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Abstract

Background: MicroRNAs (miRNAs) are small non-coding RNAs that bind messenger RNAs and promote their
degradation or repress their translation. There is increasing evidence of miRNAs playing an important role in alcohol
related disorders. However, the role of miRNAs as mediators of the genetic effect on alcohol phenotypes is not fully
understood. We conducted a high-throughput sequencing study to measure miRNA expression levels in alcohol
naïve animals in the LXS panel of recombinant inbred (RI) mouse strains. We then combined the sequencing data
with genotype data, microarry gene expression data, and data on alcohol-related behavioral phenotypes such as
’Drinking in the dark’, ’Sleep time’, and ’Low dose activation’ from the same RI panel. SNP-miRNA-gene triplets with
strong association within the triplet that were also associated with one of the 4 alcohol phenotypes were selected
and a Bayesian network analysis was used to aggregate results into a directed network model.

Results: We found several triplets with strong association within the triplet that were also associated with one of the
alcohol phenotypes. The Bayesian network analysis found two networks where a miRNA mediates the genetic effect
on the alcohol phenotype. The miRNAs were found to influence the expression of protein-coding genes, which in
turn influences the quantitative phenotypes. The pathways in which these genes are enriched have been previously
associated with alcohol-related traits.

Conclusion: This work enhances association studies by identifying miRNAs that may be mediating the association
between genetic markers (SNPs) and the alcohol phenotypes. It suggests a mechanism of how genetic variants are
affecting traits of interest through the modification of miRNA expression.
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Background
Non-coding RNAs are defined as biologically functional
RNAs that are not translated into proteins. They have
a variety of functions including the regulation of the
expression of protein coding genes. microRNAs (miRNA)
are small non-coding RNAs that bind messenger RNAs
(mRNA) and promote degradation or repress transla-
tion by post-transcriptional silencing of the target mRNA
[1]. The seed region of miRNAs often binds to the
3’ untranslated region (UTR) of the target transcripts
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to down-regulate their translation [2], but in some
cases miRNAs can also positively regulate the mRNA
expression [3, 4].
miRNAs have been found to have important roles for

many complex traits [5]. The role of miRNAs in alcohol-
related phenotypes and addiction is an emerging research
area. There is evidence of miRNA expression being asso-
ciated with both alcohol dependence and alcohol tol-
erance [6–8] and miRNAs have been suggested to be
‘master regulators’ of alcohol abuse [9]. However, little is
known about how miRNAs regulate such complex traits.
The influence of genetic background on alcohol-related
traits, shown by several behavioral Quantitative Trait Loci
(bQTL) studies [10, 11], and on miRNA expression shown
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by miRNA expression Quantitative Trait Loci (eQTL)
studies [12, 13], is well recognized. It is reasonable to pro-
pose that some miRNAs may have a mediating role in
the genetic predisposition to alcohol-related phenotypes.
It can be extremely useful to understand such mediation
for developing miRNA-based therapy [14]. The area of
miRNA therapeutics is fairly new, but rapidly developing
[14–18]. Prediction models that can estimate or infer the
trait level based on levels of expression of related miRNAs
could help identify therapeutic targets.
There has been some general work onmiRNA-mediated

effects in the context of a liver gene regulatory network
[19], but there is a lack of research on this systems genet-
ics aspect to understand the nature of miRNA-mediated
effects in alcohol research. A study of miRNA-mediated
genetic effects requires a statistical framework to combine
genotype data, miRNA expression data and phenotype
data. It is also reasonable to include data on expression
of protein-coding genes, since there is increasing evidence
of association of both miRNA and gene expression lev-
els with the alcohol-related phenotypes [6, 20–27]. In this
work, we propose a method to integrate these different
data types to understand the mediating role of miRNAs.
We have used data from a recombinant inbred (RI)

