contains the transcript id, the loca-
tion of target adenine and the flanking window sequence.
All samples used in our dataset are listed in Additional
file 1.

Feature space construction
Computational prediction methods usually build features
from a flanking window sequence with m6A at the centre
position. The size of the flanking window varies from 20
to 50 nts in previous works and we choose the size of 25-nt
which is similar to other human predictors. Thus the fea-
tures are extracted from the 51-nt long sequence. Based
on the sequence characteristics of m6A site, we introduce
three types of new features: site location related features,
features related to entropy information and SNP features.
Three types of conventional features are also used. There
are totally 509 dimensions in our feature space. The tran-
script sequences, length information (including coding
region and UTRs) and SNP variants are obtained from the
Ensembl online human gene database (GRCh38.p10). A
diagram of the feature space construction is presented in
Fig. 1.

Three new types of sequence features
Site Location Related Features In mature transcripts,
m6A sites are rich in some special regions, such as the
3’ UTRs near the stop codon [10]. However, non-m6A

sites conforming to the DRACH motif are randomly dis-
tributed over the entire transcript. Thus the location of
target adenine site in the transcript can be taken as a new
feature. Specifically, site location refers to the distance
between the target site and the transcript start site. Beside,
the relative location of the target site in the whole tran-
script is also taken as a new feature, which is the ratio of
the site location over the transcript length.
Features Related to Entropy Information Because of

motif conservation for regulating protein binding sites,
the nucleotides around m6A sites have some unique dis-
tributions. Shannon information theory can be used to
evaluate these nucleotide distributions in the transcript
fragment sequences. We calculate Shannon entropy (En),
relative entropy (REn) and information gain score (IGS) of
all samples as a new type of feature. The scores of these
features are calculated as:

En(s) = −
∑

i∈{A,G,U ,C}
psi log2(p

s
i) (1)

REn(s) = −
∑

i∈{A,G,U ,C}
psi log2(

psi
p0

) (2)

IGS(s) = En(s) − REn(s) (3)
where psi is the frequency of A, G, U, C in sequence
s, and p0 is the uniform distribution of each nucleotide
occurrence, namely p0 = 1/4. The frequency of each
nucleotide is then combined with the entropy features as
a 7-dimension feature vector.
SNP Features Singe nucleotide polymorphism is a kind

of variant at specific sites in genome. For SNP sites, several
possible nucleotide variations are alleles for this posi-
tion. As a synonymous single nucleotide variant, SNP
changes the sequence of mRNA but does not alter the

Fig. 1 Feature Space Construction
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amino acid sequence of protein [45]. In addition, m6A is
regulated by some proteins which also have fixed RNA
binding sites, which means the flanking window sequence
around m6A site has specific base groups patterns. The
SNP variant of mRNA sequence may disrupt the DRACH
motif or protein binding regions, leading to failures of
m6A dynamic regulations [44]. Hence, we attempted to
find positions with unique SNP states. From the Ensembl
database, we map SNP variants in the transcript and
convert sample sequence into a 51-bit 0/1 vector (i.e., 0
denotes a non-SNP variant position; 1 donates an SNP
variant position). As there are various methods to select
effective features [46, 47], in this paper Max-Relevance
Min-Redundancy (MRMR) algorithm [43] and Fisher’s
exact test are adopted to recognize special SNP positions.
MRMR selects positions with a maximal statistical cri-

terion based onmutual information. MRMR tries to find a
position subset, which have maximum relevance (depen-
dency) with class and minimum internal redundancy.
MRMR adds positions into the subset one by one and
the order is determined by relevance to the target class
and the redundancy with the other positions. Fisher’s
exact test is a statistical significance test. For an individ-
ual position, it investigates the SNP variant distribution
difference between the positive and negative samples and
derives a p-value to assess the difference. A low p-value
means the SNP variant at this position has great differ-
ence between the negative and positive samples. Finally,
we can rank positions with Fisher’s exact test p-value and
the MRMR selection order. By calculating the average
ranking of MRMR and Fisher’s exact test, positions with
a significant SNP specificity can be identified. The SNP
variant states of such specific positions are considered as
SNP features. The detailed SNP specificity identification
algorithm is presented in supplementary Algorithm S1.

