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Abstract

Background: Aligning protein-protein interaction (PPI) networks is very important to discover the functionally
conserved sub-structures between different species. In recent years, the global PPl network alignment problem has
been extensively studied aiming at finding the one-to-one alignment with the maximum matching score. However,
finding large conserved components remains challenging due to its NP-hardness.

Results: We propose a new graph matching method GMAIign for global PPl network alignment. It first selects some
pairs of important proteins as seeds, followed by a gradual expansion to obtain an initial matching, and then it refines
the current result to obtain an optimal alignment result iteratively based on the vertex cover. We compare

GMAlign with the state-of-the-art methods on the PPI network pairs obtained from the largest BioGRID dataset and
validate its performance. The results show that our algorithm can produce larger size of alignment, and can find
bigger and denser common connected subgraphs as well for the first time. Meanwhile, GMAlign can achieve high
quality biological results, as measured by functional consistency and semantic similarity of the Gene Ontology terms.
Moreover, we also show that GMAlign can achieve better results which are structurally and biologically meaningful in
the detection of large conserved biological pathways between species.

Conclusions: GMAlign is a novel global network alignment tool to discover large conserved functional components
between PPl networks. It also has many potential biological applications such as conserved pathway and protein
complex discovery across species. The GMAlign software and datasets are avaialbile at https://github.com/yzlwhu/

GMAlign.
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Background

In many areas of bioinformatics, the generated data can
be modeled as graphs such as gene co-expression net-
works, protein-protein interaction (PPI) network, etc.
Thus, graph theory is becoming an important tool
for biological network analysis. Integration of genetic-
interaction data and protein-protein interaction (PPI) net-
works can reveal functional dependencies involved in
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cellular processes, including flagellum assembly, enve-
lope integrity, and protein quality control [1]. For PPI
networks whose nodes represent proteins and edges rep-
resent interactions between proteins, network alignments
for comparative analysis were particularly explored [2].
Several methods have been proposed to find a mapping
between nodes of two given PPI networks, to maximize
the number of aligned proteins and conserved interac-
tions to find more similar substructures. The alignment
between PPI networks can help to discover the evolution-
arily conserved pathways or protein complexes [3] and
detect functional orthologs across species [4]. Thus, it
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can be applied to predicting function of unannotated pro-
teins [5], understanding the mechanisms of human dis-
eases [6], reproducing a rooted phylogenetic tree [7], and
other areas.

Early literatures show that the sequence alignment
problem has been extensively explored. However, as
proved in [8], comparing DNA and protein sequences
can only uncover limited information. As biotechnological
advances yield more PPI data [9, 10] with complementary
functional slices of the cell [11, 12], network alignment
becomes more attractive with potentials in discovering
more information from the topology. The inherent part
of network alignment is to solve the subgraph isomor-
phism problem, which is NP-complete. Therefore, heuris-
tics were studied to obtain approximate alignment results.
Some local network alignment methods were developed
to reveal conserved components like pathways or pro-
tein complexes between species, such as PathBLAST [13],
Graemlin [14], and MaWISh [15]. PathBLAST [13] were
proposed to find pathway alignments between two PPI
networks with high scores and none false-positives inter-
actions in the path. Graemlin [14] measures a module by
the ratio of evolutionary constraint probability to no con-
straint probability, and takes phylogenetic relationships
between the species into account. MaWISh [15] extends
some concepts in sequence alignment such as match, mis-
match and gap, and models it as a maximum weight
induced subgraph problem where the structure similarity
is measured based on the evolutionary events. However,
the one-to-many mapping may lead to the ambiguous of
the alignment [5]. Further studies explored multiple align-
ment based on pairwise alignment [8, 16]. Multiple align-
ment can indicate duplications of genes, but they are often
biologically implausible [17]. Hence, most of the studies
focus on the pairwise global alignment to maximize the
overall matching between networks. In the following, we
mainly introduce pairwise global network aligners.

