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Abstract

Background: In silico investigations on the integration of multiple datasets are in need of higher statistical power
methods to unveil secondary findings that were hidden from the initial analyses. We present here a novel method for
the network analysis of messenger RNA post-translational regulation by microRNA molecules. The method integrates
expression data and sequence binding predictions through a set of sound machine learning techniques, forwarding
all results to an ensemble graph of regulations.

Results: Bayesian network classifiers are induced based on a pool of ensemble graphs with ascending order of
complexity. Individual goodness-of-fit and classification performances are evaluated for each learned model. As a
testbed, four Alzheimer’s disease datasets are integrated using the new approach, achieving top values of 0.9794 ± 0.01
for the area under the receiver operating characteristic curve and 0.9439 ± 0.0234 for the prediction accuracy.

Conclusions: Post-transcriptional regulations found by the optimal network classifier concur with previous literature
findings. Furthermore, additional network structures suggest previously unreported regulations in the state of the art
of Alzheimer’s research. The quantitative performance as well as sound biological findings provide confidence in the
ensemble approach and encourage similar integrative analyses for other conditions.

Keywords: Post-transcriptional regulation, Ensemble graphs, Bayesian network classifiers, Alzheimer’s disease,
Feature stability

Background
MicroRNAs (miRNAs) are small noncoding RNA
sequences that intervene in the regulation of protein-
coding genes after transcription. MiRNAs bind to the
3’UTR region of the target gene to mediate its expression.
This regulation varies from full inhibition to degrada-
tion of the mRNA product, depending on the sequence
complementarity. Currently there exist more than 1,800
sequences identified as miRNAs (miRBase Release 21),
and each single miRNA can regulate the production of
hundreds of proteins. Therefore, it is no surprise that
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microRNAs play key roles in the development, differ-
entiation, metabolism, proliferation, and apoptosis of
cells. The evidence for their influence in neurological
conditions is growing [1, 2]. However, it is still hard to
find investigations of differentially expressed genes and
microRNAs in human samples of Alzheimer’s disease
(AD). Even more scarce is the number of studies on
microRNA-mRNA regulations using human biopsies and
high-throughput technologies [3] in AD.

A novel in silico method for the joint analysis of post-
transcriptional microRNA-mRNA regulation is proposed
here. The new method is able to combine target sequence
binding predictions with differentially expressed profiles.
The use of ensemble techniques and stability measures
facilitates the integration of multiple datasets of miRNA

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-018-5025-y&domain=pdf
mailto: rarmanan@gmu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Armañanzas BMC Genomics 2018, 19(Suppl 7):668 Page 16 of 102

and/or mRNA expression profiles, introducing an inno-
vative approach to the meta analysis of transcriptional
regulations. The use of different microRNA and mRNA
datasets contributes statistical power to the data work-
flow, which ultimately helps unveil new plausible findings.
To find the most prominent biological relationships, the
core of the analysis is guided by ensembles of Bayesian
network classifiers (BNC). BNCs constitute a natural
approach to the combination of the data’s structural and
functional distributions by fitting the model simultane-
ously with differentially expressed molecules and pre-
dicted genetic interactions.

The new proposal was put to the test in the integration
of genomics Alzheimer’s disease datasets. The data cura-
tion included the identification of four datasets from com-
mon, or adjacent, brain regions to be combined together.
This step is crucial in the case of AD research due to
the large differences in degeneration shown by brain areas
that are resistant versus those submissive to AD spread.
Other metadata dimensions were also matched to min-
imize biases from cognitive state, age, and gender [4].
After the fusion of all datasets into data matrices, we
identified those genes with differential expression across
phenotypes by comparing control and disease activity
profiles. The next step was to feed a group of miRNA tar-
get prediction engines with the set of merged miRNAs.
Afterwards, a structural score merging all those predic-
tions in a fair way was computed to increase reliability of
the detected bindings. A second functional score based
on the measurement of conditional mutual information
among the triplet, miRNA, gene, and class variable was
also computed. This score accounts for the quantitative
strength of a miRNA-to-gene interaction over distinct
phenotypes. The last step involved the merging of all
gathered scores and target interactions through ensem-
ble graphs. These graphs constitute the structural part
of Bayesian network classifiers with parameters induced
from the expression data. Optimal ensemble classifiers
successfully pinpointed previously reported regulations in
the AD literature, while also highlighting new ones. In
closing, we discuss the grounds of the most significant
neurological findings reported by the optimal ensemble.

Methods
MicroRNA samples
MicroRNA expression data come from two studies of
the temporal lobe both using snap frozen samples [5, 6].
Hébert et al. (2008) [5] performed a differential expression
analysis between 5 age-matched controls and sporadic AD
samples, respectively (6 female, 4 male). The second work,
Wang et al. (2011) [6], analyzed the differential expression
of miRNAs between grey and white matter of the tempo-
ral gyrus from 10 AD donors (20 samples in total). Due
to poor RNA quality, one of the donors was discarded

after extraction. Following the authors’ conclusions that
patterns of miRNA expression in cortical grey matter may
contribute to AD pathogenetically, we retained expres-
sion data from the remaining 9 gray matter samples (all
female). There were no age outliers among the com-
bined samples, and the final distribution of samples was 5
controls and 14 AD.