mouse panel known as LXS (Inbred Long Sleep × Inbred
Short Sleep) [28]. This panel, originally developed to study
differential sensitivity to ethanol’s sedative effects, has
previously been used for bQTL analysis of various alco-
hol related traits. We used genotype, miRNA expression,
expression of protein coding genes and multiple alcohol-
related phenotypes from the LXS mouse panel to under-
stand the nature of the miRNA-mediated genetic effect
on predisposition to alcohol-related phenotypes. Because
both themiRNA and gene expression level were measured
on naïve mice (no ethanol exposure), associations repre-
sent predisposing factors rather than responses to alcohol.
For the sake of simplicity, we will use the term ‘gene’ to
mean ‘protein coding gene’ for the rest of the paper.
The traditional methods [29] to test mediation with

potentially multiple mediators (miRNA and gene) have
several drawbacks. The most important problem is that it
is not possible to learn from the data whether the medi-
ation is serial or parallel, and if assumed serial, what the
order of the mediators should be. For example, for a cor-
related miRNA-gene pair, we do not know for certain if
miRNA expression influences gene expression or it is the
other way around. The situation can be more compli-
cated when there are multiple miRNAs and/or multiple
genes. Bayesian network models can be used to over-
come such limitations of a frequentist mediation approach
[30]. We have used a Bayesian network analysis to learn
the network structure and make predictions. This analy-
sis included necessary adjustments to the usual structure
learning methods to make them compatible with our data.

The results from such analysis contribute to a better
understanding of the miRNA mediated genetic effect.
We report multiple miRNA mediated pathways from

genotype to phenotype using Bayesian network analysis.
In addition we investigated the genes targeted by the miR-
NAs and the pathways in which they are enriched. Finally,
we have included the predicted changes in the associated
phenotypes when the miRNA expression level changes.
Such predictions were possible due to the nature of our
statistical modeling and can be helpful for future in silico
testing and targeted drugs.

Methods
Animals
The LXS RI panel reported by Markel et al. [31] origi-
nally consisted of 77 strains. This sample size is larger than
most RI panels, which helps to achieve higher statistical
power. The panel was generated from crosses between the
ILS (Inbred Long Sleep, abbreviated to L) and ISS (Inbred
Short Sleep, abbreviated to S) strains of mice. ILS and ISS
mice were reciprocally intercrossed and the F1 mice are
intercrossed to produce F2 progeny. Pairs of the F2 mice
are then repeatedly inbred to produce the inbred lines (See
[32] for details). RI panels have the advantage of being vir-
tually renewable in the sense that they can be genotyped
once and used for behavioral, physiological, and molecu-
lar phenotyping repeatedly over many generations since
mice within a strain can be considered to be genetically
identical [33]. This enables us to use existing phenotype
data from different sources as long as they correspond
to the same LXS strains. However, none of the original
datasets from the different sources had all the 77 strains.
The genotype data, mRNA expression data, and miRNA
expression data consisted of 66, 60, and 59 strains, respec-
tively, with 59 strains belonging to all three. Therefore,
when conducting the analysis for each phenotype, we only
used the strains that were present in all genomic datasets
(i.e. miRNA, mRNA and SNPs) as well as that phenotype
data. The list of the strains available for each dataset is
reported in Additional file 1: Table S1.

Alcohol related phenotypes
We have used existing data on three different alcohol-
related phenotypes for this study. For the rest of the
paper the term ‘phenotype’ denotes ’alcohol-related phe-
notype’. Descriptive figures showing the distribution of
the phenotypes across the strains and the pairwise asso-
ciations between the three phenotypes are included
in the Supplementary Materials (Additional file 1:
Figures S1 and S2).

Drinking in the dark (DID)
In a free-choice ethanol consumption paradigm, mice are
given limited access (for two hours) to 20% ethanol during
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the early phase of their circadian dark cycle for four con-
secutive days. The previously published DID phenotype
was measured in grams of ethanol per kilogram of body
weight in male mice on the third day of alcohol consump-
tion [25]. This phenotype is related to ‘binge drinking’. The
DID data consisted of 38 strains, but had 33 strains that
were also in the three genomic datasets.

