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Nascent RNA sequencing analysis provides
insights into enhancer-mediated gene
regulation
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Abstract

Background: Enhancers are distal cis-regulatory elements that control gene expression. Despite an increasing
appreciation of the importance of enhancers in cellular function and disease, our knowledge of enhancer-regulated
transcription is very limited. Nascent RNA sequencing technologies, such as global nuclear run-on sequencing
(GRO-seq) and precision run-on sequencing (PRO-seq), not only provide a direct and reliable measurement of
enhancer activity, but also allow for quantifying transcription of enhancers and target genes simultaneously, making
these technologies extremely useful for exploring enhancer-mediated regulation.

Results: Nascent RNA sequencing analysis (NRSA) provides a comprehensive view of enhancer-mediated gene
regulation. NRSA not only outperforms existing methods for enhancer identification, but also enables annotation
and quantification of active enhancers, and prediction of their target genes. Furthermore, NRSA identifies
functionally important enhancers by integrating 1) nascent transcriptional changes in enhancers and their target
genes and 2) binding profiles from regulator(s) of interest. Applied to wildtype and histone deacetylase 3 (Hdac3)
knockout mouse livers, NRSA showed that HDAC3 regulates RNA polymerase recruitment through both proximal
(promoter) and distal (enhancer) regulatory elements. Integrating ChIP-seq with PRO-seq data, NRSA prioritized
enhancers based on their potential contribution to mediating HDAC3 regulation.

Conclusions: NRSA will greatly facilitate the usage of nascent RNA sequencing techniques and accelerate the study
of enhancer-mediated regulation.
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Background
RNA transcription in eukaryotic cells is actively regulated
in multiple stages, including RNA polymerase recruit-
ment, transcription initiation, elongation, and termination.
The RNA polymerase pause immediately downstream of a
transcription start site (TSS) constitutes another critical
step in transcriptional regulation [1–5]. Nascent RNA se-
quencing technologies, such as precision nuclear run-on
sequencing (PRO-seq) [6] and global run-on sequencing
(GRO-seq) [5], enable the measurement of transient RNA
transcription at multiple stages, on a genome-wide scale,
for multiple RNA species, including protein-coding genes,

long non-coding genes, microRNAs, and even enhancer
RNAs. When used for comparison across different condi-
tions, these technologies provide a direct and sensitive meas-
urement of transcriptional changes at each stage, without
interference from splicing, capping, and post-transcriptional
stabilization.
Like promoters, enhancers are key regulatory com-

ponents bound by transcriptional regulators to enable
temporal and spatial control of gene expression. Active
enhancers contain transcription initiation sites [7–10]. En-
hancers control cell-type specific gene expression that reg-
ulates cell lineage determination and cellular responses to
stimuli [11, 12]. Mutations in enhancer sequences alter
transcription factor binding, which leads to abnormal gene
expression and can result in disease [13, 14]. In the human
genome, 43,011 active, in vivo-transcribed enhancers have
been identified by CAGE (cap analysis gene expression)
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profiles in the FANTOM5 project [10, 15, 16]. Only a
small portion of enhancers, however, has been character-
ized, underscoring the importance of accurate identifica-
tion of active enhancers to study their transcriptional
regulation and understand their role in regulating gene
expression.
Combinations of histone modifications, such as high

levels of H3K4me1 and H3K27ac in the absence of
H3K4me3, are commonly used to predict active enhancers
[17–21]. Although useful and informative, histone modifi-
cations are correlative and only describe the chromatin
state. They do not distinguish transcriptionally active en-
hancers from poised enhancers. Other approaches reported
to predict enhancers include those based on features such
as motifs and conservation [22–25], transcriptional regula-
tor binding [20, 26–28], and enhancer-promoter interac-
tions [29–31]. All of these features, as well as histone
modifications, however, are only indirect indicators of en-
hancer presence and activity, and do not directly identify
enhancers.
In contrast, enhancer-templated RNA (eRNA), a group

of non-coding RNAs bidirectionally transcribed from en-
hancers, is a more direct and reliable indicator of enhan-
cer activity [32–35]. Because eRNAs are often unstable,
traditional transcriptome profiling such as RNA-seq can-
not successfully capture these transcripts [36]. GRO/
PRO-seq, which directly maps elongation-competent
RNA polymerases and reveals transcriptional direction
[37, 38], provides an accurate way to both identify and
quantify eRNAs in a single experiment, and has been
used successfully to study the regulatory role of en-
hancers in gene transcription [9, 33]. Recently, several
tools have been developed to implement de novo calling
of active transcription/regulatory units from GRO/
PRO-seq data (Fig. 1a) [39–42]. dREG trains a classifier
based on support vector regression to recognize the
characteristic pattern of divergent transcription at active
transcriptional regulatory elements (promoters, en-
hancers, and insulators) [39]. groHMM uses a two-state
hidden-Markov model to define the boundaries of active
transcription units [40]. Fstitch takes advantage of the
hidden-Markov model and logistic regression to identify
active transcribed regions [41]. Finally, Vespucci not only
identifies nascent transcripts, but also deposits the rele-
vant data into a database that makes downstream inte-
grative analysis feasible [42]. Though not specifically
designed for enhancer identification, these tools can be
used to detect enhancers with the help of other scripts
or genome annotation (Fig. 1a). To further understand
enhancer function, additional novel tools are needed to
link enhancers to their target genes and to identify func-
tionally important enhancers.
Here, we describe nascent RNA sequencing analysis

(NRSA), a novel tool with the dedicated goal of

comprehensive analysis of enhancer-mediated regulation
from nascent transcriptome data. NRSA not only identifies
and quantifies enhancers as do dREG, Vespucci, Fstitch,
and groHMM, but also annotates and assigns enhancers to
their potential target genes. These additional functions are
critical for studying enhancer-mediated regulation and
downstream effects (Fig. 1a). Moreover, NRSA prioritizes
enhancers by integrating nascent transcriptional changes in
enhancers and their target genes, with binding profiles from
regulator(s) of interest (Fig. 1a and b). NRSA performs all
analysis using two simple Linux commands and provides
tools for optimizing figure output, facilitating usage by in-
vestigators with limited or no informatics background.
When first applied to public GRO/PRO-seq data, NRSA

demonstrated its power for highly reliable identification of
enhancers. NRSA was then applied to a new PRO-seq
dataset acquired from wildtype (WT) and Hdac3-deleted
mouse livers at post-natal day 14 (P14). Histone deacety-
lases (HDACs) catalyse the removal of acetyl groups from
histone tails and non-histone proteins, repressing gene
transcription by modulating chromatin structure [43].
HDAC3 provides enzymatic activity in a transcriptional
repressive complex containing nuclear receptor corepres-
sor (NCoR)/silencing mediator for retinoid and thyroid
hormone receptors (SMRT), which has been shown to
repress gene expression [44–46]. The regulatory role of
HDAC3 at different stages of transcription (e.g., initiation
or elongation), however, is still under debate. NRSA
revealed that deletion of Hdac3 in mouse livers primarily
increased RNA polymerase promoter-proximal pausing
without promoting transcription elongation. More inter-
estingly, NRSA identified 1650 novel enhancers and
further prioritized these enhancers based on their poten-
tial contribution to HDAC3-regulated RNA polymerase
recruitment. NRSA and Hdac3 Wildtype(WT)/Knock
out(KO) PRO-seq data are freely available at http://bioin
fo.vanderbilt.edu/NRSA/.