Messenger RNA samples
Two gene expression datasets of mRNA extracted from
snap frozen postmortem temporal lobe tissues were
combined [7, 8]. Both studies employed the Affymetrix
Human U133 Plus 2.0 genechip (54,675 probe sets) plat-
form. Samples in [7] span six brain regions relevant to AD
(histopathologically or metabolically). However, we made
use only of the medial temporal gyrus samples to maintain
neurological coherence in the mixing process.

Subjects were age-matched in both studies indepen-
dently to avoid bias associated with young subjects. In
the combined pool, the lower age limit was 63 years (first
quartile minus 1.5 of the interquartile range), whereas
the upper limit corresponded to 95 years (third quartile
plus 1.5 of the IR). One female control was 102 when
she passed away and, although falling out of range, we
decided to include it due to the great interest to keep an
older subject in the control group. We refer the reader
to the original references for extended subjects informa-
tion and wet-lab procedural details [7, 8]. The final set
of mRNA samples included 17 controls and 23 AD cases
(15 female, 25 male). Control samples ranked between
0 and 1 in the Braak scale, whereas AD samples were
neuropathologically confirmed.

Combined expression profiling
The set of retained genechips were combined using the
AnyExpress toolkit [9]. AnyExpress allows the merging of
transcript expression profiles coming from a wide range of
platforms by mapping them into the associated genomic
sequence. A total of 18,216 genetic sequences could be
mapped into known gene sequences from the 40 mRNA
genechips. The expression levels were normalized by
quantile-normalization to remove systematic bias [10, 11].
There exist many well-known techniques to identify dif-
ferentially expressed genes. Five of them were used for
ranking relevant genes across different phenotypes: t-test,
permutation, and Wilcoxon hypothesis tests, LIMMA lin-
ear model [12], and significance analysis of microarrays
(SAM) [13]. A single run of any of those ranking methods
could be biased due to the limited set of genechips. There-
fore, we integrated a randomized bootstrap resampling
method to minimize underpowered results. To compile
the final list of relevant genes, we first investigated which
of the methods produced more reliable outputs by mea-
suring the stability of the gene rankings when including
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the bootstrap approach [14]. The empirical cumulative
distribution of the number of times a gene had an associ-
ated p-value lower or equal to 0.05 among all the bootstrap
runs was evaluated. Genes in the 95% quantile of this
distribution were kept for further analysis.

We found several issues when integrating the
microRNA expression profiles. First, data from [6]
included multiple lost values and only those miRNA
probes with more than 90% of presence were kept. The
remaining lost values (20 out of 3,006) were imputed
by computing the weighted mean of the three nearest-
neighbor probes [15]. Secondly, due to differences
between hybridization platforms, the matching of probe
identifiers had to be done manually. Hébert et al. (2008)
included a total of 328 miRNAs, whereas Wang et al.
(2011) included 334 sequences, but only 149 miRNAs
could be manually mapped to the same sequence and
hence retained for further analyses. Both expression
datasets –genes and miRNAs– were log2 transformed
and corrected for bias/artifacts using the XPN toolkit
[16]. Final merged and parsed datasets are available for
download as R-Data files through the additional files
section as Additional files 1 and 2.

Target prediction score for microRNA-gene interactions
Computationally-based algorithms to predict relation-
ships between microRNAs and genes are in constant
development. This bioinformatic problem is especially
difficult due to the low number of wet-lab validated
miRNA-gene associations. Such lack of a priori infor-
mation leads to many mathematical approaches using
different rules of targeting sequence matching between a
miRNA and the gene’s promoter region [17]. We chose
five well established engines that covered a wide range
of computational approaches for target prediction: Tar-
getScan [18], PITA [19], doRiNA (former PicTar) [20],
DIANA [21], and miRanda [22]. Target prediction inter-
actions can be translated to an undirected graph where
two sets of nodes, microRNA and genes, are connected by
edges. Each miRNA in the graph would bind to a subset
of genes, and each gene would be conversely related to a
subset of miRNAs.

Due to differences in their mathematical and biologi-
cal grounds, we found a high degree of discrepancy in
the predictions retrieved by each engine. Based on this
fact, five different graphs connecting our list of miRNAs
and genes were computed, and we developed an ensem-
ble miRNA-gene target prediction score to retain only the
most reliable interactions.