Low dose activation (LDA)
For LDA, the mice (male) were given ethanol or saline
injections on different days. Difference in total distance
traveled in centimeters between the day when ethanol
injection (1.8 g/kg) is given and the day when an injection
of saline is given was measured as LDA [34]. This pheno-
type is generally thought to be a measure of sensitivity to
low dose of ethanol. The LDA data consisted of 72 strains,
but had 57 strains that were also in the three genomic
datasets.

Loss of righting reflex (LORR)
LORR, also known as Sleep Time, is the phenotype the
LS (Long Sleep) and SS (Short Sleep) mice were origi-
nally selected for. Mice were given an intraperitoneal dose
of ethanol and placed on their backs in a v-shaped tray.
LORR was measured by the difference in time (minutes)
between the regain of the righting reflex and the time
of the initial loss of the righting reflex [35]. Both male
and female mice were used for this experiment and the
strain means were reported. LORR is a measure of the
sensitivity of an animal to the hypnotic effects of a high
dose of ethanol. The LORR data consisted of 76 strains,
but had 58 strains that were also in the three genomic
datasets.

miRNA expression data
The miRNA expression dataset used was obtained from
a subset of the panel with multiple mice per strain. Ani-
mal breeding was conducted in the specific pathogen-free
facility at the Institute for Behavioral Genetics, Boulder,
CO. A total of 175 male mice (59 LXS strains, 2–3 bio-
logical replicates per strain) were sacrificed using CO2
inhalation followed by decapitation during the light phase
and had total RNA extracted from whole brain tissues
and fragments between 20–35 bp were selected during
the library preparation. Libraries were sequenced on the
Illumina HiSeq 2500 platform using single-end 50 base
pair reads [36]. The trimmed reads were mapped using a
novel k-mer matching method [37] to quantify the num-
ber of sequencing reads per individual miRNA. Using
this method SNPs for each strain were accounted for in
the individual reference miRNAs so that there would not
be a mapping bias against those miRNAs. In addition,
we used miRDeep2 to identify 362 putative novel miR-
NAs using the clipped reads and mouse miRBase v20.

Following mapping and quantitation, filtering of miR-
NAs with low counts (less than 5 samples having at
least 10 counts), normalization and batch correction were
performed [36]. The filtered data consisted of 881 miR-
NAs including 86 novel miRNAs. A variance stabilizing
transformation (VST) [38] was used to transform the
read count data to address heteroscedasticity. For our
analysis, we collapsed the observations within a strain
using the average VST expression across the biological
replicates.

Genotype data
Existing genotype data on the same 59 LXS strains were
available from Yang et al. [39]. The genotype data iden-
tified approximately 40000 different Single Nucleotide
Polymorphisms (SNPs), but only 34642 were informative
with different alleles for the parental strains and with no
missing data. Many of the 34642 SNPs had the same Strain
Distribution Pattern (SDP). Two SNPs are defined to have
the same SDP if they are in complete linkage disequilib-
rium, i.e., there is no recombination in any of the strains
between the two SNPs. The data were summarized to
1416 unique SDPs. We used these SDPs for all the statisti-
cal analysis but reported the original physical locations of
the SNPs corresponding to each SDP. The list of all SDPs
and summary of the information on SNPs corresponding
to them is reported in Additional file 2: Table S2.