Results
NRSA identifies enhancers accurately and reproducibly
NRSA was first applied to public K562 and GM12878
GRO-seq data to assess its performance in enhancer
identification. 358 enhancers were detected in K562 data
(Additional file 1: Table S1a), and 2654 in GM12878
(Additional file 1: Table S1b). To compare NRSA with
existing enhancer detection tools like groHMM, dREG,
and ChromHMM, an equal number of top scoring
enhancers were selected from each method (top 300
enhancers in K562 and top 1000 in GM12878). Because
neither groHMM nor ChromHMM employ a scoring
metric to rank enhancers, the top 300 (K562) and top
1000 enhancers (GM12878) with the strongest GRO-seq
signatures were selected. Results showed that enhancers
identified by NRSA, as compared to those detected by
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a

b

Fig. 1 a Summary of features distinguishing NRSA from exiting GRO/PRO-seq analysis tools. b The schema of NRSA. NRSA takes read alignment files
(Bed/Bam format) as input. There are two main types of analysis: one for known genes (left panels) and the other for active enhancers (right panels).
To identify enhancers contributing to the function of the regulator of interest, NRSA integrates GRO/PRO-seq results with external ChIP-seq data to
prioritize enhancers. pp.: promoter-proximal, gb: gene body, TSS: transcription start site
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dREG or groHMM, were much more enriched with
enhancer-associated signatures, such as GRO-cap,
EP300, and H3K4me1 binding signals (Fig. 2a), which
have been commonly used to predict enhancers [19, 21,
47, 48]. groHMM and dREG occasionally failed to pick
up regions even with strong bi-directional transcrip-
tional signals and histone modifications marking active
enhancers (i.e., H3K4me1 and H3K27ac). Furthermore,
enhancers detected by groHMM are much broader than
those identified by NRSA or dREG (Additional file 2:
Fig. S1). Compared with ChromHMM [49], which inte-
grates various histone modification datasets (including
H3K4me1 data) to predict enhancers, NRSA identified en-
hancers with comparable H3K4me1 signatures and much
higher GRO-cap and EP300 binding signals (Fig. 2a). The
NRSA-identified enhancers also were enriched in known
enhancers from the FANTOM5 [50] and VISTA [51] da-
tabases, as compared to enhancers detected by dREG,
groHMM, or ChromHMM (Fig. 2b). FANTOM5 includes
65,423 human enhancers defined by CAGE-tags [50],
while VISTA contains 1751 experimentally validated

human regions with enhancer activity [51]. These results
demonstrate that NRSA achieves better performance in
identifying enhancers than existing GRO/PRO-seq- and
histone marker-based methods.
NRSA was then applied to U2OS GRO-seq replicate

datasets with comparable sequencing coverage (GSE66928:
GSM1634453 & GSM1634455). A similar number of en-
hancers (1636 and 1728, respectively) was detected in each
replicate, with the majority of these (1238) shared in com-
mon between replicates, suggesting high reproducibility of
enhancer identification (Fig. 3a) (Additional file 1: Table
S1c and d). Applied to K562 data generated on GRO- and
PRO-seq technologies, NRSA discovered 3021 enhancers
in the PRO-seq data, but only 358 in the GRO-seq data
(Fig. 3b) (Additional file 1: Table S1e). Most enhancers
identified in the GRO-seq data (266 of 358) also were found
in the PRO-seq data, while a large portion of enhancers de-
tected in the PRO-seq data (2755 of 3021) were missed by
the GRO-seq data (Fig. 3b). The increased detection in the
PRO-seq data is attributable to the depth of sequencing;
the total number of reads in the PRO-seq data

a b

Fig. 2 Comparison between NRSA and dREG, groHMM, and ChromHMM on enhancer identification. a Enrichment of enhancer-associated
signatures, including GRO-cap, and ChIP-seq of EP300 and H3K4me1, based on the top scoring enhancers from each method. b Percentage of
known enhancers in FANTOM5 and VISTA
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(387,932,085) is ~ 22 times more than in the GRO-seq data
(just 17,691,454). The enhancers found in common be-
tween the two technologies displayed significantly higher
eRNA transcription than those unique to each technology
(Additional file 3: Fig. S2), suggesting that only enhancers
with higher transcription levels are picked up by both plat-
forms. With random subsampling to down-scale the total
read number in the PRO-seq data, the percentage of over-
lapping enhancers increases, approaching ~ 60% when the
PRO-seq is adjusted to similar sequencing depth as the
GRO-seq data (Fig. 3c). The remaining differences in iden-
tified enhancers could be explained by inherent differences
between the GRO-seq and PRO-seq platforms. Only 23%
(692/3021) and 33% (119/358) of the enhancers from the
K562 PRO-seq and GRO-seq data, respectively, were anno-
tated in FANTOM5, while 77% and 67% were novel en-
hancers (Fig. 3d). Like known enhancers, these novel
enhancers were marked by enhancer-associated histone
modification signatures (H3K4me1 and H3K27ac) (Fig. 3e).

These results demonstrate that enhancer identification by
NRSA is highly reproducible and that NRSA works well for
both GRO/PRO-seq technologies.

NRSA reveals enhancer-mediated Hdac3 regulation
HDAC3 regulates RNA polymerase recruitment to promoters
HDAC3 is known to repress gene transcription [44–46];
however, its mechanism of action at transcription initi-
ation versus elongation is still unclear. We generated
PRO-seq datasets from WT and Hdac3 KO mouse livers
(two biological replicates per condition) and used NRSA
to explore the functional role of Hdac3 in transcriptional
regulation. In total, 11,273 genes were found to be tran-
scriptionally active, using the criteria of promoter-proximal
density greater than zero and gene body density greater
than 4 reads/kb (see Implementation).
To detect transcriptional changes in Hdac3 KO vs.