Each predicted interaction was interpreted as two ver-
tices and an edge in a graph. The selection of the most
relevant interactions can be formally modeled as a feature
subset selection problem where each edge ei,j, mapping
the link between miRNA i and gene j, is seen as a feature

out of all possible interactions. As such, it is possible to
compare the similarity degree between two miRNA-gene
graphs by using a consistency metric that quantifies the
degree of (dis)similarity between the two sets of edges.
Let X be the whole set of edges, with A and B as two
non-empty subsets of it, so that A, B � X. And let n =
|X| be the total number of edges in X. A consistency
index CI(A, B) between two subsets A and B of different
cardinalities can be then defined as,

CI(A, B) = rn − k2
M

kM (n − kM)
, (1)

where r = |A ∩ B| is the cardinality of A ∩ B. This
score takes into account the differences in the number of
acquired predictions by selecting the highest cardinality
between the two subsets, kM = max{kA, kB}, kA = |A|,
kB = |B|. CI(A, B) varies between −kM and 1, where val-
ues lower than -1 map an almost total dissimilarity and 1
maps a perfect match [14].

Using all possible pairwise comparisons between dif-
ferent graphs, we define the weight set w as the set of
m individual weights wi−j between graphs i and j. Each
element wi−j is computed as the ratio of the consistency
score between graphs i and j and the total sum. The ulti-
mate goal is to produce an ensemble score for all predicted
edges where edges frequently included across graphs have
a higher score than those seldom reported. The degree
of similarity between graphs must also be taken into
account, giving priority to edges included in graphs with
high consistency across the whole set. Table 1 presents the
pseudocode to compute a target prediction score b that
accounts for all mentioned merging aspects.

If an edge is included only in one graph, the edge is dis-
carded as spurious by the algorithm in Table 1. Otherwise,
the algorithm returns a weight be for any given edge e. The
algorithm assigns higher weights to those edges appear-
ing within graphs whose consistency indexes are also high,
i.e., the more similar two predicted graphs are, the more
reliable their knowledge is considered. If an edge e was
included throughout all graphs, its ensemble score be will
be the maximum (a value of one).

Table 1 Algorithm for computing the miRNA-gene target
prediction score b

Require : G a set of target prediction graphs, and w the associated
pairwise consistency weights
E ⇐ Union of all edges in G
repeat

Extract e ∈ E

if e belongs to more than one graph from G then
be ⇐ ∑

wi−j ∀i, j | e ∈ G(i) and e ∈ G(j)
end if

until E = ∅
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Mutual information score for microRNA-gene interactions
The information of which profiles come from a control
and which from an AD sample, also known as the pheno-
typic distribution, constitutes a highly valuable metadata
to be combined with the expression data of each miRNA
and gene. It follows the concept of conditional indepen-
dence between duplets and triplets of variables which will
help integrate these three elements.

In statistics, two continuous variables are independent
if the joint density function can be expressed as the prod-
uct of the marginals. Let X and Y be two random variables
with joint density fXY and marginals fX and fY ; X and Y
are independent when fXY (x, y) = fX(x)fY (y) for all val-
ues x and y. As for the expectation, it holds that E[ XY ] =
E[ X] E[ Y ]. It is easy to extrapolate that under the same
assumption, Cov(X, Y ) = E[ XY ] −E[ X] E[ Y ] = 0. When
the independence assumption does not hold, the covari-
ance between X and Y is not null and hence we expect a
degree of correlation. The exact degree and sign of such
correlation is measured by the Pearson linear correla-
tion, or ρXY . The use of correlation between expression
profiles of miRNA and gene sets to help interpret tar-
get predictions has been widely covered in the literature
[23]. However, these works analyze both miRNA and gene
expression profiles measured on samples from matching
phenotypes.

Let X, Y and Z be three random variables. X is con-
ditionally independent of Y given Z, if fXYZ(x|y, z) =
fXYZ(x|z), for all values x, y and z. This definition can be
parsed to a probabilistic graphical model through a min-
imal I-Map of the conditional (in)dependencies. Figure 1
shows the undirected graph which corresponds to such
I-Map in the context of miRNA and gene interactions.

Our goal is to test whether the edge between a miRNA
X and its target gene Y is fulfilled by the expression
data including the phenotypic distribution of the sam-
ples. In order to do so, we used the conditional mutual

Fig. 1 Probabilistic graphical model of a conditional dependency.
Conditional dependence structure between a microRNA and a gene,
both depending on the class separation

information I(X, Y |Z) between X and Y given a discrete-
valued class Z, where

I(X,Y|Z)=
∑

z∈�Z

∫

Y

∫

X
p(Z)fXY (x,y|z)log

fXY (x, y|z)
fX(x|z)fY (y|z)dxdy.