Gene expression data
For measures of brain mRNA expression levels, the pub-
lic data set on 60 LXS strains and the two parental strains
(n = 4 to 6 male mice per strain) was downloaded
as Affymetrix Mouse Exon 1.0 ST Array (Affymetrix,
Santa Clara, CA) CEL files from the PhenoGen web-
site (http://phenogen.ucdenver.edu; [11, 40]). The probe
mask described previously in Vanderlinden et al [11] was
used to eliminate low integrity probes, i.e., probes that
that did not align uniquely to the mm10 version of the
mouse genome or aligned to a region of the genome
that harbored a sequence polymorphism between either
parental strain and the C57BL/6J reference strain. The
remaining probe sets were compared to the Ensembl
GRCm38/mm10 version of the transcriptome in mouse.
Probe sets targeting the same Ensembl gene were aggre-
gated into a single expression estimate on the log base 2
scale for each sample using the rma-sketch pipeline for
normalization and aggregation in Affymetrix Power Tools
[41, 42]. Normalized expression estimates were adjusted
for batch effects using ComBat [43] and all results are
reported at the gene level. For our analysis, we selected
the 59 strains for which miRNA data are available and
collapsed the RNA expression levels of the individual
mice within strains using the average expression level for
each strain.

http://phenogen.ucdenver.edu
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Statistical analysis
Identification of ‘cohesive’ quadruples
The summary of the statistical analysis is shown in
Fig. 1. We first selected candidate SDP-miRNA-gene
triplets for which all the pairwise Pearson correlations
between the three variables are strong (nominal p-value
< 10−3, step (a) in Fig. 1). We call them ‘cohesive’
triplets. Then we calculated the correlation of the phe-
notypes with all three variables of the selected can-
didate triplets. SDP-miRNA-gene-phenotype quadruples
for which the phenotype is significantly associated (nom-
inal p-value < 0.05, step (b) in Fig. 1) with each of
the three components of a chosen triplet are selected
as ‘cohesive’ quadruples. We used a more stringent
p-value threshold for the molecular traits since a more
direct relationship is expected between them. The list of
all ‘cohesive’ quadruples is reported in Additional file 3:
Table S3 and the distribution of the correlation between
the phenotypes and the ‘cohesive’ triplets is shown by
Additional file 1: Figure S3.
Due to the large number of correlated variables involved

in the analysis, it is extremely difficult to adjust for mul-
tiple testing within this filtering step, and it remains
an open problem how to make such adjustment. How-
ever, we argue that our use of nominal p-values in the
selection of cohesive quadruples is unlikely to result
in many false positives in the final results due to the
stringent threshold used in the later stages. We did
not use standard genome-wide cutoff since our focus is
on identifying miRNA mediating networks, and this is
used merely the first step to choose interesting ‘cohe-
sive’ triplets for the subsequent filtering. We evaluated
the QQ-plots for all the 3 pairwise associations within a
triplet to determine where the points deviated from the
diagonal line and chose a significance threshold of 10−3,
which strikes a balance across all 3 pairwise associations
(Additional file 1: Figure S4).

Initial Bayesian Network Analysis
Next, Bayesian Network Analysis (BNA) was performed
to learn network structure and discover potential miRNA
mediated networks (step (c) in Fig. 1). We performed
BNA separately for each quadruple. When directing edges
within the network we forced any edge with the SDP to
be directed away from the SDP and every edge with the
phenotype to be directed towards the phenotype. Since
SDPs are genetic elements encoded in the mouse genome,
it is realistic to use them as ‘causal anchors’ by the princi-
ple of Mendelian randomization [44, 45]. The phenotype,
on the other hand, can only be a response and cannot
affect the miRNA or gene expression since the expres-
sion data are obtained from naive mice. There are 96
possible network structures for each quadruple satisfying
these properties.