WT conditions, the PRO-seq measurements were first
normalized by the total number of uniquely mapped

a b

c

e

d

Fig. 3 The reproducibility of enhancers identified by NRSA. a The overlap of enhancers identified in two replicates of U2OS GRO-seq data (Rep1:
GSM1634453, Rep2: GSM1634455). b The overlap of enhancers identified in K562 PRO-seq and GRO-seq data. c The overlap of enhancers identified in
random-subsampled K562 PRO-seq data and K562 GRO-seq data. d Percentage of known and novel enhancers identified in K562 PRO-seq and GRO-
seq data. e Enrichment of histone modifications H3K4me1 and H3K27ac around the centers of PRO-seq-identified known and novel enhancers
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reads in each library. After normalization, transcrip-
tional changes were calculated for all active genes at
multiple stages, including initiation, elongation, and
pausing. The gene body transcriptional changes were
consistent with our previously published mRNA ex-
pression microarray data generated from Hdac3 WT
and KO mouse livers at P17 [52] (Additional file 4:
Fig. S3a and b). Most interestingly, the deletion of
Hdac3 caused a global accumulation of polymerase in
promoter-proximal regions (Fig. 4a) (Additional file 5:
Table S2), which could be associated with loss of hetero-
chromatin, making the expressed genes more accessible
[53]. 2801 genes showed a significant increase in polymer-
ase accumulation at their promoter-proximal regions
(FDR < 0.05 & log2FC > 0.6), while only 180 genes showed
significant loss (FDR < 0.05 & log2FC < − 0.6) (Fig. 4b).
Further analysis of the 2801 genes with significant increase
in promoter-proximal polymerase showed that 79.3%
(2221) genes did not display a significant increase in tran-
scription of their corresponding gene body regions (an ex-
ample is illustrated in Fig. 4c), and 15 genes were
transcriptionally downregulated in their gene body regions
(Fig. 4b).
Compared with two GRO-seq datasets, which studied

RNA Pol II dynamics after triptolide and flavopiridol

treatment [54], PRO-seq of the Hdac3 knockout de-
monstrated a different transcriptional regulation
mechanism (Additional file 6: Fig. S4). Although tran-
scriptional changes between promoter-proximal and
gene body regions were significantly correlated after
Hdac3 knockout, transcripts at gene-body regions ac-
cumulated much more slowly than those at promoter-
proximal regions, suggesting a dominant effect on
enhancing transcription initiation, along with a mod-
est increase in pausing. In contrast, triptolide blocks
initiation without affecting transcription pausing [54].
After triptolide treatment, transcription of gene-body
regions and promoter-proximal regions decreases at
similar speeds. Flavopiridol treatment inhibits escape
from the RNA Pol II pause [54], which leads to de-
creased transcription at gene-body regions and inde-
pendent transcriptional change between gene-body
and promoter-proximal regions (p > 0.05, Additional
file 6: Fig. S4). Overall, our findings suggest that
HDAC3 regulates RNA polymerase recruitment to
TSSs, rather than restricting RNA polymerase release
into the gene body. This is consistent with previous
findings, which showed that transcription repression
by HDACs occurs at an early step to prevent RNA
polymerase II binding [45, 46].

a b c

Fig. 4 Impact of Hdac3 deletion on nascent transcription of known genes. a Heatmap of log2-transformed fold changes of RNA polymerases ±5 kb
from TSSs with 200 bp bin size for all active genes comparing Hdac3 KO (knockout) and WT (wildtype) mouse livers. Genes were ranked by promoter-
proximal density changes. b Heatmap of log2-transformed fold changes in RNA polymerases ±5 kb from TSSs with 200 bp bin size for genes showing
significant change in RNA polymerases in promoter-proximal regions (pp up: upregulated in promoter-proximal regions; pp. down: downregulated in
promoter-proximal regions; gb up: upregulated in gene body region; gb down: downregulated in gene body region; gb unchanged: unchanged in
gene body region). c IGV snapshot of an example that shows a concomitant increase of RNA transcription in promoter-proximal but no change in
gene body upon Hdac3 deletion
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Active enhancers in the mouse liver
NRSA detected 2282 intergenic active enhancers from
the pooled PRO-seq data derived from Hdac3 WT and
KO mouse livers (Additional file 7: Table S3). The me-
dian size of the transcribed region at enhancers was
about 2 kb, similar to the typical length of enhancers re-
ported in a previous study [55]. Most enhancers (97.4%,
2223 of 2282) were shorter than 20 kb (Additional file 8:
Fig. S5). Among these detected enhancers, 27.7% have
been annotated in FANTOM5, while 72.3% (1650) were
considered novel enhancers (Fig. 5a). The novel en-
hancers were enriched with histone modification markers
H3K4me1 and H3K27ac, with the level of enrichment
comparable to that of known enhancers (Fig. 5b).
Additionally, the active genes closest to enhancers showed
much higher transcriptional activity in both promoter-
proximal and gene-body regions than other active genes
(Fig. 5c), further supporting the reliability of identified
enhancers.

HDAC3 regulates enhancer activity
Similar to elevated promoter-proximal RNA polymerase
pauses for known genes, accumulation of RNA polymerase

around enhancer centers showed a global increase in
Hdac3 KO livers compared to WT livers (Fig. 6a and b)
(Additional file 9: Table S4), suggesting Hdac3 affects eRNA
production. Indeed, 582 (25.5%, 582 out of 2282) enhancers
were found to be upregulated (FDR < 0.05 & log2FC > 1)
upon Hdac3 deletion, while only 212 (9.3%, 212 out of
2282) enhancers were downregulated (FDR < 0.05 &
log2FC < − 1) (Fig. 6b). Consistent with HDAC3 functioning
as a transcriptional co-repressor, the deletion of Hdac3 re-
leases enhancer repression, leading to enhancer activation
as evidenced by increased eRNA transcription [56, 57].
We used previously published H3K9ac, HDAC3 and

NCoR ChIP-seq data derived from mouse liver to fur-
ther characterize these up-regulated enhancers [45, 58].
Genomic recruitment of HDAC3 has been reported to
remove acetylation, and deletion of HDAC3 is expected
to elevate H3K9ac signal [45]. NCoR (also known as
NCOR1), as well as SMRT, forms transcriptional repres-
sive complexes with HDAC3, and the deacetylase acti-
vating domain of NCoR/SMRT is required for HDAC3
enzymatic activity [57]. Consistent with these known
functions, we found H3K9ac signals at up-regulated en-
hancers to be highly elevated upon Hdac3 deletion,

a c

b

Fig. 5 Active enhancers identified in the mouse liver. a Percentage of known and novel enhancers identified in the mouse liver PRO-seq dataset.
b Enrichment of H3K4me1 and H3K27ac for known and novel enhancers. c The distribution of RNA transcription abundance in promoter-
proximal (left) and gene body (right) regions of enhancer-associated genes and other active genes
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while only minor increase was observed at unchanged en-
hancers (Fig. 6c). This result suggests that up-regulated
enhancers are functional targets of Hdac3. The upregu-
lated enhancers were enriched in HDAC3 and/or NCOR1
binding, further indicating they are direct targets of
Hdac3. Moreover, enhancers with greater eRNA changes
were more enriched in HDAC3 and/or NCOR1 binding
(Fig. 6d and e). The observation that Hdac3-dependent
changes in eRNA transcription correlate well with
HDAC3/NCOR1 binding strength demonstrate the poten-
tial value of quantifying eRNA transcription.