(2)

The conditional mutual information encodes the infor-
mation that the pair of variables (X, Y ) jointly provide
about the value of variable Z, where X, Y, and Z are a
given miRNA, a gene, and the class variable, respectively.
Equation 2 has no closed form in the continuous domain
[24]. Instead it is possible to approximate using kernel
methods. First, the conditional densities can be rewrit-
ten following the conditional rule by expressing them into
joint densities and the a priori probabilities of C for any
possible set of variables x:

f (x|c) = f (x, c)
f (c)

= f (x, c)
p(c)

. (3)

The joint and marginal continuous densities can then
be estimated from data using uni- and bi-variate Gaus-
sian kernel density estimations as follows. Given a dataset
D = {

x(1), . . . , x(N)
}

with N instances of n-dimensional
vectors x(j) =

(
x(j)

1 , . . . , x(j)
n

)
, the n-dimensional kernel

density estimator is defined as

f (x; H) = 1
N

N∑

j=1
KH

(
x − x(j)

)
, (4)

where H is a n × n bandwidth matrix, KH(x) =
|H|−1/2 K

(
H−1/2x

)
and K(·) is the kernel function. We

here used the Gaussian kernel and the kernel’s bandwidth
H was estimated following the normal reference rule [25].

The microRNA-gene mutual information score de is
therefore defined as the conditional mutual information
I(X, Y |C) for the edge e linking miRNA X and gene Y,
given the distribution of the class variable C.

MicroRNA–mRNA regulatory network
All edges identified by the target prediction algorithm
have two scores: a target prediction score b, also referred
to as structural score, and a functional score or mutual
information score d. We here detail the process to induce
and assess the performance of Bayesian network classifiers
based on both scores. It follows an introduction on prob-
abilistic graphical models (PGM), the Bayesian network
classifiers (BNC) induced to map the micro-mRNA inter-
actions, and the metrics used to choose the best network
out of all the induced graphs.

Probabilistic graphical models
Probabilistic graphical models (PGM) represent multi-
variate joint probability distributions via a product of
terms, each of which involves only a few variables. The
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structure of this product is represented by a graph that
relates variables that appear in a common term. This
graph specifies the product form of the distribution and
also provides tools for reasoning about the properties
entailed by the product. PGMs based on directed acyclic
graphs (DAG) make use of the concept of conditional
independence to obtain the joint probability distribution.
When a graph fulfills the constraints to be considered a
DAG [26], the structure of the associated PGM can be
assumed to follow an ancestral ordering where each node
Xi takes the i-th position in that ordering. Thus, for every
ancestral node Xj of Xi, we can state that j < i.

Formally, let G = (X, L) be the DAG of a PGM that fol-
lows an ancestral ordering, the set of parents of a node
Xi, pai, D-separates Xi from any previous node in the
ancestral ordering. Consequently, Xi is conditionally inde-
pendent of any Xj, with j < i, given the value of its parents.
Combining this property with the chain rule, it is possi-
ble to induce the joint probability distribution encoded by
G as f (x) = ∏n

i=1 f (xi|pai, θ), where θ ∈ � is the set of
parameters associated with each node.

Bayesian network classifiers
A Bayesian network is a PGM fully described by a directed
acyclic graph G and the set of parameters θ associated
with the probability distributions of each variable Xi in
G. The use of Bayesian network structures for classifica-
tion tasks give rise to what is broadly known as Bayesian
network classifiers. The majority of BNCs assume that
the class variable is parent to all predictive variables,
also known as features. BNCs are generative classifiers
that encode the joint probability distribution of the data
through the graphical dependences of the Bayesian net-
work. In classical BNCs, the output classes are exclusive,
i.e., the class variable C can only take one of its k possible
values {c1, . . . , ck}.

To compute the probability distribution of the predic-
tive variables, it is common practice the use of normal
densities [27, 28]. Most BNCs with continuous predic-
tive variables conform with the class of conditional linear
Gaussian networks [29] where the conditional probabil-
ity density f (xi|pai) is modeled using a conditional linear
Gaussian density for each variable Xi. The set of values
in pai depends on the continuous densities of the par-
ent variables yi, as well as on the discrete distribution of
the supervised class. This kind of classification models are
called conditional linear Gaussian classifiers [28] in which
two kinds of conditional dependences are allowed: arcs
between pairs of continuous features, and arcs between
the discrete class and the features. Let p(c), c ∈ �C with∑K

c=1 p(c) = 1 be the categorical distribution of the class
variable C, and let each feature Xi have parents pai =
{Yi, C} with Yi ⊆ X \ {Xi}. It is then possible to define the
conditional linear Gaussian density functions Xi|yi, c as

fXi|yi,c(xi) = N
(
β0Xi|Yi,c + βT

Xi|Yi,c yi, σ 2
Xi|Yi,c

)
, (5)

where
β0Xi|Yi,c = μXi|c − �XiYi|c�−1

Yi|cμYi|c
βXi|Yi,c = �−1

Yi|c�YiXi|c
σ 2

Xi|Yi,c = �Xi|c − �XiYi|c�−1
Yi|c�YiXi|c

The joint density function encoded by the graphical
structure of G and the set of X continuous features is given
by the following finite mixture model

f (x) =
k∑

c=1
p(c)

n∏

i=1
fXi|yi,c

(
xi ; β0Xi|Yi,c, βXi|Yi,c, σ 2

Xi|Yi,c

)
.