Conventional sequence features
4-bit Binary Features Binary encoding is a common fea-
ture extraction method to characterize RNA sequences.
As mRNA sequence contains four nucleotides A, C, G and
U, this encoding method can map every single nucleotide
into a 4-bit binary code. The mapping rules are: ’A’-
(1,0,0,0), ’C’- (0,1,0,0), ’G’- (0,0,1,0), ’U’- (0,0,0,1). By this
way, a 51-nt sequence can be transformed into a 204-
dimension feature vector.
Chemical Property with Density (CPD) Based on dif-

ferences in chemical property, four kinds of nucleotides
can be categorized into different groups [48]. In terms of
ring numbers in a single base group, C and U have only
one ring while A and G have two. Besides, C and G have
strong hydrogen bonds when forming secondary struc-
tures, whereas hydrogen bonds in A and U are both weak.
When considering chemical functionality, amino group
contains A and C while keto group includes G and U.

Thus, we can divide the nucleotides by different chem-
ical properties and use overlapping encoding rules: ’A’-
(1,1,1), ’C’- (0,0,1), ’G’- (1,0,0), ’U’- (0,1,0). In literature
work, the density of nucleotide is always used with chem-
ical property features, which calculates the frequency of
a nucleotide occurring before current position. Density
feature d_i is defined as:

di = 1
|Si|

i∑

j=1
f (sj), f (sj) =

{
1 sj = si
0 sj �= si

(4)

K-mer Features In mRNA sequence, adjacent nucleotide
pairs have influence on mRNA structures and functions.
K-mer is the frequency of k-nt adjacent nucleotides. As
a global feature, k-mer has been proved to be effective
in many sequence based site predictions. The length of
k-mer feature is 4k bits. In this paper, we adopt 2-mer
and 3-mer. Each sample has a 80-dimension k-mer feature
vector.

Imbalance learning
Imbalance learning has been explored for protein binding
site prediction [49–51] and protein-protein interaction
sites identification [52, 53]. However, the imbalance learn-
ing form6A prediction has not been explored. An intuitive
way to address this problem is to integrate sampling and
ensemble techniques, which trains basic classifiers with
different sampling data and combines the results in an
ensemble way to reduce the random sampling bias. But it
requires effective sampling techniques to select meaning-
ful negative subsets and there are some researches focus
on dynamic and cluster ways [54]. Another viable strat-
egy is to introduce cost-sensitive learning models, like
weighted support vector machine and cost-sensitive deci-
sion trees, using different matrices to describe the costs
for classifying sample into wrong class [55].
Here we use a cost-sensitive XGBoost classifier as learn-

ing model. XGBoost (eXtreme Gradient Boosting) is a
tree boosting algorithm developed by Chen [56]. It is an
advanced implementation of gradient boosting algorithm,
which has been widely applied for classification problems.
XGBoost has some advantages over other cost-sensitive
classifiers. Firstly, the regularization can effectively pre-
vent training model from over-fitting. Secondly, embed-
ded parallel processing allows a faster learning speed.
Thirdly XGBoost is of high flexibility and allows users
to define custom optimization objectives and evaluation
criteria. Moreover, XGBoost classifier can learn from
imbalance training data by setting class weight and taking
ROC as evaluation criteria. Here we implement the model
with a python package named xgboost (vision 0.6a2). The
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parameters can be optimized by 10-fold cross validation
in the learning stage. The parameters in our model are:
’lambda’: 700, ’max-depth’: 6, ’eta’: 0.1, ’silent’: 1, ’objec-
tive’: ’binary:logistic’, ’booster’: ’gbtree’,’scale-pos-weight’:
6, ’eval-metric’: ’auc’ and training boost round is 400, while
other parameters are all default values.
In this paper, our method is compared with three

recently published human m6A prediction methods.
These three literature methods are: SRAMP [30], Methy-
RNA [31] and RAM-NPPS [32]. They all have open access
web predictors and SRAMP also provides a tool pack-
age for local implementation. The prediction results of
Methy-RNA and RAM-NPPS are obtained from the web
predictors, while the results of SRAMP are derived from
tool package in mature mode.

Performance evaluation metrics
The proposed prediction method is evaluated by 10-
fold cross validations and independent test dataset with
four frequently used metrics: precision, recall, F1-score
and Matthews correlation coefficient(MCC). As RAM-
NPPS and Methy-RNA cannot return prediction proba-
bilities, we do not use AUROC or AUPRC as evaluation
metrics.
Precision and recall reflect the tendencies of classi-

fier prediction. Recall (also called sensitivity in binary
classification) illustrates how many positive samples are
rightly classed, and precision shows the ratio of true pos-
itive sample ratio in all predicted positive-label samples.
There is always a trade-off between precision and recall,
so we introduce F1 and MCC to evaluate the overall per-
formance of a predictor. F1-score combining precision
and recall together can assess the performance on both
balanced and unbalanced test datasets. MCC is also a fre-
quently used metric in classifier evaluation, which return
a value between -1 to 1: 1 standing for perfect prediction
and -1 for reversed prediction.