Enhancers contribute to HDAC3-regulated RNA polymerase
recruitment to the promoter-proximal region
To evaluate whether enhancers mediate HDAC3 regula-
tion, we focused on the 582 enhancers upregulated upon
Hdac3 deletion. We compared the transcriptional alter-
ations in their closest genes with those of other active
genes. The closest genes displayed significantly higher ele-
vation of transcriptional activity in both promoter-proximal
regions and gene-body regions (Fig. 7a), indicating that en-
hancers upregulated upon Hdac3 deletion contribute to the
increased expression of their nearest genes.
Previous studies have reported that enhancers do not al-

ways interact with the nearest promoter [59]. In addition

to the closest TSS strategy, NRSA provides two additional
methods to link enhancers to their target genes for Mus
musculus: TSSs within a user-specified distance (default
50 kb) and experimentally validated enhancer-promoter
interactions from 4DGenome (see Implementation). For
582 upregulated enhancers, 582 enhancer-gene ass-
ociations were found by the closest method, 387 were
identified by the 50 kb distance constraint, and 3599 inter-
actions were identified by 4DGenome. Among these asso-
ciations, 204 were found by all three strategies
(Additional file 10: Fig. S6). Application of each strategy
increased the fraction of genes with upregulated
promoter-proximal density (Fold improvement > 1,
Fig. 7b), suggesting each strategy enriches for legitim-
ate regulatory interactions. Among the three strategies,
the closest method achieved the highest fold improve-
ment, followed by the 50 kb distance constraint. 4DGe-
nome showed only a subtle improvement in the fraction
of upregulated genes, possibly due to the inclusion of
many interactions from various tissues/conditions other
than liver (Fig. 7b). When only liver-specific enhancer-
gene interactions were used, the increased fraction of
genes with upregulated promoter-proximal density con-
firmed this assessment (Fig. 7b). Combinative strategies
gained higher fold improvement than using any single

a

c e

b

Fig. 6 HDAC3 regulates enhancer activity. a RNA polymerase signals around enhancer centers in Hdac3 KO and WT samples. b Heatmap of log2-
transformed fold changes of RNA polymerase ±1 kb from all enhancer centers with 50 bp bin size comparing Hdac3 KO and WT mouse livers. c
Elevation of H3K9ac signal around upregulated and unchanged enhancers upon Hdac3 deletion. d ChIP-seq signatures of HDAC3 binding around
the top 50, 100, and 150 significantly upregulated enhancers. e ChIP-seq signatures of Ncor1 binding around the top 50, 100, and 150
significantly upregulated enhancers
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d

Fig. 7 Enhancers mediate Hdac3-regulated RNA polymerase recruitment to the promoter-proximal region. a The distribution of transcriptional
changes in promoter-proximal (top) and gene-body (bottom) regions for the closest active genes associated with upregulated enhancers and
other active genes. b The fold improvement of each enhancer-gene association method and combinative strategy. The fold improvement is
calculated based on the fraction of genes with upregulated promoter-proximal density in the comparison gene set (e.g., enhancer-closest genes)
over that in the whole gene set. Eup: upregulated enhancers; 50 kb: 50 kb distance; 4D: 4DGenome; 4D_liver: enhancer-gene interactions in liver
in 4DGenome. c H3K9ac enrichment around the 582 upregulated enhancers in WT (gray) and Hdac3-deleted livers (black) and enrichment around
the top 50 enhancers ranked based on functional activity score (blue), binding affinity score (green), and the combined score (orange). d IGV
snapshot of WT and Hdac3-KO PRO-seq, HDAC3 ChIP-seq peaks, and RNA-seq of the enhancer and Fscn1. The transcription of the enhancer was
elevated, while the expression in both promoter-proximal and gene-body regions of the Fscn1 gene (chr5:142,960,355 - 142,973,189) was
upregulated upon Hdac3 deletion
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method alone (Fig. 7b), suggesting the identification of
enhancer-gene interactions is more reliable if supported
by multiple methods.
After upregulated enhancers are detected, the next

challenge is to identify those contributing to HDAC3
regulation. NRSA integrates ChIP-seq and PRO-seq data
to prioritize enhancers, with the goal of identifying en-
hancers not only bound by HDAC3 but also regulating
the transcription of target genes. We ranked enhancers
by binding affinity, functional activity, and combined
score. For the 582 upregulated enhancers, H3K9ac signal
was elevated upon Hdac3 deletion (black vs. gray, Fig.
7c). Among the top 50 enhancers ranked by either func-
tional activity score or binding affinity score, H3K9ac
enrichment was higher than that seen in all 582 upregu-
lated enhancers (Fig. 7c), suggesting the functional and
binding evidence both contribute to enhancer ranking.
When we combined the two scores with equal weight
(w = 0.5) to rank enhancers, the top 50 enhancers
showed the greatest elevation of H3K9ac signatures (Fig.
7c), indicating that the integration of complementary in-
formation from each source improves the rank. Among
the 582 upregulated enhancers, the enhancer that regu-
lates Fscn1 ranked 3rd (Additional file 11: Table S5). No
mRNA was observed in this region in the mouse liver
RNA-seq data (P15 days at GSE58827) (Fig. 7d), indicat-
ing greater likelihood of being a true enhancer rather
than a novel TSS. The promoter-proximal transcription
of Fscn1 was significantly upregulated (FC = 2.31, FDR =
3.9e-04) upon Hdac3 deletion (Additional file 5: Table S2).
ChIP-seq data show that HDAC3 does not bind to the
promoter of Fscn1 but binds to the enhancer, suggesting
that HDAC3 regulates Fscn1 expression through control-
ling the activity of the enhancer located ~ 25 kb upstream
of the TSS (Fig. 7d). The enhancer is not only bound by
HDAC3, its expression is also significantly increased in
the Hdac3 KO versus the WT liver (FC = 2.17, FDR =
3.05e-07). Fscn1 is near this enhancer; with a separation of
less than 50 kb. In addition, the enhancer-Fscn1 inter-
action has been experimentally validated by both Hi-C
and ChIA-PET technologies [60]. These results indicate
that the enhancer might act as a mediator of HDAC3
regulation of Fscn1.

Discussion
PRO-seq directly measures nascent RNA transcription
by creating high-resolution maps of all transcriptionally
engaged RNA polymerases on a genome-wide scale. This
technology has several advantages as compared to trad-
itional RNA-seq or ChIP-seq analyses: (1) PRO-seq mea-
sures the recruitment of all types of RNA polymerases
including RNAPI, RNAPII, and RNAPIII, and provides
directional information; (2) With high sensitivity and
low background, PRO-seq enables a detailed study of the

individual steps of RNA transcription, including RNA
polymerase recruitment, promoter-proximal pausing and
transcription elongation; (3) On a genome-wide scale
and at the same time, PRO-seq allows for study of all
transcriptional events, including transcription of
protein-coding RNAs, long non-coding RNAs, regula-
tory elements such as eRNAs, and microRNAs [61]; and
(4) PRO-seq allows for direct assessment of transcription
without interference due to RNA instability. Although
PRO-seq, along with GRO-seq, has been increasingly
used to study transcription, their usage is limited due to
a lack of dedicated analytic tools. Currently, investigators
use in-house software or combine a variety of tools to
perform analysis, which generally requires extensive
computational and statistical expertise. Here, we present
a user-friendly tool named NRSA for comprehensive
analysis of GRO/PRO-seq data. In addition to enabling
study of known genes, NRSA predicts novel enhancers
and quantifies condition-dependent changes in eRNA
transcription. This eRNA data is important for studying
enhancer function, given that previous studies have found
eRNA is not mere transcriptional noise from spurious en-
gagement of RNA polymerase with the accessible genomic
environment of enhancers [62–64]. We evaluated NRSA
with public and our own GRO/PRO-seq data, and demon-
strated NRSA as a powerful tool to study transcriptional
regulation, especially enhancer-mediated regulation.
The most challenging task in performing enhancer re-