One of the pioneers for global network alignment is
IsoRank [17], which is based on the idea that two pro-
teins from different networks should be matched when
their neighbors are well matched. Analogous to the PageR-
ank algorithm from Google, such intuition is modeled
as an eigen-decomposition problem. PATH [18] and GA
[19] model network alignment as a convex-concave pro-
gramming problem, and they gradually match similar
proteins to discover more conserved interactions. PATH
increases the weight of the concave relaxation gradually
by following the path of the solutions created. GA first
finds an initial solution and then chooses a matching
in the direction of a gradient objective function itera-
tively. The family of GRAAL algorithms [2, 5, 7, 20] are
a collection of network aligners based on graphlet statis-
tics. Newer methods in the GRAAL family usually adopt
better heuristic strategies. L-GRAAL [2] uses integer
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programming and Lagrangian relaxation to optimize the
number of proteins and the interaction functional con-
servations at the same time. NATALIE [21] generalizes
the quadratic assignment problem based on integer lin-
ear programming, and then uses improved Lagrangian
relaxation to obtain strong upper and lower bounds.
GHOST [22] measures the topological similarity of pro-
teins based on the graph spectrum and finds the align-
ment based on local search. NETAL [23] adds the pair
of matched nodes with the largest score greedily based
on both sequence information and topological structures,
and the topological score can be updated dynamically.
SPINAL [24] first constructs initial similarity matrix for all
pairs based on local neighbourhood, and then iteratively
grows a locally improved solution subset to produce the
final one-to-one matching. HubAlign [25] first aligns pro-
teins that are topologically important and then gradually
match the whole network. MAGNA [26] and its extension
MAGNA ++ [27] align PPI network based on the genetic
algorithm.

Although the global network alignment problem has
been extensively explored, it remains challenging in
achieving a both topologically and biologically mean-
ingful result due to the lack of clarity of the relation-
ship between topology and sequence. Several approaches
[2, 18, 19, 23] have tried combining them together,
but cannot find both topologically and biologically
high quality stable matching, which leads to lim-
ited application in revealing functionally conserved
components.

Our contribution

In this paper, we propose a new global network aligner
GMAlign, which can successfully combine both topol-
ogy information and sequence information in a bet-
ter way to produce the alignment with larger size and
find more functional conserved components. GMAlign is
an approach with two-stages, inspired by the graph
matching method for graphs without labels [28]. In the
first stage, GMAlign selects some pairs of important
proteins as anchors by combining topological informa-
tion and sequence information, and then obtains an
initial matching by expanding from the anchors. In
the second stage, GMAlign refines the initial match-
ing to obtain suboptimal matchings iteratively based
on the vertex cover. We compare GMAlign with the
state-of-the-art methods, and find that it can signifi-
cantly outperform existing methods in many aspects as
follows.

1 GMAlign can produce larger alignment measured by
edge-correctness (EC), and find bigger and denser
common connected subgraphs measured by the
Largest Common Connected subgraph in terms of
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the nodes (LCC for the evaluation of size) and edges
(LCCe for the evaluation of density).

2 GMAlign achieves high biological quality in the
alignment compared to other up-to-date aligners, as
measured by functional consistency (FC) and average
functional similarity (AFS).

3 GMAlign can find large conserved components that
are both structurally and functionally meaningful,
i.e., detecting large conserved sub-structures in
biological pathways across species.

4 GMAlign stably outperforms existing algorithms on
PPI network pairs. It can not only work well on graph
pairs with general size but also can work well on the
largest and densest network pair (i.e., yeast and
human) where some of other aligners cannot even
obtain the results in reasonable time.

Methods

Problem definition

We use a simple undirected graph G = (V, E) to model
a PPI network, where a node in u € V represents a pro-
tein and an edge (u,v) € E represents the interaction
between proteins # and v. Usually, the sequence informa-
tion is attached to each protein, which can be considered
as the node label, and a PPI network thus can be consid-
ered as a graph with node labels. Now we give the problem
definition of the global network alignment.