(6)

When classifying a new instance x ∈ �X, a BNC yields
a posterior probability p(c|x) for each class label c ∈ �C .
Then, the maximum a posteriori decision rule is used so
that x is assigned to the class c∗ with maximum posterior
probability. For conditional linear Gaussian networks it is
computed as

c∗ = arg max
c∈�C

p(c|x) = arg max
c∈�C

p(c)
n∏

i=1
fXi|yi,c , (7)

where p(c) is the prior probability of class value c ∈ �C
and fXi|yi,c are the conditional density functions computed
from Equation 5.

Network validation
Provided with sufficient data to be statistically represen-
tative, theory can define the most powerful explanatory
model based on the goodness-of-fit of a model to a given
dataset. However, due to the usual shortage of data, the
choice of the best model through the maximum likeli-
hood score usually carries the addition of artifacts, either
on variables and/or relationships. It is common practice
to balance the model’s fit to the data with the incorpo-
ration of a penalization term. We here propose the use
of the Bayesian information criterion (BIC score) that
accounts for the trade-off between model complexity and
goodness-of-fit by including a penalization term based on
the number of variables and parameters to be estimated.
Formally, let D be the dataset, S a given model formed
by N variables describing D, and θ the set of specific
parameters, the BIC score is defined as

BIC = L(D | S , θ) − pen(N )dim(S) , (8)

where L(D | S , θ) is the log-likelihood of S and θ to
D, pen(N ) = log(N)/2, and, dim(S) is the number of
parameters to estimate.

Classification error and/or accuracy are the most fre-
quently used performance measures for illustrating the
goodness of a classification model. The accuracy of a given
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classifier, Accγ , is the probability of correctly classifying a
new instance x: Accγ = ∑

x p(γ (x) = c)p(x). The dual
nature of BNCs as Bayesian networks and pattern recog-
nition models allows the estimation of both figures of
merit, accuracy and BIC score. Accuracy is a fair measure
to evaluate goodness-of-fit when the error cost is equally
distributed for all classes and the dataset is balanced. To
avoid those biases, we also computed a more generalized
metric for binary classification, the area under the ROC
curve or AUC [30]. AUC shows the ability of a model to
give good relative scores to the observations and it is an
equivalent to the Wilcoxon test of ranks for classification.
It is possible to compute the AUC value of a model by
using an average of a number of trapezoidal approxima-
tions such that AUC = 1

2
∑n

k=1
(
Xk + Xk−1

) (
Yk − Yk−1

)
,

where (Xi, Yi) = (FPRi, TPRi) are the false positive and
true positive rates for the i-th classification instance,
respectively.

Results
Differentially expressed mRNA
After merging the expression profiles, the mRNA dataset
included 40 cases with 18,216 transcripts mapped into
known gene sequences. Five well-known differential
expression algorithms were then considered to filter irrel-
evant genes: t-test, LIMMA, SAM, permutation test, and
Wilcoxon test. To establish which would perform best for
our dataset, we computed stability scores over a 1,000
resampled bootstrap runs. Table 2 shows the stability
scores for each individual method using weighted Spear-
man correlation as the similarity index between rankings
computed over the bootstrapped datasets. SAM reached
the highest median and mean stability scores, showing
similar dispersion measurements to the other methods.
These results are in accordance with previous findings
on the good stability properties of the SAM statistic for
differential expression analyses [31]. SAM tends not to
select genes with small fold changes and/or high variances
among the replicates and it does not rely on a pri-
ori assumptions about the data probability distribution.
Therefore, SAM was chosen as the method to filter out

Table 2 Stability scores of weighted Spearman correlation of a
pool of 1000 differentially expressed rankings computed from
class-balanced 1000 bootstrapped mRNA databases

Min. 1st qu. Median Mean 3rd qu. Max.

T-test -0.8050 -0.2540 0.0683 0.0044 0.2860 0.6570

LIMMA -0.7960 -0.2160 0.1030 0.0346 0.3140 0.6690

SAM -0.7910 -0.1740 0.1400 0.0683 0.3470 0.6790

Permutation -0.7990 -0.2700 0.0508 -0.0117 0.2610 0.6340

Wilcoxon -0.8380 -0.2740 0.0077 -0.0360 0.2350 0.6660

Values of -1 or 1 correspond to the highest concordance and 0 to the lowest.
Highlighted in bold are the highest absolute values

Table 3 Statistics of microRNA-gene binding site predictions

Predictions Unique Gene MicroRNA

TargetScan 30,703 22,173 GPR26 (101) miR-520d-5p (403)

doRiNA – 1,395 LCOR (16) miR-137 (73)

DIANA 47,114 27,967 PSD3 (97) miR-495 (438)

miRanda 41,155 24,437 UHRF2 (89) miR-186 (419)

PITA 86,996 41,600 LONRF2 (130) miR-186 (517)

Column Predictions shows the total number of predicted interactions, with
repetitions removed in column Unique. Gene and MicroRNA columns include which
gene and microRNA received the highest number of interactions

irrelevant genes. SAM generated an associated p-value
for each gene and ranking out of the 1,000 rankings pro-
duced in the bootstrap resampling. We then computed the
empirical cumulative distribution (CDF) of the number of
times a gene had an associated p-value lower than or equal
to 0.05. The empirical CDF was composed by 897 unique
values with the following value summary: Minimum value
16, maximum value 984, first quartile 240, third quartile
689, median value 464, and mean value 467. We set the
95% quantile (a value of 645.25) as the cutoff point [32],
retaining a total of 911 genes.