Results
We report the specificity results of SNP identification
as new features. In the performance comparison and
evaluation, we tested our HMpre method and other
existing predictors on the independent test dataset. To
demonstrate the robustness of our method to deal with
the unknown percentages of positive samples in real tran-
scripts, we compared our method with three existing
human m6A predictors on datasets of different positive-
and-negative sample ratios. To evaluate the performance
for the practical use, we tested all the predictors on sin-
gle transcripts. Lastly, we report the feature effectiveness
results of HMpre and XGBoost classifier feature impor-
tance scores.

Specific SNP identification as new features
To identify positions with specific SNP variant states as
new feature, MRMR and Fisher’s exact test are applied
to analyze sequence SNP variant states in the training
dataset. As presented in Fig. 2, MRMR and Fisher’s exact
test give rankings to all the positions numbered from -25
to 25 in the window sequence.
In the process of selecting a position subset, MRMR

defines mutual information to evaluate the subset for the
inner redundancy and relevance with the target class, then
it gives out the order of position selection and we take the
order as position importance ranking. The top 12 posi-
tions are -2, 25, 1, -21, -1, 18, -24, 16, -11, 20, -15 and -19.
Fisher’s exact test can statistically recognize the SNP vari-
ant distribution difference for these individual positions
between the positive and negative samples, as described
by a p-value. With Fisher’s exact test p-values (details in
Table S1 of Additional file 2), we can also rank all these
positions. The top 12 positions are -2, -1, 2, -25, 15, -
24, -19, -4, -23, -21, 12 and -20. Finally we choose the
top 12 positions with the highest average ranking as SNP
features. These highly ranked positions are illustrated in

Fig. 2 SNP Specificity Ranking. The black blocks stand for the Fisher’s exact test rankings and the green blocks stand for the MRMR rankings. X-axis is
the window sequence sites from -25 to 25. Y-axis is the total ranking of each position. A low ranking means a high SNP specificity at this position
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Table 1. These positions have relatively higher ranking
both inMRMR and Fisher’s exact test. Detailed results are
listed in Table S2 of Additional file 2.

Performance on the independent dataset
Our proposed HMpre is compared with three existing
prediction methods on the independent test dataset. The
prediction results are reported in Table 2. HMpre achieves
the best performance under all metrics except recall;
RAM-NPPS has a better recall of 0.6339 than HMpre. The
precision of HMpre is 0.3035, 0.04 higher than SRAMP
which is the best in the existing predictors. Overall,
HMpre achieves F1 score of 0.3961, higher than the best
F1 value of the other three predictors (0.3408 by RAM-
NPPS). In terms of MCC, Methy-RNA has a value of
-0.1619 and SRAMP is 0.2653, about 0.08 higher than
RAM-NPPS, but still lower than HMpre’s 0.3329.

Robust performance when tested on datasets with
different imbalance ratios
In normal situations, the numbers of m6A and non-m6A
sites are unknown before prediction. Therefore, a practi-
cal m6A predictor should have a strong robustness against
the imbalance level change. To appraise the robustness
of HMpre and other predictors, we test them on nine
datasets whose negative samples to positive samples ratios
range from 1:1 to 9:1. Here we adopt the overall met-
rics F1 and MCC as evaluation criterions. The results are
reported in Fig. 3. The F1 andMCC values of all the meth-
ods have a trend of decreasing when the imbalance level
increases. The F1 scores of RAM-NPPS and Methy-RNA
decrease more rapidly than HMpre and SRAMP. For the
MCC values, HMpre also has a relatively slow changing
rate while the other methods are comparable. Moreover,

Table 1 Ranking details of Top 12 specific SNP positions (FET:
Fisher’s exact test)

No. Position FET
ranking

MRMR
ranking

Average Ranking

1 -2 1 1 1 1

2 -1 2 5 3.5 2

3 -24 6 7 6.5 3

4 -21 10 4 7 4

5 -19 7 12 9.5 5

6 2 3 23 13 6

7 -25 4 24 14 7

8 -11 19 9 14 7

9 -4 8 21 14.5 8

10 -15 21 11 16 9

11 -9 15 17 16 9

12 -23 9 25 17 10

Table 2 Performance on the Independent Test Dataset (Methy:
Methy-RNA; NPPS: RAM-NPPS)

Methods Precision Recall F1 MCC

Methy 0.065 0.5184 0.1163 -0.1619

NPPS 0.1656 0.6339 0.2626 0.1833

SRAMP 0.2638 0.4812 0.3408 0.2653

HMpre 0.3035 0.5698 0.3961 0.3329

These data in boldface just means the largest values in each metrics

HMpre has a better performance on all of these datasets
under F1 and MCC, proving that HMpre has a stronger
robustness.