A Bayesian Information Criterion (BIC) score-based
network learning procedure was adopted. The BIC score
is defined as

BIC = log(Likelihood) − d
2
log(n) (1)

where n is the sample size and d is the number of parame-
ters of the whole network. A higher value of BIC indicates
greater support for the model.
For each quadruple, we performed an exhaustive score-

based search across all 96 possible network structures to
determine whether the network structure with the high-
est score has the miRNA as a mediator between the SDP
and the phenotype. In order to have a high confidence
about the mediating role of the miRNA, we also compared
it to the highest score among networks where the miRNA
is not a mediator. We chose the SDP, miRNA and phe-
notype from the current quadruple for the next step only
if the BIC clearly favored the model with the miRNA as
the mediator, i.e., the difference between the two scores is
greater than 2 (Fig. 2, Step 1). It is typically recommended
that a difference of 1 in the BIC scores is needed to claim
onemodel to be better than another [46] (Note that BIC as
defined in the referenced paper [46] differs from our def-
inition by a constant). If the quadruple met this criterion,
we also evaluated the inclusion of the gene within the path
from SDP to phenotype. For this comparison, we were
more permissive with the difference in BIC scores (Fig. 2,
Step 2). The intent of our analysis was to identify miRNA-
mediated effects, therefore our criterion for the mediating
effect of the miRNA was conservative. With genes, we
were more concerned with missing a biologically relevant
member of a pathway that has met our initial stringent
BIC criteria. For a gene to be included, we compared the
highest BIC among networks with both the miRNA and
the gene in the path between the SDP and the phenotype
to the highest BIC among networks with the miRNA in
the path from SDP to phenotype but not the gene. Using
a non-inferiority framework, we require the difference in
BIC to be greater than −1 for the inclusion of the gene
in the final model (Fig. 2, Step 2). These choices of SDP,
miRNA, gene and phenotype are not dependent on any
optimization algorithm since we conducted exhaustive
search among all possible networks.
We used methods for Gaussian Bayesian Network

within the R-package bnlearn [47] for the purpose of
structure learning. It is a common practice to assume
that the normalized gene expression and phenotypes fol-
low normal distribution. Also, the miRNA expression
obtained from sequencing was transformed using a vari-
ance stabilizing transformation [38] which can then be
treated as Gaussian. The variable SDP is binary and
cannot be transformed to a normal random variable.
Therefore, we modified the network learning methods to
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a

b

c

d

Fig. 1 Analytical pipeline to identify miRNA-mediated netowrks associated with alcohol-related phenotypes. The various steps in the flowchart are
a Select triplets for which all 3 variables are strongly correlated (p < 10−3) with each other; b Select quadruples for which the phenotype is
significantly associated (p < 0.05) with each of the 3 components of a chosen ‘cohesive’ triplet; c Bayesian Network Analysis separately for each
quadruple: Select the quadruple for next step if the best network using the quadruple has a miRNA mediating the effect of the SNP on the
phenotype (See details in Fig. 2); d Advanced Bayesian networks: miRNAs and genes that were associated with the same phenotype and an SDP
from the same region of the genome were combined into larger networks



Rudra et al. BMC Genomics  (2018) 19:639 Page 6 of 12

Fig. 2 Identification of miRNA mediated quadruples (Step c in Fig. 1). For each ‘cohesive’ SDP-miRNA-gene-phenotype quadruple, we perform the
following steps. Step 0: Compute the BIC scores for all possible network structures that satisfy scientific assumptions. The network structure with
the highest score can be considered as the ’most probable’ network for this quadruple. Step 1:We choose the SDP, miRNA and Phenotype for
building larger network if the quadruple passes the threshold for the BIC-difference in this step. Step 2: Also choose the gene for building larger
network if the quadruple passes the threshold for the BIC-difference in this step

accommodate hybrid Bayesian networks [48]. The modi-
fication of the likelihood is simple due to the fact that the
binary random variable SDP is always the causal anchor
and the likelihood only involves its unconditional density.