Target prediction and mutual information scores
Table 3 presents the final summary figures for the
five binding prediction algorithms, namely TargetScan,
doRiNA, DIANA, miRanda, and PITA. All predictions
were combined into the structural score b following the
algorithm in Table 1. The process returned a total of
32,004 unique edges with structural weights ranging from
a minimum of 0.0551 to a maximum value of 1. For clar-
ity, the prefix ’hsa-’ was removed from all microRNA
identifiers. Details on the prediction process follow.

The 3’ UTR sequences of 30,888 human genes reported
by the TargetScan database (release 6.2) and the sequence
of 1,539 human microRNA were initially retrieved. We

Table 4 Top ten mRNA-gene edges ranked based on structural
and functional scores

Structural Functional

MicroRNA Gene b MicroRNA Gene d

miR-184 PPP1CC 1.0000 miR-106a KIF1B 0.0206

miR-215 PABPC4 1.0000 miR-106a ZCCHC2 0.0203

miR-504 GRM3 1.0000 miR-106a EFHA2 0.0201

miR-142-3p GNB2 1.0000 miR-106a EPB41L1 0.0196

miR-142-3p PSRC1 1.0000 miR-106a THRB 0.0193

miR-328 ZNF423 1.0000 miR-106a WASL 0.0192

let-7c ABCC10 1.0000 miR-106a ACPL2 0.0191

miR-142-3p XPO1 1.0000 miR-106a N4BP1 0.0191

miR-504 CEP170 1.0000 miR-106a KLHDC5 0.0190

let-7c CYP46A1 1.0000 miR-106a CAP2 0.0189
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filtered out those microRNA and gene sequences which
unmatched our previous filtering stages. As a result, there
were 863 3’ UTR gene sequences and 143 microRNAs.
TargetScan detected 30,703 prediction matches among
the subset of miRNAs and genes with different degrees of
sequence binding, with a total number of 22,173 unique
relationships. The next targeting engine was doRiNA, for-
merly known as PicTar. doRiNA directly accepts a list of
mRNA target HGNC identifiers and predicts the bind-
ing of a predefined list of human microRNAs by means
of the UCSC database. From our list of 911 differen-
tially expressed mRNA, doRiNA correctly matched 761
of them. doRiNA found a total of 135,171 interactions,
however, after filtering to unique doRiNA’s microRNA
and mRNA identifiers, the set was reduced to 1,395 indi-
vidual predictions. The set of DIANA v4.0 precomputed
target predictions included 3,541,029 possible bindings
among microRNAs and mRNA sequences in homo sapi-
ens. From them, a total of 47,114 jointly bound our subsets
of miRNA and genes. By removing redundancies, the

final graph of dependencies for DIANA contained 27,967
edges.

The fourth target prediction used was miRanda. Follow-
ing the authors suggestions [33], we collected homo sapi-
ens predictions with mirSVR score ≤ -0.1 or those with
either a 6-mer or better seed site, for both conserved and
non-conserved miRNAs. We got a set of 628,480 bind-
ings compatible with our miRNA subset out of 4,417,886
total predicted bindings. From them, only 41,155 predic-
tions were based on our list of miRNAs and genes. After
the final filtering, the prediction graph included 24,437
edges. The last prediction engine considered was PITA v6.
We downloaded the PITA catalog of predicted microRNA
targets provided from the supplementary material in
[19]. There were multiple predictions for both human
miRNAs and genes up to an overwhelming 7,513,144
hits. From them, 1,645,183 includes predictions of our
miRNA list, and a total of 86,966 hits jointly matches
our lists of miRNAs and genes with a final 41,600 unique
relationships.

Fig. 2 Performance estimation in classification. Average validation metrics for all ensemble Bayesian network classifiers up to 100 edges. From left to
right and top to bottom: AUC, Accuracy, BIC, and Log-likelihood a Area under ROC curve b Accuracy c BIC score d Log-likelihood
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Fig. 3 Optimal ensemble structure of post-transcriptional microRNA–mRNA regulations. Optimal ensemble classification structure comprised by 13
edges, connecting 7 miRNAs and 13 genes. Labels over edges include the pair of structural and functional weights (b, d) for each dependence

The functional score d based on mutual informa-
tion approximation was computed for all possible edges
between the identified 911 differentially expressed genes
and the 149 available miRNAs profiles. The top ten
edges with highest structural and functional scores are
presented in Table 4. The diversity between rankings
in Table 4 highlights how dependent the prediction is
whether expression or structural information is used in
the prediction process.