Average performance on 1226 individual transcripts
Since the testing objects are always single transcripts in
real cases, the four predictors are evaluated on individual
transcripts. There are 1226 transcripts in the indepen-
dent dataset for the four methods to make predictions.
The imbalance levels of the 1226 transcripts are different,
and we calculate the average metric values of all the tran-
scripts as the final results for each method. The results are
reported in Table 3. Although RAM-NPPS has the high-
est recall of 0.6582, HMpre achieves the best performance
under the remaining four metrics (precision 0.2972, recall
0.6062, F1 0.3658 and MCC 0.3239). Especially, the over-
all metrics F1 andMCC of HMpre are about 0.07 and 0.08
higher than SRAMP, the best existing predictor.

Feature importance analysis
Three types of new features are extracted to add to the
existing feature space to improve the prediction perfor-
mance. 10-fold cross validations with different feature
spaces are used to verify whether the new feature space
actually improves the prediction performance. The per-
formance of the three types of traditional features and
their merged features are compared with the proposed
feature space in Table 4. The three types of traditional
features (four-bits binary coding, chemistry property with
density and k-mers) achieve distinct performance and the
4-bit binary features are better than the other two types
of features. By joining the three types of conventional
features together, all metrics increase comparing with
individual features. The proposed feature space, combin-
ing conventional and new features together, exhibits the
best performance under all metrics.
We also attempted to understand more about the role

of each feature in prediction. XGBoost can make an inner
analysis of feature importance during learning process and
output scores for all the features. The importance scores
can reveal how meaningful the features are when building
model and tell which features plays leading roles in the
feature space.
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Fig. 3 Performance on Datasets of Different Imbalance Levels. The F1 and MCC values of four predictors are represented. X-axis k is the ratio of the
negative samples to positive samples (imbalance level) in a test dataset; Y-axis is metric value

The feature importance scores boxplot is presented in
Fig. 4. There are 509 features and their distribution is pre-
sented in Table S3 of Additional file 2. The importance
scores have a wide range from 0 to 1064. The features with
a 0 score are from 4-bit binary and CPD features, corre-
sponding to the motif adjacent sites which are ’GAC’ or
’AAC’ in all the samples. The dimension with the highest
score 1064 (f501) refers to the site distance from tran-
script start site, followed by features of relative location in
transcript (f500, scored 943) and sequence entropy (f506,
scored 342). Besides, density features in CPD features has
relatively high importance scores. Detailed importance
scores is shown in Figure S1. For the average score, binary
and CPD are much lower than other features while site
location and entropy information are obviously higher.
K-mers and SNP have comparable average scores. From
the results, the three types of new features are indeed
significant in the feature space.

Case studies
In this section, we report two detailed case studies to
understand the difference of the four predictors and eval-
uate their capacity in practical use. First, we describe the
prediction results for the c-Jun transcript from the test
dataset. The second case study is about the m6A sites in
the mRNAs of CBFB gene which can modulate HIV-1
replication and infection [20].

m6A prediction for c-Jun transcript
Transcript ENST00000371222 of c-Jun gene contains 25
verified m6A sites and 47 non-m6A sites conforming to

Table 3 Performance on Individual 1226 Transcripts (Methy:
Methy-RNA; NPPS: RAM-NPPS)

Methods Precision Recall F1 MCC

Methy 0.0723 0.5075 0.1174 -0.1614

NPPS 0.1770 0.6582 0.2529 0.1907

SRAMP 0.2484 0.4759 0.2928 0.2387

HMpre 0.2972 0.6062 0.3658 0.3239

These data in boldface just means the largest values in each metrics

the DRACH motif. HMpre made a prediction of 21 m6A
sites: 18 of them are true positives while 3 are false
positives. SRAMP made 12 true positive m6A sites and 3
false positives. RAM-NPPS made 14 true positives and 12
false positives. Methy-RNA made the most 31 false pos-
itive predictions and identified only 19 true m6A sites.
Thus, Methy-RNA achieved the highest true positive rate,
but it made the most number of false positive predictions.
See Fig. 5. Despite SRAMP achieved a good precision of
predicted m6A sites, a large number of true m6A sites
were wrongly classified. RAM-NPPS has more false pos-
itives and less true positive predictions than SRAMP and
HMpre.
Table 5 shows the detailed prediction performance.