Given two PPI networks, G; = (V1,E;) and Gy =
(Va, E) with |V1]| < | V3], a global alignment f : V] — V;
is a one-to-one mapping from the nodes in G; to the
nodes in Gy. The global network alignment aims to find a
mapping to maximize the sequence similarities of aligned
proteins and the number of conserved interactions. We
model the global PPI network alignment problem as graph
matching, which aims to find a matching M between G;
and G according to the mapping relationship f, i.e., M =
{(u,f(u)) |ue Vi,f(u) e Vz}. The quality of a matching
M can be measured by the following score function:

score(M) = Z

(u1,v1),(u2,v2) EM

S(u1,v1),(u,v2)
— e 1
5 1)

S(u,v1) (g, v2) = Cuyuy X €yy vy X S€q (U1, V1) X Seq (U2, V2)

()

where e,, = 1 if u and v are connected, and e, = 0
otherwise. seq (1, v) can be any of the sequence similar-
ity scores between u and V. S(u;,v,),(uz,v,) 1S the similarity
of two matched edges, including both sequence similar-
ity and topological similarity. Thus, the problem of global
network alignment is formulated as finding a matching
to maximize the score(M). If we do not consider the
sequence similarity, this problem can be reduced to find-
ing maximum common subgraph, which is also NP-hard.
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GMAlign method

There are two stages in the GMAlign algorithm, matching
construction and matching refinement. In the first stage,
we first identify anchors followed by an expansion to other
nodes to find an initial matching. In the second stage, we
gradually refine the initial matching to a locally optimal
matching based on the vertex cover.

Similarity scores

We propose a novel similarity measure to evaluate the
node similarity S(u, v) by integrating multiple similarities,
including topological similarity S;, degree similarity S,
and sequence similarity Sge;.

Topological similarity. The topological similarity S; of
two nodes u and v is evaluated in the context of their
topological structures. To compute the topological simi-
larity, we consider not only the local topological similarity
S;, which describes how similar they are regarding the
topological structures around them, but also the global
topological similarity Sy, which describes how similar they
are regarding the whole topological structures of two
graphs.

(1) Local topological similarity. First, for anode vin G =
(V,E), we define its k-neighbourhood (k > 0) as Ni(v) =
{u|u can reach v in k-hops}. The k-neighbourhood sub-
graph of v in G is defined as the induced subgraph over
Ni(v) U {v} in G, which is denoted as g{f. The node set is
denoted as V (g’u() and the edge set is denoted E (g’;) We
can measure the local topological similarity of u € V; and
v € V, by comparing their k-neighborhood subgraphs.
Specifically, suppose that d(u) is the degree of node u €
V1, and d(v) is the degree of node v € Vy. Letd;,1,d12, - -
and dy1,d2,- - - are the degree sequences of Ny () and
Ny (v) respectively sorted in the non-increasing order. Let
Amin = min {|Ng (@), [Nt (v)|}. Then we can compute the
local topological similarity of u € V7 and v € V5 as

(min + 1+ D (,))?
(IV (@)I+[E (@)]) x (|V (&5)]+|E (¢¥)

S (u,v)=

) )
@)

D (Lt, V) _ min {d(u): d(V)} + Z:l:in min {dl,i: dZ,i} .

2
(4)

where in Eq. (4), min {d(«),d(v)} is the ideal number of
common neighbor edges when we match nodes u# and v,
and Z;’:i“ min {dl,i, dgvi} is the ideal number of common
edges when we match nodes in Ny () with nodes in Ny (v).
Based on above equation, we can derive that S; (&, v)
has good properties that can effectively capture the local
topology as follows (see proofs in Additional file 1).
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1) 0 < S;(u,v) < 1. Especially, S; (u,v) =1 ifg’,: is graph
isomorphic to g, and u is matched to v in the optimal
matching of g€ and g.

Ve o)
V)

phic to g(f , and u matches v in the optimal matching of g/;

and gk.
2
o oy o 7eeis ) ooete))
T (VEIHE@ D> (v (e )| +E(e)
mcs (g{;, g{f ) is the maximum common subgraph of gllj and

2) S;(u,v) = , if gllj is subgraph isomor-

here
) , W

gl‘f , which is an optimal matching.