search is to identify target genes of enhancers and to select
functionally important enhancers. NRSA detects potential
targets for enhancers using four different strategies: 1)
closest TSS, 2) TSS within a user-defined distance, 3)
TSS-enhancer associations defined by FANTOM5, and 4)
experimentally validated TSS-enhancer interactions from
4DGenome. It is useful and necessary to integrate analysis
of GRO/PRO-seq data with other genomic data, which
will further facilitate the usage of these technologies.
NRSA provides tools to smoothly integrate GRO/PRO-seq
data with other genomic data to prioritize enhancers. This
function, designed to find enhancers not only bound by
the regulator of interest but also affecting transcription of
their target genes, is currently limited to ChIP-seq data.
Integration with other types of genomic data around en-
hancer centers or other chromatin locations of interest is
still under development.
The current version of NRSA supports five organisms,

including human (hg19), mouse (mm10), Drosophila mel-
anogaster (dm10), C. elegans (ce10), and Zebrafish
(danRer10). NRSA also can be applied to data generated
by other nascent RNA-sequencing technologies able to
detect proximal pausing of RNA Pol II and divergent tran-
scription around promoters and enhancers, such as native
elongating transcript sequencing (NET-seq) or mamma-
lian NET-seq (mNET-seq) profiles [65]. However, results
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interpretation is probably different with these technologies,
because GRO/PRO-seq detects elongation-competent RNA
polymerase while NET-seq/mNET-seq maps both
elongating and backtracked/arrested complexes [66].
Normalization is essential for the accurate detection
of differential transcription in the analysis of GRO/
PRO-seq data, to correct for library preparation and
other complex technical bias. Most normalization
methods, such as total reads, trimmed mean of
M-values (TMM) and RLE, are based on the common
assumption that the majority of genes are not differ-
entially expressed between conditions. This assump-
tion is violated if a global expression change occurs.
In this case, the inclusion of spike-in RNAs in the
GRO/PRO-seq experiment would be recommended.
NRSA either implements RLE normalization (the de-
fault method of DESeq2), or allows users to input
normalization factors generated from spike-in controls
or from other methods. To help select normalization
methods, NRSA generates histograms illustrating the
distribution of transcriptional changes between repli-
cates after normalization (Additional file 12: Fig. S7).
A normalization method leading to minimal global tran-
scriptional changes between replicates is recommended.
Although GRO/PRO-seq provides a method to identify

and quantify eRNA transcription, enhancers and alterna-
tive transcription start sites can be difficult to distinguish,
as both possess a unified bidirectional-transcription str-
ucture [37]. To avoid erroneous interpretation of
NRSA results, further research is needed to confirm
that ‘eRNAs’ come from true enhancers and not novel
TSSs, especially for long eRNAs, as long single uni-
directional transcripts are likely to be genes with
novel TSS or lncRNAs. To distinguish with greater fi-
delity between enhancers and novel TSS, we recom-
mend combining GRO/PRO-seq with technologies
that detect other promoter/enhancer-associated fea-
tures, such as the histone markers H3K4me3 or
H3K4me1. Inclusion of RNA-seq data also would add
evidence for distinguishing enhancers from novel pro-
moters since eRNAs are generally unstable and will
not be captured by RNA-seq. For example, the
up-regulated ‘enhancer’ near Akap2 (chr4:57781505–
57,818,111) was ranked 2nd in Additional file 11:
Table S5, making it a very interesting hit. However, it was
identified to be a long eRNA. RNA-seq data from the
mouse liver at P15 detected several exon-junction reads
that span the ‘enhancer’ center and the second exon of
Akap2, suggesting this hit represents an alternative TSS
for Akap2 rather than an enhancer. In addition to histone
markers and RNA-seq, experimental approaches that
study the impact of genome editing on expression of
neighboring genes also can help discriminate between en-
hancers and novel genes [67, 68].

Conclusions
NRSA is a powerful tool to study enhancer-mediated
regulation from nascent transcriptome data, which will
greatly facilitate the usage of nascent RNA sequencing
techniques and accelerate the study of enhancer-mediated
regulation.

Implementation
Datasets
PRO-seq, GRO-seq, and GRO-cap data from K562 cells
were acquired from published studies (GEO accessions:
GSM1480327, GSM1480325 and GSM1480321) [37].
EP300, H3K4me1, and H3K27ac ChIP-seq data from K562
cells were obtained from the ENCODE project (GEO ac-
cessions: GSM1003583, GSM733692 and GSM733656)
[69]. GRO-seq and GRO-cap data from GM12878 cells
were downloaded from GEO (GEO accessions: GSM14
80326 and GSM1480323) [37]. EP300 and H3K4me1
ChIP-seq data from GM12878 cells were obtained from the
ENCODE project (GEO accessions: GSM803387 and
GSM733772) [69]. GRO-seq data from U2OS cells were
obtained from a published study (GEO accession: GSE6
6928) [70]. 65,423 annotated enhancers and 66,943
enhancer-TSS associations based on the human genome
hg19 were downloaded from the FANTOM5 project [50].
1751 human regions with experimentally validated enhan-
cer activity were downloaded from VISTA [51].
H3K4me1 and H3K27ac ChIP-seq data in the mouse

liver were obtained from GEO (accessions: GSM769015
and GSM1000140) [71]. ChIP-seq data for transcription
factors HDAC3, NCOR1, and histone modification
H3K9ac in the mouse liver were obtained from GEO (ac-
cession: GSE26345) [45, 58]. Microarray expression data
from the mouse liver at postnatal day 17 (P17) were ob-
tained from our previous study (GEO accession: GSE1
0503) [52]. RNA-seq data from the mouse liver at postna-
tal day 15 (P15) were obtained from GEO (accessions:
GSM1420231, GSM1420232, and GSM1420233). 44,459
annotated enhancers based on the mouse genome mm9
were downloaded from FANTOM5. Batch Coordinate
Conversion (liftOver) from the Genome Browser tool suite
(http://genome.ucsc.edu/) was used to convert genome
coordinates from the assembly mm9 to mm10.