Optimal post-transcriptional regulatory network
The structure of the ensemble graph was defined
following the ranking of edges filtered by their associated
structural and functional scores. All edges were sorted
using both scores, (be, de) for edge e, in a multiobjective
way by using a Pareto optimality sorting. In order to build
a directed acyclic graph for the network classifier, the fol-
lowing iterative procedure was followed: i) in an empty
graph add all the nodes connected by the first t number of
edges in the list; ii) transform each undirected edge into a
directed one by pointing out from the miRNA to the gene
nodes; iii) include the class node C as parent of all nodes in
the graph. This procedure assured the acyclic property of
the DAGs so the resulting graph mapped a BNC structure.
The parameters of the BNC could then be induced from
data following the conditional linear Gaussian classifier
model.

The remaining question was which of all possible clas-
sifiers performed best when varying the threshold t. Each
BNC was numerically assessed through a five-times five-
fold cross-validation. This validation scheme was proven
to be well-suited for the microarray context [34], guaran-
teeing a fair and not overfitted performance assessment.
The validation process started from the simplest BNC
formed by one edge (t = 1) and three nodes (one miRNA,
one gene, and the class variable) and grew iteratively. To

evaluate the goodness-of-fit of each BNC, four different
criteria were computed: AUC score, classification accu-
racy, BIC score, and log-likelihood of the data. Figure 2
shows average results for each criteria when evaluating
BNCs up to 100 edges. The four criteria reached the same
maximum peak when the BNC included 13 edges with
0.9794 ± 0.010 for AUC, 0.9439% ± 0.0234 in accuracy,
a BIC score of 771.993 ± 63.194, and 1186.471 ± 63.194
for log-likelihood. The network structure corresponding
to this optimal BNC is shown in Fig. 3, including individ-
ual scores (be, de) for each edge e. More complex models
(t > 13) showed a significant decay in performance
no matter how many new edges were added or which
criterion was considered.

Discussion
Control of transcription by microRNA molecules is cur-
rently known to be a key process in the development
of sporadic Alzheimer’s disease. The first target in this
search was to elucidate whether miRNAs could partici-
pate in the regulation of the amyloid precursor protein
(APP) and/or its precursor gene. Amyloid-beta peptide is
generated by the amyloid precursor protein through the
amyloidogenic pathway with the help of beta and gamma
secretases. In Alzheimer’s, the excessive accumulation of
amyloid-beta peptide in extracellular spaces forms what
is known as the beta-amyloid plaques, one of the hall-
marks of Alzheimer’s disease. Hébert et al. (2008) showed
that miRNAs belonging to the miR-17 family (i.e., miR-
17, miR-20a, miR-106a and miR-106b) could regulate APP
expression in vitro and at the endogenous level in neu-
ronal cell lines [35]. Complementary works corroborated
those results, one showing how the miR-17 family directly
suppresses APP in vitro, and another reporting a statisti-
cally significant decrease in miR-106b expression in spo-
radic AD patients [1, 36]. These findings are in accordance
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with the finding by Patel et al. (2008) that over-expression
of miR-106a in human cell lines is known to negatively
regulate reporter gene expression of the amyloid pre-
cursor protein, resulting in translational repression and
reduction of APP protein levels [37]. Accordingly, the
miR-106a molecule is ranked highly relevant by the func-
tional score (see Table 4), and has a prominent place in the
optimal BNC structure of Fig. 3, corroborating its major
importance for AD.

Three of the genes under the direct influence of miR-
106a in our network are of key interest: the kinesin family
member 1B (KIF1B), the thyroid hormone receptor beta
(THRB), and the Wiskott-Aldrich syndrome-like (WASL).
WASL encodes a member of the Wiskott-Aldrich syn-
drome (WAS) protein family. It interacts with several pro-
teins involved in cytoskeletal organization and is highly
expressed in neural tissues. The relationship between
WASL and AD is well-known based on the Tg2576 mouse
model of AD. Brains of Tg2576 mice overexpress a mutant
form of the APP gene, resulting in elevated levels of
APP and ultimately in amyloid plaques. The WASL gene
is among a number of genes being down-regulated by
the mutations in Tg2576 models, and its boosting is
known to restart neuronal regeneration [38]. A simi-
lar process was reported in the AD literature for other
members of the WASL family [39]. THRB serves sev-
eral key neurodevelopmental roles, with special stress on
the mediation of biological activities of the thyroid hor-
mone. Pair-wise analyses have shown significant correla-
tions between THRB and neuroserpin, a serine proteinase
inhibitor that plays a pivotal role in the synaptogene-
sis of learning, memory, and behavior. The up-regulation
of neuroserpin in Alzheimer’s disease brains may result
from an activation of the thyroid hormone response [40],
which is in accordance with our findings. Lastly in this
group, KIF1B encodes a brain motor protein that trans-
ports mitochondria and synaptic vesicle precursors and it
is linked with AD through the subcellular trafficking of
APP [41].