(2) Global topological similarity. The global topolog-
ical similarity is inspired by the graph spectral theory,
which can represent and distinguish structural proper-
ties of graphs by the eigenvalues and eigenvectors of its
adjacency matrices. The intuition is that two isomorphic
graphs will have the same eigenvalues and eigenvectors of
their adjacency matrices. The earliest representative study
is [29] proposed by Umeyama, which is recently improved
by Knossow et al. [30]. Let A be the adjacency matrix for
a graph G with n nodes, where A (13, up) = 1if (uy, up) €
E, and A (u1,up) = 0 otherwise. Let D be the diagonal
degree matrix where D (u1,u1) = Z(ul,uz)eEA (u1,uy).
The Laplacian matrix of G is defined as L = D — A. Sup-
pose Lj and Ly are the Laplacian matrices of G; and Gy
with 7 nodes respectively. Let the eigenvalues of L; and
Lybeay 2 ay = -+ Z apand fy = fy = -+ = By
respectively. As L; and Ly are symmetric and positive-
semidefinite, we can decompose them as L1 = U1 A LIIT
and L, = U2A2u2T, where U; and Uj are orthogonal
matrices, and A; = diag (o;) and Ay = diag (8;). If
Gy and Gy are isomorphic, there exists a permutation
matrix P such that PUy A U PT = Uy AU Let P =
U,D'UT where D' = diag (dy,- -+ ,dy) and d; € {+1;—1}
accounts for the sign ambiguity in the eigendecompo-
sition. When G; and Gy are isomorphic, the optimal

. .. . - = 3T
permutation matrix is P which maximizes tr (PT U, U, ),

where U; and U, are matrices whose elements are the
absolute values of elements in U; and Uy respectively.
When the numbers of nodes in G; and Gy are not the
same, we only choose the largest c eigenvalues where ¢ =
min {|V (G1)|, |V (Gy)|}. Let U} and Il be the first ¢
columns of U; and U, respectively, the global similarity
matrix can be obtained as

Se=Uh'th". (5)

Here, Sg (4,v) € [0, 1] is the global topological similarity
between u € Vi and v € V5.

Based on the local topological similarity S; and the
global topological similarity S;, we measure the topolog-
ical similarity S; for nodes u and v by combining them
together as follows.
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St (u,v) = Sy (u,v) X Sg (u,v),Yu € V1,v e Va. (6)

Degree similarity. In addition to the topological struc-
ture S; around nodes u and v, we also consider their simi-
larity based on degrees of themselves, which is defined as

min {d(u),d(v)} .
max {d(u), d(v)}’ @

Both topological similarity S; and degree similarity Sy
are measures to capture graph structure. Thus, we use
the structure similarity S, to integrate them by adding a
balancing parameter 6 € [0, 1].

Sstr (1, v) = (1 = 0) x Sg(u,v) + 0 x Sy(u,v). (8)

Sa (u,v) =

Sequence similarity. In addition, we also consider their
sequence similarity when we match two nodes u and v,
which is defined as

seq (u,v)

.0
maxiev, jev, seq (i)

Sseq (u,v) = )
where seq(u,v) can be any of the sequence similarity
scores (in this article, we use both log of BLAST’s e-values
and BLAST’s bit-scores). Ss;(1, v) is in the range of [0, 1]
after the normalization .

Finally, we obtain the overall similarity score of # € V3
and v € V; by integrating the structure similarity Sy
and the sequence similarity Sy, together by a balancing
parameter « € [0, 1].

S, v) = (1 — o) X Sspr (1, V) + &0 X Sgeq (1, V). (10)

Matching construction
To construct an initial matching, we first choose some
important node pairs with high similarity scores and large
degrees as anchors, and then we expand from the anchors
to match the rest of the nodes gradually.

We select anchors according to the following two
conditions:

1) min {d(u),d(v)} > & (5 = max[zﬁlﬁll' %})

2) S(u,v) > t, where 7 is a threshold and generally
7 > 0.5. The detailed method of automatically tuning a
suitable 7 is given in Additional file 1.

The anchors selected based on above criteria play two
important roles. First, they contribute a large number of
edges to the matching M because they are similar with
each other. Second, they can be important references in
the matching process due to their high degrees.