Nucleus isolation from liver in Hdac3 conditional
knockout mice
C57BL6 mice containing a conditional allele (fl) and a null
allele (−) for Hdac3 were crossed with transgenic mice ex-
pressing albumin promoter-driven Cre (Alb-Cre). Off-
spring from these mice were bred in our animal facility to
generate mice expressing WT (+/+) and conditional/null
(fl/fl and fl/−) alleles in conjugation with Alb-Cre. Animals
were housed under specific pathogen-free conditions at
and in accordance with guidelines set forth by Vanderbilt
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University Medical Center. All experiments were con-
ducted according to the protocol developed by the Van-
derbilt University Institutional Animal Care and Use
Committee (IACUC). The protocol number is M/12/021.
On P14, Alb-Cre+Hdac3+/+ (WT) and Alb-Cre+H-

dac3fl/− or fl/fl (KO) mice were euthanized by isoflurane
overdose following the American Veterinary Medical As-
sociation. The entire liver was immediately removed and
snap frozen in liquid nitrogen within 1 min after sacri-
fice. Each P14 mouse liver weighs about 250 mg. On the
day of the experiment, liver tissues from 3 mice were
transferred onto ice and thawed. Up to 1000 mg of liver
tissue combined from 3 mice was homogenized, using
the rubber head of a 5 ml syringe plunger to gently push
the tissue through a 70 μm cell strainer, and collected in
3 ml of isotonic buffer (10 mM Tris-HCl pH 7.4,
300 mM sucrose, 3 mM CaCl2, 2 mM MgCl2, and prote-
ase inhibitors). At this time, all nuclei were released due
to breakdown of hepatocytes. The homogenized liver
was quickly mixed with 6 ml of cushion buffer (10 mM
Tris-HCl pH 7.4, 2 M sucrose, 0.1 mM EDTA, and pro-
tease inhibitors) and overlaid on another 2 ml cushion
buffer. In the end, the liver nuclei were in a total volume
of 10 ml, and the physiological concentration of nucleo-
tides was diluted by at least tenfold. All of these proce-
dures were performed on ice with ice-cold buffers,
taking about 5–6 min, during which time the formation
of functional preinitiation complex is unlikely to occur
and the incorporation of nucleotide by transcriptionally
engaged RNA polymerases can be kept to a minimum.
The homogenization of liver tissue and preparation for

centrifugation were each performed by two technicians;
6 samples from 18 mice were processed within 20 min.
Liver nuclei were precipitated by centrifugation at
77,000×g at 4 °C for 1 h. Pooled nuclei from 9 mice were
washed with cold PBS, cold nuclei storage buffer
(50 mM Tris-HCl pH 8.3, 40% glycerol, 0.1 mM EDTA,
5 mM MgCl2, and protease inhibitors), and resuspended
at 20 million nuclei per 100 μl storage buffer. In order
to avoid repeated freezing and thawing of liver nuclei,
resuspended nuclei were directly subjected to nuclear
run-on assay on the same day of isolation. Overall, 18
WT mice, as well as 18 Hdac3 KO mice, were divided
into 2 biological replicates, respectively.

PRO-seq library construction
Nuclear run-on and PRO-seq library construction were
performed according to methods described previously
[6]. Briefly, 20 million nuclei were used for each run-on
assay. In vitro nuclear run-on assays were carried out in
the presence of 375 μM biotinylated NTPs and 0.5% Sar-
kosyl at 30°C for 3 min on the day of nuclei isolation.
Total nuclear RNA was isolated by Trizol extraction and
ethanol precipitation, and RNA pellets were kept in 75%

ethanol at − 80 °C. The next day, RNA was resuspended
and hydrolyzed with 0.2 N NaOH, and biotinylated RNA
was purified by streptavidin bead binding. Following
adaptor ligation, RNA was reverse transcribed and PCR
amplified. DNA libraries were PAGE purified and sub-
mitted to Vanderbilt VANTAGE Core Shared Resource
for sequencing.

Nascent RNA sequencing analysis
Developed based on work by Core and Hah [5, 9, 33],
NRSA greatly extends their application scope from en-
hancer identification to a thorough enhancer-centered
analysis. Compared with existing methods, such as
dREG, Vespucci, Fstitch, and groHMM [39–42], which
only focus on enhancer identification and quantification,
NRSA provides comprehensive enhancer-focused ana-
lysis functions such as annotation and enhancer-target
assignment (Fig. 1a). Moreover, NRSA includes a novel
algorithm to prioritize enhancers by integrating GRO/
PRO-seq data with binding profiles of regulators, to help
narrow down enhancers of interest for further experi-
ments. NRSA, which performs all the analysis through
two simple Linux command lines, is easy to run even for
users with limited bioinformatics or computational ex-
perience. The first command runs the analysis of known
genes, and the second runs enhancer-related analysis in-
cluding detecting, quantifying, and annotating en-
hancers; linking enhancer to genes; and prioritizing
enhancers. The system requirements, installation, man-
ual of NRSA, and walkthrough examples can be found
at http://bioinfo.vanderbilt.edu/NRSA.
Following adapter trimming and low quality sequence

removal by cutadapt (version 1.9.1) [72], GRO/PRO-seq
reads were aligned to the human genome hg19 or the
mouse genome mm10 using Bowtie2 (version 2.1.0) [73].
Reads mapped to rRNA loci and reads with mapping
quality less than 10 were removed. After read mapping
and filtration, alignment files in bed or bam format serve
as input into NRSA. NRSA performs two types of analysis:
(1) for known genes, quantification of RNA polymerase
abundance on promoter-proximal (pp) and gene-body
(gb) regions, calculation of pausing index and significance
of pausing, and estimate of condition-dependent tran-
scriptional changes and pausing index alteration; (2) for
active enhancers and long eRNAs, identification, quantifi-
cation, annotation, prioritization, and differential expres-
sion analysis across conditions (Fig. 1b).
To determine transcriptional rates for known genes,

NRSA first defines the promoter-proximal region by
examining each 50 bp window with a 5 bp sliding step
along the coding strand spanning ±500 bp from known
TSSs [5]. The 50 bp region with the largest number of
reads is considered as the promoter-proximal region and
its read density is calculated [5]. NRSA then defines a

Wang et al. BMC Genomics  (2018) 19:633 Page 12 of 18

http://bioinfo.vanderbilt.edu/NRSA


gene body as the region from + 1 kb downstream of a
TSS to its transcription termination site (TTS) [5]. Paus-
ing index for each gene is calculated as the ratio of
promoter-proximal density over gene-body density [1, 2,
5, 74], and the significance of pausing is evaluated by
Fisher’s exact test [5]. NRSA implements DESeq2 [75] to
detect significant transcriptional changes for promoter-
proximal and gene-body regions, respectively. NRSA
uses Fisher’s exact test to estimate the significance of
pausing index alteration between two conditions when
biological replicates are not available. In experiments
with biological replicates, NRSA uses the Cochran-Man-
tel-Haenszel (CMH) test [76] to assess consistent
condition-dependent pausing index alteration. NRSA
only uses active genes for differential analysis. A gene is
determined transcriptionally active if its promoter-prox-
imal density is greater than zero and the gene-body
density is greater than 4 reads/kb after total read count
is normalized to 10 Mb based on the background esti-
mation. By default, NRSA generates a heatmap to ill-
ustrate condition-dependent transcriptional changes −
5 kb to + 5 kb from TSSs for all active genes with
200 bp bin size.
To detect and quantify intergenic enhancers, NRSA