Combining chosen quadruples to obtain larger network
Finally, we combined all miRNAs and genes which are
associated with the same phenotype and also associated
with SDPs from the same region of the chromosome
(within 40 megabases from each other) into bigger net-
works (step (d) in Fig. 1). The SDPs physically located near
one another were combined since SNPs that are phys-
ically close with each other often show a high Linkage
Disequilibrium (LD) pattern and associations of a trait
(behavioral or molecular) with multiple such SNPs may
just be due the fact that the SNPs are highly correlated
with each other. Therefore, we believe that such physi-
cally close SDPs are likely to be part of the same larger
network. However, the miRNAs and genes did not nec-
essarily have to be physically close to the SDPs. At this
final stage the more complex networks are learned using
a hill-climbing algorithm [49]. To ensure that the learned
structures are stable, we used bootstrapping to repeat the
structure learning for 500 bootstraps and used network
averaging to combine the results [50, 51]. Network aver-
aging retains an edge and a direction if it appears in more
than 50% of the 500 cases. It is possible for some nodes to

be not connected to any other nodes in the network, such
disconnected nodes are not presented as part of the final
network.

Finding pathways enriched for genes with binding sites for
themediatingmiRNAs
Using predicted/validated target databases, we also exam-
ined the miRNAs from the final networks to obtain the
pathways in which their predicted/validated target genes
are enriched. We used the tools multiMiR [52], miRmap
[53] and DIANA-miRPath v3.0 [54] for the analysis.

Results
We obtained 2916 candidate ‘cohesive’ quadruples for
which the SDP, miRNA, gene and phenotype were
strongly associated with each other. Thirty nine quadru-
ples included DID, 2231 included LDA and 646 included
LORR. Figure 3 illustrates the association of the four vari-
ables (SDP, miRNA, gene and phenotype) with each other
for two such quadruples. In the first example, LDA is neg-
atively correlated with the expression of the gene Ano5
(Anoctamin 5) and the miRNA miR-7057-5p, and posi-
tively associated with the ISS allele (Fig. 3a). In the second
example, LORR is negatively correlated with the expres-
sion of the gene Terf2 (Telomeric repeat binding factor 2)
and the ISS allele, but positively correlated with the novel
miRNA (Fig. 3b).
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a

b

Fig. 3 Quantitative relationships between SNP-miRNA-gene-phenotypes quadruples contained within the final network models. Scatter plots of the
gene expression (in log base 2 scale) and miRNA expression in the causal pathway with a LDA b LORR. The color of the points represent the ISS (red)
or ILS (blue) alleles for the associated SDP. The value of the correlation coefficient is printed on the top of each scatter plot, the p-values being
smaller than the thresholds shown by Fig. 1 in each case

Three networks were obtained from our final step of
the analysis, of which one was not miRNA-mediated
(Additional file 1: Figure S1), when all SDP, miRNA, and
genes were included in the model. Of the two miRNA-
mediated networks, the first network involves the miRNA
miR-7057-5p (Fig. 4), targeting the gene, Ano5, which in
turn influences the level of the phenotype LDA. The net-
work also involves the gene Nell1 (Neural EGFL Like 1).
The miRNA, the SDP, and the genes are all located on
chromosome 7. Predicted target sites for miR-7057-5p in
the 3’ UTRs of both Ano5 and Nell1 are found using
miRmap [53]. The pathway enrichment analysis found
two pathways, Cell Adhesion Molecules and Extracellular
Matrix Receptor Interaction, in which the genes predicted
to be targeted by the miRNA miR-7057-5p are enriched
(Table 1).
The second network (Fig. 5) involves a novel miRNA

(mature sequence: CGGGACACCTGAGCTGCCTCTCCT)
targeting the gene Terf2, which in turn influences the level
of the phenotype LORR . The novel miRNAwas not found
to be homologous to any other known miRNA upon a
homology search using SSEARCH and BLASTN in miR-
base (E-value cutoff 1). ThemiRNA, the SDP, and the gene
are all located near one another on chromosome 8 indicat-
ing local regulation (i.e. eQTL) of both themiRNA and the
mRNA. The proportions of the bootstrap samples where
the edges were detected are particularly high (> 0.85 for
presence and > 0.99 for direction of the edges) in the net-
work involving LORR which provides a high confidence
about the learned network. The exact values of the pro-
portions are reported in Additional file 1: Figures S6 and