Our results also corroborated the importance of miR-
504. This microRNA is a tumor-suppressive molecule
produced by the chromosome X, and is strongly linked to
various cancers, especially glioma brain tumors. miR-504
shows dysregulation in bipolar disorder and other neu-
ropsychiatric disorders [42] where it alters the density of
dopamine receptors in the brain [43]. Its companion in
the network, the gene GRM3, also produces metabotropic
receptors, but of glutamate neurotransmitters. Gluta-
matergic neurotransmission is involved in most aspects
of normal brain function and can be perturbed in many
neuropathologic conditions. GRM3 is well-known to be
implicated in the pathophysiology of schizophrenia, for
instance. However, to the best of our knowledge, no
other study has linked miR-504 and GRM3 with the

neuropathology of AD. Dopaminergic disturbances in the
brain can lead to glutamatergic receptor changes [44] and
vice versa [45], corroborating the regulatory dependence
identified here.

Another notable molecule in the network of Fig. 3 is
miR-142-3p, involved in the regulation of two genes: pro-
line and serine rich coiled-coil 1 (PSRC1), and G protein
subunit beta 2 (GNB2). miR-142-3p was recently flagged
as highly relevant for the prediction of AD using plasma
samples [2]. It was included within a seven microRNA
biomarker panel that distinguished AD samples from con-
trol with 95% accuracy and an AUC of 0.953. miR-142-3p
was the best stand-alone microRNA in terms of speci-
ficity (100%) and sensitivity (65%) as compared to the
rest of the panel. For its part, PSRC1 encodes a proline-
rich protein that plays an important role in mitosis and
has been reported as brain specific with an average of
9.007 reads per kilobase of transcript per million (RPKM)
[46]. The second gene, GNB2, is a protein coding gene
whose transcript is involved in various transmembrane
signaling systems. GNB2 has been found differentially
expressed in the anterior cingulate cortex from patients
with schizophrenia [47]. As previously discussed with
GRM3, this link with schizophrenia comes through the
dopamine receptor mediated signaling pathway, which
has a total of 59 genes. Remarkably, the network of Fig. 3
includes three out of these 59, namely PPP1CC, EPB41L1,
and GNB2.

Higher animals have multiple isoforms of the let-7 fam-
ily of miRNAs, including let-7c. The members of this
family are categorized by a highly conserved consen-
sus sequence whose function is to negatively regulate
oncogenes by controlling cell growth genes [48]. The set
of microRNAs in the let-7 family receives the pseudo-
name of anti-oncomirs or post-transcriptional-gatekeepers
due to their function, and they constitute the first anti-
oncomir family ever reported. An example of this regula-
tion is how let-7a and let-7e modulate the gene ABCC10
in some cancers like hepatocellular carcinomas [49]. This
particular relation could also explain the link between
let-7c and ABCC10 in Fig. 3. In the context of AD, let-
7c plays a key role during major periods of neurogenesis
in the cortex of mouse embryos and in the postnatal
cerebellum [50]. Its influence into AD pathogenesis has
been largely proven by analysis of cerebrospinal fluid [51],
blood mononuclear cells [52], and other tissues [53].

Conclusions
The combination of multiple datasets to gain higher
statistical power is unfeasible in most cases due to
sample and technological variability, incompatible meta-
data dimensions, and distinct quantitative features. Here
we propose a new method to tackle meta-analyses
of microRNA-mediated regulation of gene expression
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during post-transcriptional interactions. Our ensemble
pipeline combines structural and functional results in an
ensemble graph that ultimately helps overcome the dis-
parity between top-ranked dependences reported by vari-
ous target prediction engines. It is uncommon to combine
results coming from different microRNA target predic-
tion engines, and when done the output is usually a single
union or intersection of all those predictions. These sim-
ple blends impose higher relevance to engines retrieving
a large number of predictions, blurring smaller prediction
subsets.

In contrast, more sophisticated ensemble methods
are known to produce fairer combinations, and hence
enhance the final graph of regulations [54]. Moreover, the
evaluation of classification performance and goodness-
of-fit scores over increasingly more complex networks
maximizes the odds of including relevant findings within
optimal models. Our method was put to the test in com-
bining four Alzheimer’s disease genomics datasets. The
results showed excellent quantitative performance while
matching findings reported in the state-of-the-art biol-
ogy of AD. The new method also identified new reg-
ulations that, to the best of our knowledge, have not
been discussed in the current literature. The ensem-
ble of structural and functional findings allows similar
analyses in biomedical scenarios beyond the application
presented here. Opportunities to combine multiple phe-
notypes and regulations in comparative medicine are now
at hand.
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