uses HOMER (http://homer.salk.edu/) [77] to call novel
transcripts with default parameters (tssFold > 4 and
bodyFold > 3) using reads pooled from all samples. By
default, intergenic transcripts within regions − 2 kb to +
20 kb from any RefSeq gene were excluded before en-
hancer calling since regions within − 2 kb from TSSs are
generally considered as promoter regions, and RNA
polymerases transcribe beyond annotated transcription
termination sites (TTSs) (Additional file 13: Fig. S8a).
Some residual transcription still exists even + 10 kb
downstream of annotated TTSs, and for some genes,
RNA polymerases do not terminate until + 20 kb down-
stream of TTSs (Additional file 13: Fig. S8b). To be flex-
ible, NRSA provides parameters for users to choose the
size of this excluded region (−dtss and -dtts, http://
bioinfo.vanderbilt.edu/NRSA/). Pairs of bidirectional
transcripts have been used to define active enhancers [9,
33, 34, 78]. We found that bidirectional transcripts were
much more enriched with enhancer-associated histone
markers (H3K27ac and H3K4me1) and GRO-cap signals
than unidirectional transcripts (Additional file 14: Fig. S9).
Therefore NRSA followed previous studies and used bidir-
ectional transcripts to identify enhancers. The centers of
active enhancers are identified based on several scenarios.
One major scenario is that bidirectional transcripts over-
lap at their 5′ ends or the distance between their 5′ ends
is no longer than 400 bp (Additional file 15: Figs. S10a
and b). In this case, the midpoint of bidirectional
transcripts pairs is defined as the enhancer center. In an-
other scenario, the short transcript of a bidirectional

transcription pair shares 100% overlap with the longer
one; in this case, the 5′ end of the short transcript is con-
sidered as the enhancer center (Additional file 15: Figs.
S10c and d). Sometimes these two scenarios occur simul-
taneously, in which case, one enhancer region is consid-
ered to have multiple centers (Additional file 15: Figs.
S10e and f). Additionally, two enhancers are merged
into one if their distance apart is shorter than 500 bp
(Additional file 15: Fig. S10 g). NRSA considers en-
hancers novel if their centers do not fall in any enhancer
region based on the FANTOM5 database. Known and
novel enhancers were evaluated by the enrichment of
GRO-cap signals, EP300 binding, and H3K27ac and
H3K4me1 markers. NRSA was used to graph GRO-cap,
EP300, H3K27ac, and H3K4me1 enrichment (normalized
to 10 Mb) within the region ±2/±5 kb from enhancer cen-
ters with the bin size of 20/200 bp. Since bidirectional
eRNAs transcribe from the same transcription start site of
an enhancer, both eRNAs are taken into account for quan-
tification of enhancer activity. DESeq2 is used to estimate
expression changes of enhancers across conditions.
eRNAs longer than 10 kb are further studied as long
eRNAs [33], which refer to single transcripts running one
direction. The quantification and differential analysis of
long eRNAs are performed similarly with known genes.
NRSA generates two types of output files, tables and

figures of publishable quality (Table 1). Tables list all
quantitative and qualitative information for genes and
enhancers, including normalized read counts and tran-
scriptional changes for pp. and gb regions, pausing indi-
ces and pausing index changes, chromosome locations
of active enhancers, their existence in FANTOM5, nor-
malized read counts and transcriptional changes of en-
hancers, their target genes, rank scores and etc. Figures
present a global view of GRO/PRO-seq data, which
comprises box plots of read density in pp. and gb re-
gions for each sample, heatmaps of condition-dependent
transcriptional changes around TSSs for active genes,
etc. Besides default figures, NRSA also provides tools to
customize figures. For example, users can use NRSA to
generate the heatmap of condition-dependent transcrip-
tional changes around TSSs for genes of interest with
any specified region and bin size.

Predicting functional roles of enhancers
To investigate the regulation and function of identified en-
hancers in Hdac3 KO mouse livers, we first used NRSA to
identify up- and down-regulated enhancers by comparing
transcriptional changes of eRNAs between Hdac3 KO and
WT mice. The enrichment of H3K9ac signal was plotted
around the centers of upregulated enhancers, and the 50
most significantly changed enhancers were selected for
plotting the enrichment of HDAC3, and NCOR1 binding.
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All graphs were generated by NRSA within regions
±1000/2000 bp of enhancer centers with 20 bp bin size.
To fully understand the function of enhancers, one

fundamental and challenging step is to link enhancers to
their target genes. The common strategy is assigning en-
hancers to the nearest gene [32, 62, 63, 78] or to genes
within a certain distance [79, 80]. However, studies have
shown that enhancers can skip the nearest gene to regulate
a more distal one and the distance can be quite large [59].
Across diverse cell types, FANTOM5 examines expression
correlation between enhancers and genes [50] and PreS-
TIGE measures correlation between enhancer-associated
H3K4me1 signals and expression of genes [81, 82] to delin-
eate enhancer-gene interactions. With the advancement of
chromosome conformation capture technology (such as
4C, 5C, and Hi-C), chromatin interactions between distant
genomic regions are being explored at increasing resolution
and throughput, which provides a reliable resource to nar-
row down enhancer target genes [59]. NRSA provides

multiple strategies to assign enhancers to candidate tar-
get genes, when (1) the TSS of a gene is the closest to
an enhancer [32, 62, 63, 78], (2) the TSS of a gene is (or
TSSs of genes are) within a user-specified distance from
an enhancer (default 50 kb) [79, 80], (3) enhancer-TSS
associations are available from FANTOM5 [50], or (4)
enhancer-gene interactions are experimentally validated
in 4DGenome [60]. 4DGenome is a repository of chro-
matin interactions, which are compiled from low and
high-throughput experimental assays such as Hi-C and
predicted interactions. NRSA only includes experimen-
tally validated interactions, and excludes the predicted
ones from 4DGenome. Currently FANTOM5 only con-
tains predicted enhancer-TSS associations for human.
Therefore, for Mus musculus, this version of NRSA
links enhancers to their target genes based on the three
strategies other than FANTOM5. To be noted, en-
hancers are only assigned to active genes, while inactive
genes are ignored.

Table 1 Output list of NRSA

File name File description

Tables Known
gene

pindex.txt pausing information for each gene in all samples

normalized_pp_gb.txt normalized read counts in promoter-proximal and gene body regions for each gene in all
samples

pp_change.txt differential expression results of genes within promoter-proximal region across two
conditions

gb_change.txt differential expression results of genes within gene body region across two conditions

pindex_change.txt differential expression results of genes of pausing index across two conditions

Enhancer Enhancer.txt list of identified enhancers with annotation, predicted target genes from different strategies,
and rank scores

Enhancer_center.txt list of enhancer centers

normalized_count_enhancer.txt normalized counts for each enhancer

Enhancer_change.txt differential expression results of enhancers across two conditions

Long_eRNA long_eRNA.txt identified long eRNAs (default: length > 10 Kb)

longeRNA-pindex.txt pausing information of long eRNAs for all samples

longeRNA-
normalized_pp_gb.txt

normalized read counts in promoter-proximal and gene body regions of long eRNAs

longeRNA-pp_change.txt differential expression results of promoter-proximal regions of long eRNAs across two
conditions

longeRNA-gb_change.txt differential expression results of gene body regions of long eRNAs across two conditions

longeRNA-pindex_change.txt differential expression results of pausing index of long eRNAs across two conditions