Algorithm 1 shows the process of matching construc-
tion. First, we compute score S(u,v) forallu € Vi,v e Vy
in line 2, followed by the sort of pairs in the decreas-
ing order of S (&, v) and the selection of matched anchors
pairs in lines 3—5. Then we expand the matching by adding
anchors in A to M. For every matched pair (u,v) € M,
we put all the N(u#) x N(v) pairs into a candidate queue
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Q, where Q is sorted in the decreasing order of their
expansion similarity in lines 6-7. It is a variant of S(u, v)
obtained by excluding the global similarity as the expan-
sion is in a local manner. Then we iteratively remove the
pair (u,v) with largest similarity from Q in line 9. If both
u and v have not been matched before, we add (i, v) to M
and put N(u) x N(v) into Q for further consideration in
lines 10—11. The loop ends when Q is empty.

Matching refinement

The heuristics used to obtain the initial matching M
cannot guarantee the optimality of M. We further study
how to refine the initial matching to get better matching
results. The main idea is that each time we check some
part of the matching to see if we can directly obtain an
improved matching by avoiding the exhaustive search over
the matching space.

For a graph G, we define its vertex cover as a subset of
nodes C C V, such that u € C or v € C for each edge
(u,v) € E. The complement of a vertex cover / = V — C is
an independent set of the graph. In other words, C is the
set of nodes that covers all the edges in the graph, while
inI = V — C there exists no edge. This also means that a
node in C € Vj can possibly have many edges to cover or
possibly have many matched edges with graph G,.

We use R; and Ry to represent the matched nodes in
graphs G and G respectively in the matching M. For any
(u,v) € M, we have u € Ry and v € Ry. Given a ver-
tex cover C C V(G1), we use H; to denote C N Ry, and
use Hy = M[ H;] to denote the corresponding matched
part of Hj in Ry. The nodes of G; are divided into three
parts H;, C — Hj and Vi — C. According to the defini-
tion of vertex cover, the nodes in H; may lead to good
matches, which are thus be excluded in the refinement.
C — Hj should be included in the refinement as the nodes
in C — H; have not been matched to any nodes. The inde-
pendent set V; — C is also included in the refinement
because the contribution of matched edges for each node
in this set will not affect each other. Then by excluding
Hj, we can compute a refined matching M* (Hy) for G;
and G; based on the initial matching M and vertex cover
C C V(Gy) as follows.

First of all, we build a bipartite graph Gj, where node set
V1 — H; is on one side and nodes set V5 — Hy is on the
other side. For any u € V1 — H; and v € Vo — Hj, we add
an edge (u,v) to G, and its weight can be computed as

w(u,v) = [M[N@m) NH )N IN®W)NH)l. (11)

where w (i, v) can be consider as the number of matched
edges if we match u# in G; with v in Ga.

Then, based on the Hungarian algorithm, we can find
the maximum weighted bipartite matching M}, of G} such
that the total weight of edges in M}, is maximized. Thus, a
new M* (H1) can be derived as
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Algorithm 1 Matching Construction

Require: two graphs G; and Gy;
Ensure: a matching M between G; and Gy;
1: initialize A, M, and Q to be ¢;
2. compute S(u,v) forallu € Vi,v € Vy;
3: forallu € V] andv € V3 in decreasing order of S(u, v)
do
4 if min{d(u),d(v)} > 6 and S(u,v) > t and u, v has
not been paired with other nodes in A then
A=AU{(u,v}
. for all (u,v) € Ado
M=MU{(u,v} Q=QU N(u) x NW));
: while Q # # do
remove (i, v) from Q with the largest similarity;
10:  if u and v has not been paired with other nodes in
M then
11: M=MU{umv)}Q=QUN(u) x Nv);
12: return M;

o % N D

M* (Hy) = (M0 (Hy x Hp)) UMp, (12)

where H; x Hy is the cartesian product of H; and H which
includes all the pairs (u,v) for all u € H; and v € Hj. The
optimality of M* (H;) has been proved in [28].