Overall, the precision, F1 and MCC of our HMpre
method are much higher than the other prediction meth-
ods. Although Methy-RNA has a high recall 0.96, it has
the lowest precision, F1 and MCC. The performance
of SRAMP is better than RAM-NPPS, but the recall of
SRAMP is the lowest 0.48, suggesting a lot of positive
samples are predicted to be negative.

m6A site prediction for a transcript related to HIV-1
infection
The longest transcript ENST00000290858 of CBFB gene
from the Ensembl database was chosen for this case study.
There are 62 adenines (A) conforming to the motif in

Table 4 Different Feature Space Performance in Cross Validation
(CPD: Chemical Property with Density; Joint: joint of conventional
features)

Feature Precision Recall F1 MCC

K-mers 0.1392 0.3426 0.2461 0.1572

CPD 0.2460 0.4816 0.3256 0.2532

Binary 0.25 0.4906 0.3312 0.2601

Joint 0.2519 0.5035 0.3358 0.2661

Proposed 0.2669 0.5248 0.3538 0.2877

These data in boldface just means the largest values in each metrics
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Fig. 4 Boxplot of Feature Importance Scores

this transcript. The experimentally validated m6A sites
of CBFB gene are acquired from RMBase, a online m6A
database [57]. Based on these data, we constructed a test
dataset of 12 positive samples and 50 negative samples.
The predicted m6A sites are presented in Fig. 5. HMpre

made 5 true positive and 3 false positive predictions.
SRAMP made 3 true positive and 2 false positive pre-
dictions. RAM-NPPS and Methy-RNA made more false
positives than true positives: RAM-NPPS had 6 true pos-
itives and 16 false positives, and Methy-RNA had 51 false
positives and 8 true positives. The predicted m6A sites by

Table 5 Results for the c-Jun gene case study (Methy:
Methy-RNA; NPPS: RAM-NPPS)

Case Methods Precision Recall F1 MCC

c-JUN Methy 0.3428 0.96 0.5052 -0.0542

NPPS 0.5384 0.56 0.549 0.3019

SRAMP 0.75 0.48 0.5853 0.4522

HMpre 0.8571 0.72 0.7826 0.6872

HIV-1 Methy 0.1702 0.6666 0.2711 -0.1045

NPPS 0.1935 0.5 0.279 0

SRAMP 0.6 0.25 0.3529 0.2727

HMpre 0.6256 0.4166 0.5 0.4203

These data in boldface just means the largest values in each metrics

SRAMP are mainly correct, but it missed a lot of true m6A
sites.
The detailed results are reported in Table 5.Methy-RNA

achieves the best recall 0.6666 but the worst precision
0.1702. SRAMP has a high precision 0.7692 but the low-
est recall 0.25. Our HMpre method has the best precision
0.56256 and achieves the best performance on the overall
metrics F1 0.5 and MCC 0.4203.

Discussion
In this paper, we adopted a XGBoost classifier as the pre-
diction model. On one hand, this classifier can learn from
imbalance data which is similar to data in practical predic-
tion situations and inner regularization rules can prevent
model from over-fitting; on the other hand, when the scale

a

b

Fig. 5 Predicted m6A sites in the case studies. The x axis stands for the potential m6A sites confirming to the sequence motif DRACH and the y axis
indicates the four predictors. All colored blocks are the predicted m6A sites. Red blocks represent true positive sites and yellow blocks are false
positive ones. (a) the prediction results for the c-Jun case and (b) the predictions for the HIV-1 case
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of training data is quiet large, it would cost classifiers
like SVM and Random forest much longer time than our
method in training stage.
The efficiency of features is crucial to the performance

of predictors. Here, we presented m6A sites with mean-
ingful biological features instead of just using flank win-
dow sequence features. In this work, the size of flanking
window are fixed to 51-nts which is the same with exist-
ing methods. The influence of sequence size on feature
efficiency will be studied in next stage of research. In addi-
tion, some m6A biological characteristics found recently
can be taken as new features in the prediction and we will
try them in the future.

Conclusion
To address the problem of class imbalance in the training
data for humanmRNAm6A prediction, we have proposed
a novel computational method called HMpre. The key
idea is a cost-sensitive learning model. Three types of new
features are also introduced to learn more from the imbal-
anced training data for the further improvement of the
prediction performance. Along with other three existing
methods, HMpre was tested on an independent dataset.
The results show that our method has better correctness
and robustness. The feature importance analysis demon-
strates that the new features are exactly meaningful in the
prediction. In the detailed cases studies, our method also
outperforms over the existing predictors. Class imbalance
is a long-neglected but important issue in the m6A pre-
diction problem. Imbalance learning provides a promising
way to resolve this issue.
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