Figures Known
gene

boxplot_ppdensity.pdf box plot of normalized read density of promoter-proximal regions for each sample

boxplot_gbdensity.pdf box plot of normalized read density of gene body regions for each sample

boxplot_pausingIndex.pdf box plot of pausing index for each sample

pindex_change.pdf heatmap of pausing index change across two conditions for genes with adjp< 0.05

heatmap.pdf heatmap of condition-dependent transcription changes around TSS for active genes

Reps_condition1.tif histogram for variation across samples within condition 1

Reps_condition2.tif histogram for variation across samples within condition 2

Enhancer signal_around_ehancer-
center.pdf

GRO/PROseq signal around enhancer center for all samples
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Prioritizing enhancers
To identify functionally important enhancers, NRSA in-
troduces an integrative algorithm to prioritize enhancers
based on the assumption that enhancers bound by a
transcriptional regulator(s) of interest and affecting tar-
get gene transcription are highly likely to mediate the
function of the regulator(s). Integrating GRO/PRO-seq
data with ChIP-seq peaks of the regulator, NRSA com-
bines the binding and the functional evidence to rank
each enhancer: Es =wBs + (1 −w)Fs,where Es is the com-
bined score for the enhancer, Bs is the upstream binding
affinity score and Fs is the downstream functional activ-
ity score, and w is a weight to balance the relative impact
of binding and functional evidence. The binding affinity
score is modeled by an exponential distribution of the
relative distance between ChIP-seq peaks and the enhan-
cer center [83]: Bs ¼ e−d=d0 , where d is the distance and
d0 is a constant. The downstream functional activity
score is estimated by simultaneous transcriptional
changes in enhancers and their target genes:

Fs ¼ ðIclosesten g CenCg þ Idistanceen g CenCg þ IFANTOM5
en g CenCg

þI4DGenome
en g CenCgÞ=4 , where Istrategyen g ¼ 1 if the

enhancer-gene association is supported by the specified
strategy (e.g., Iclosesten g ¼ 1 if the enhancer-gene association

is supported by the closest TSS strategy), else Ien _ g = 0,
Cen and Cg are the normalized transcriptional changes of
the enhancer and associated genes from GRO/PRO-seq
data. If multiple genes are predicted to be associated
with this enhancer by a strategy, average transcriptional
change or the maximal transcriptional change of associ-
ated genes is used.
This prioritizing algorithm was evaluated using our

previous PRO-seq dataset for studying BET inhibitor ef-
fect in acute myeloid leukemia [84] (GSE83660). Three
enhancers 3′ to KIT have been identified. The regulatory
function of one enhancer (E2 in the paper) on KIT ex-
pression was validated by CRISPRi and chromosome
conformation capture experiments [84]. Provided by
BRD4 ChIP-seq either in MUTZ3 or MOLM1 cells (two
leukemia cell lines, ArrayExpress accessions: ERR411994
and ERR412006), NRSA successfully ranked E2 as the
most functionally important enhancer regulating KIT
(Additional file 16: Table S6).

Availability and requirements
Project name: Nascent RNA Sequencing Analysis.
Project home page: http://bioinfo.vanderbilt.edu/NRSA/
Operating system(s): Linux, MacOS.
Programming language: Perl, R.
Other requirements: HOMER, bedtools v2.24.0 or higher.
License: NRSA is free of charge to academic and

non-profit institutions.

Any restrictions to use by non-academics: Please con-
tact authors for commercial use.

Additional files

Additional file 1: Table S1. Identified enhancers using K562 GRO-seq
(S1a), GM12878 GRO-seq (S1b), two replicates of U2OS GRO-seq
(GSM1634453 (S1c) & GSM1634455 (S1d)), and K562 PRO-seq (S1e).
(XLSX 1158 kb)

Additional file 2: Figure S1. Examples of enhancers identified by NRSA,
dREG and groHMM in K562 GRO-seq data. (PPTX 117 kb)

Additional file 3: Figure S2. Transcriptional levels of common and
unique enhancers identified in K562 GRO/PRO-seq data. (PPTX 88 kb)

Additional file 4: Figure S3. The effect of Hdac3 deletion on gene
body transcription. (a) Heatmap of log2-transformed fold changes of RNA
polymerases ±5 kb from TSSs with 200 bp bin size for all active genes
comparing Hdac3 KO to WT mouse livers. Genes were ranked according
to changes of gene body read densities. gb up: up-regulated in gene
body regions; gb down: down-regulated in gene body regions. (b)
Comparative analysis of up-regulated (top) and down-regulated (bottom)
genes on P14 and P17 by Gene Set Enrichment Analysis (GSEA). Differentially
regulated genes were determined based on gene body densities on P14 and
by microarray on P17. (PPTX 194 kb)

Additional file 5: Table S2. Transcriptional changes in gene body
regions (S2a) and promoter-proximal regions (S2b) for active genes in
Hdac3 KO vs. WT mouse livers. (XLSX 2301 kb)

Additional file 6 Figure S4. The relationship of transcriptional changes
between promoter proximal levels (x-axis) and gene body levels (y-axis)
in mice-liver Hdac3 knockout (green), triptolide (purple) and flavopiridol
(blue) treatment. (PPTX 711 kb)

Additional file 7: Table S3. Identified enhancers using Hdac3 WT and
KO PRO-seq data derived from the mouse liver. (XLSX 381 kb)

Additional file 8: Figure S5. The length distribution of identified active
enhancers in the mouse liver. (PPTX 60 kb)

Additional file 9: Table S4. Transcriptional changes of active enhancers
upon Hdac3 deletion. (XLSX 264 kb)

Additional file 10: Figure S6. Venn diagram of enhancer-gene associa-
tions determined by the closest TSS, within 50 k distance (50 kb) and
4DGenome (4D) methods. (PPTX 34 kb)

Additional file 11: Table S5. Rank of upregulated enhancers upon
Hdac3 deletion by NRSA. (XLSX 123 kb)

Additional file 12: Figure S7. Gene body transcriptional changes
between biological replicates after normalization. gb: gene body regions:
gbd: read density in gene body regions; WT1: wildtype liver replicate 1;
WT2; wildtype liver replicate 2; KO1: Hdac3-deleted liver replicate 1; KO2:
Hdac3-deleted liver replicate 2. (PPTX 47 kb)

Additional file 13: Figure S8. PRO-seq transcriptional levels around
transcription termination sites (TTSs). (PPTX 108 kb)

Additional file 14: Figure S9. Histograms showing histone modification
enrichment and GRO-cap transcriptional levels around intergenic bidirectional
transcripts vs. unidirectional transcripts. (PPTX 175 kb)

Additional file 15: Figure S10. Illustration of strategies to identify
enhancers and enhancer centers. (PPTX 42 kb)

Additional file 16: Table S6. Rank of the previously reported three
enhancers regulating KIT. (XLSX 10 kb)

Abbreviations
CAGE: cap analysis gene expression; eRNA: enhancer-templated RNA; GRO-
seq: global nuclear run-on sequencing; NRSA: nascent RNA sequencing
analysis; PRO-seq: precision nuclear run-on sequencing; TSS: transcription
start site
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