If the most of nodes in the selected vertex cover C
are not well matched, or M itself is already an optimal
matching in the solution space M, it is possible that
M*(Hy) is not better than M. The reason is that the mis-
matched nodes are excluded by the vertex cover C. To
solve such problem, we propose two strategies. The first
is to C smaller, such that more mismatched nodes can be
included to refine. The second is to refine current match-
ing using different vertex covers iteratively so that every
mismatched node has a chance to be refined.

To find a smaller C, a straightforward method is to find
a minimum vertex cover of G;. However, it is impractical
because of the following two reasons. 1) Finding a mini-
mum vertex cover of a graph is NP-hard. 2) In a minimum
vertex cover, the mismatched nodes do not have a chance
to be included to refine. To avoid these drawbacks, we use
a minimal vertex cover, because 1) a minimal vertex cover
is easy to find, and 2) the number of different minimal ver-
tex covers for a graph is much larger than the number of
different minimum vertex covers.

We give the random selection process of a minimal ver-
tex cover of graph G in Algorithm 2 in lines 9-14. First,
we shuffle all nodes in the graph and put them into a list Z,
such that any permutation of V' (G) has the same probabil-
ity in L. Then, we find a vertex cover of G by adding nodes
in L one by one. We only add a node into the vertex cover
if it can contribute at least one edge to the edges covered
so far.
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Algorithm 2 Matching Refinement

Require: two graphs G; and Go, and an initial matching
M;
Ensure: a refined matching M;
1: while M is updated or it is the first iteration do
22 fori=1toXdo

3 G =randomly select a graph between G; and Gy;
4 C = random-select-cover(G);

5: compute M*(H);

6: if score(M*(H)) > score(M) then

7: M = M*(H);

8: return M;

Procedure random-select-cover(G)
9: L = shuffled nodes in V(G); C = ;
10: for u € L do
11:  if3(u,v) € E(G),s.t.v ¢ Cthen C = C U {u};
12: foru € Cdo
13 if C — {u} is a vertex cover of G then C = C — {u};
14: return C;

We implement this operation as follows. We maintain
the number of uncovered edges for each node in the
graph, which is initialized to be its degree. When we add a
new node into the cover set, we will first skip it if the num-
ber of its uncovered edges is 0. Otherwise, we add it into
the cover set, and traverse its neighbours. For each neigh-
bour, we decrease the number of its uncovered edges by
1. The total complexity of this process in lines 10-11 is
O(|E(G)]), because every edge in G is visited at most once.
We remove some useless nodes to guarantee the minimal-
ity of the current vertex cover in lines 12-13, such that
the removal of these nodes does not influence any edge
currently covered.

Algorithm 2 shows the whole process of matching
refinement. We choose the vertex cover C of either G;
or Gy with the same probability so that each graph has
a chance to be refined in line 3. We refine the matching
by different vertex covers multiple times, so that every
mismatched node will have a chance to be included to
refine. Such process repeated iteratively to update current
matching until no improvement can be acheived in a cer-
tain number of iterations. We try X times to find a new
random vertex cover C, and update the current matching
if M*(H) is a better matching in each iteration. Here, we
set X to be a constant (> 1) to avoid the case that only one
bad cover will terminate the whole process.

The complexity of the whole algorithm including con-
struction and refinement is O (m X n3) where n and
m are the minimum numbers of nodes and edges
in these two graphs respectively. The complexity is
mainly dominated by eigendecomposition and maximum
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weighted bipartite matching methods, and can be largely
reduced if alternative node similarity computation and
approximate bipartite matching methods are applied [28].