S7. For both networks, there are some SDPs that are not
connected with any other node in the network, and they
are not shown in the final networks.
Using the fitted Bayesian network models, we deter-

mined the predicted changes in the phenotypes for 2-
quartile or 4-quartile change in the normalized miRNA
or gene expression (Fig. 6). We note that the activation of
the corresponding genes reduces the magnitude of both
LDA or LORR, i.e. decreases the alcohol sensitivity. How-
ever, the corresponding miRNAmiR-7057-5p is positively
associated with the gene Ano5 for LDA while the novel
miRNA is negatively associated with the gene Terf2 for
LORR. Therefore, the effect of the mediating miRNA
on the phenotype is positive for LORR and negative
for LDA.
It is important to note that all of these network struc-

tures were learned, and we did not force the pheno-
type (or any other variable) to have a connected edge
in the network. It is possible to not have any miRNA-
mediation in the final Bayesian network model even when
all the variables are strongly associated. For example,
for some of the candidate genes and miRNAs, when
the cohesive quadruples were combined for a larger
network, the larger network did not have any con-
nected edge with the corresponding phenotype, LORR
(Additional file 1: Figure S5).

Discussion
With the increase in the volume of high-throughput omics
data and the advent of less expensive sequencing tech-
nologies, more researchers are looking to integrate data
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a

b

Fig. 4 Bayesian network for Low Dose Activation (LDA). a A Bayesian network for miRNA mediated genetic effect on LDA. The thickness of the
arrows represent the proportion (to scale) of bootstraps for which the edge is present (ranging from 0.53 to 0.99) and the darkness of the arrows
represent the proportion of bootstraps for which the edge has the same direction (ranging from 0.54 (gray) to 1 (black)). b Illustration of the relative
locations of the SDPs, genes and miRNA in the mouse genome (not to scale). The start position of the genes and miRNA are reported. The location
of an SDP indicates the range of the original physical locations of the SNPs with the same SDP

of different types to learn more about functional mech-
anisms. Our statistical framework based on BNA is an
effective way to incorporate the different types of data in
an unified analysis instead of conducting separate anal-
yses such as miRNA eQTL, gene eQTL and bQTL for
alcohol phenotypes. BNA can be considered as a way of
decomposing a large joint probability distribution, but it
can also serve as a causal probability network model [55].
The method enables us to determine miRNA-mediated
predisposition, and the use of BNA ensures that we learn
the network structure rather than making prior assump-
tion about the direction of the edges. Although in our
final models, the genes, the miRNA, and the SNPs were
co-localized, this co-localization was not forced in the
procedure and themethod should be equally able to detect
distal regulations, when present.
Special care was taken to identify the networks for

which we have a strong evidence about the mediating role
of the miRNA. The thresholds used for BIC differences
are arbitrary but commonly used. We used a more strin-
gent threshold for including the mediating miRNA in the
final model to make sure that the miRNA is indeed play-
ing a mediating role, while we used a permissive threshold

for including a gene to make sure we do not exclude a
relevant gene. The use of bootstrap for learning the struc-
ture of the larger networkminimizes the effect of sampling
fluctuation and potential outliers on the final models. We
also used a random starting network approach where we
used different networks as starting points instead of start-
ing from an empty network [50, 51], and the results were
similar (data not shown). The use of bootstrap was not
necessary for the final network obtained in Fig. 5 since we
could use the exhaustive search and therefore have more
confidence about the network learned.

Table 1 Pathways enriched for genes with known binding sites
to miR-7057-5p

miRNA Pathway FDR Genes targeted by miRNA

miR-7057-5p Cell adhesion molecules 0.0031 Itga6, Itgb2, Cd34, Itgav,

Cadm3, Itgb1, Pdcd1

Extracellular Matrix 0.0063 Itga6, Sv2c, Itgav, Itgb1

Receptor Interaction

DIANA-miRPath v3.0 was used for the analysis. No pathways were enriched for the
novel miRNA in Fig. 5
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a

b

Fig. 5 Bayesian network for Loss Of Righting Reflex (LORR). a A Bayesian network for miRNA mediated genetic effect on LORR. The thickness of the
arrows represent the proportion (to scale) of bootstraps for which the edge is present (ranging from 0.85 to 1) and the darkness of the arrows
represent the proportion of bootstraps for which the edge has the same direction (ranging from 0.99 to 1). b Illustration of the relative locations of
the SDPs, genes and miRNA in the mouse genome (not to scale). The start position of the genes and miRNA are reported. The location of an SDP
indicates the range range of the original physical of the SNPs with the same SDP

a b

Fig. 6 Illustration of prediction based on the fitted Bayesian network models. The figure illustrates the changes in the phenotypes when the
expression of the gene or miRNA is increased from the first quartile to the third quartile (2-Quartile difference) or from the minimum to maximum
(4-Quartile difference). The bar indicates the change in the phenotype. a LDA: The miRNA is miR-7057-5p and the gene is Ano5. b LORR. The miRNA
is a novel miRNA and the gene is Terf2
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We obtained two different miRNA-mediated networks
involving the phenotypes LDA and LORR. No miRNA-
mediated networks involving DID was found, which is
likely to be due to the much smaller sample size for the
DID data (only 33 strains compared to 57 and 58 for LDA
and LORR, respectively). Ano5, the gene targeted by the
miRNAmiR-7057-5p and associated with LDA, encodes a
protein which is likely a calcium activated chloride chan-
nel (CACC). CACCs are known to be associated with
hypnotic ethanol responses in rats after a high dose of
ethanol [56]. LDA is also a measure of sensitivity to alco-
hol, although the effect of high dose and low dose of alco-
hol could be different. It has been shown by other studies
that LORR (sensitivity to high dose) and LDA (sensitivity
to low dose) have an inverse relationship, and it is possi-
ble that they have similar genetic sources of variation [34].
The predicted target genes for miR-7057-5p are enriched
in the pathways ‘Cell Adhesion Molecules’ (CAM) and
‘Extracellular Matrix (ECM) receptor Interaction’. CAMs
and ECM Receptors are known to be associated with dis-
eases or nervous system and brain, and addiction includ-
ing alcohol use disorders [57–60]. The second network
involved the gene Terf2 targeted by a novel miRNA and
associated with LORR. Terf2 have been shown to have
important role in telomere homeostasis and brain devel-
opment in mice [61]. We have also reported the predicted
change in the phenotypes for a fixed change in the nor-
malizedmiRNA expression or the gene expression (Fig. 6).
The direction and magnitude of the predicted change can
be helpful for developing targeted drugs.
The results have the same limitations of any in vitro

study. However, the results from this paper provide strong
candidates for future validation. The stringent thresh-
old for the BIC difference implies high confidence about
the mediating role of the miRNAs we reported. For the
LORR results, we must assume that the genetic sources
of variation in the phenotype are the same in male and
female mice since the data contained average measure-
ment for male and female mice while every other dataset
were based on male mice only. There is also an amount of
uncertainty (of causal SNP) introduced by linkage disequi-
librium. The causal SNP may not be uniquely identifiable
since many SNPs have the same SDP, and it may require
additional studies for more accurate mapping.

Conclusions
This work enhances association studies by identifying
miRNAs that may be mediating the association between
SNPs and an alcohol phenotype. We proposed a statistical
approach that can identify different mechanisms of how
genetic variants are affecting traits of interest through
the modification of miRNA expression. In particular, we
have identified two miRNA-mediated networks. We also
incorporated gene expression data to better understand

the functional mechanism and to evaluate alternative drug
targets. The ability to detect miRNA-mediated effects and
to predict the level of an alcohol related trait based on
themiRNA expression provides an opportunity to identify
targets for miRNA therapeutics.
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