Datasets

The dataset we used in this paper is the same as that in
L-GRAAL [2]. It contains eight PPI networks of differ-
ent organisms from BioGRID database with the largest
number of known physical interactions [9]. They are:
HS (H.sapiens with 13,276 nodes and 110,528 edges),
SC (S.cerevisiae with 5831 nodes and 77,149 edges), AT
(A.thaliana with 5897 nodes and 13,381 edges), DM
(D.melanogaster with 7937 nodes and 34,753 edges),
CE (C.elegans with 3134 nodes and 5428 edges), MM
(M.musculus with 4370 nodes and 9116 edges), SP
(S.pombe with 1911 nodes and 4711 edges), and RN
(R.norvegicus with 1657 nodes and 2330 edges). The
details of these datasets are listed in Table 1. The physi-
cal interactions in BioGRID can be either direct (e.g., from
yeast-two-hybrid) or indirect (e.g., from affinity capture).
The protein sequences and GO annotations are extracted
from NCBI'’s Entrez Gene database [31]. Note that we only
retrieve experimentally validated GO annotations (i.e. GO
term evidence codes: IPI, IGI, IMP, IDA, IEP, TAS and IC),
from which we further removed the annotations inferred
from the PPIs (code IPI). We will validate our alignment
results by detecting conserved pathways between species.
We download the pathways in the species from the KEGG
database [32]. As stated in [33], many aligners have mem-
ory issues when dealing with the pair of the two largest
networks yeast (SC) and human (HS). Thus, we will first
give comparison results based on the (S) = 15 pairs of net-
works DM, AT, MM, CE, SP and RN, which can be solved
by all the aligners, and then we give the results of SC and
HS for aligners that can run to completion later.

Evaluation measures
Topological measures
f is the mapping from the G; = (V1,E1) to Ga = (V3, Ey)
with |V1| < [Val. Let f (V1) = {f(v) € Valv € V1} and
f(E) = {(f(u),f(v)) € E>| (u,v) € El}. We evaluate the

Table 1 The datasets of PPI networks

Networks Nodes Edges Average degree
RN 1657 2330 2.812

CE 3134 5428 3.464

MM 4370 9116 4.1728

AT 5897 13,381 4.538

SP 1911 4711 4.930

DM 7937 34,753 8.7579

HS 13,276 110,528 16.651

SC 5831 77,149 26462
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topological quality of the an alignment by the measures in
the following.

Edge correctness (EC). EC is the ratio of the number of
conserved edges under the mapping f to the number of
edges in the small network, which can be computed as
follows [5].

If (ED)]

EC =
|E1]

Largest common connected subgraph (LCC and
LCCe). The largest common connected subgraph in an
alignment consists of nodes and edges denoted by V},, and
E,,, respectively. LCC is calculated as the fraction of nodes
in the largest connected subgraph in an alignment, which
is computed by
roc = el
V1l
In addition to the size, the density of LCC is also another
important property for graphs. As stated by [7], bigger
and denser subgraphs can give more insight into common
structure of the networks. Meanwhile, bigger and denser
subgraphs may be more biologically important [34]. For
example, Bader and Spirin [35, 36] have shown that a
dense PPI subgraph may correspond to a vital protein
complex. Hence, we propose a new measure to evaluate
the density of LCC by the fraction of edges in the largest
connected subgraph in an alignment, which is computed by
|Em|

LCCe = —.
|E1]

Symmetric sub-structure score (Ss). S3 is the frac-
tion of conserved edges between the smaller network
and the sub-network from the larger network induced by
the alignment to measure how the mapped regions are
topologically similar. It is defined as

5 /&)
B+ |E(G2 (F (V)| = [f ED]

Biological measures

Functional consistency (FC). We use gene ontology
(GO) terms to measure the functional consistency of two
aligned proteins [25]. GO terms describe the biological
properties of a protein such as the Molecular Function
(ME), Cellular Component (CC), and Biological Process
(BP). Proteins with similar GO terms usually are func-
tionally similar. We use the fraction of aligned proteins
with common GO terms with respect to the size of the
smaller network to evaluate the biological significance
of an alignment. The larger the fraction is, the more
biologically meaningful the alignment is. Suppose there
are G>, aligned proteins having at least 2 common GO
terms. Then we can calculate FCs, as follows:
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Gza eN
—,a .
Vil *

F CZa =
Average of functional similarity (AFS). AFS is the
semantic similarity of the GO terms, which mainly
depends on the distance between them in the ontology.
We can calculate the functional similarity in each category
of BP, MF and CC. The semantic similarity is computed
by the Resnik semantic similarity [37] with the best-match
average mixing strategy. We use S (4, v) to represent the
GO functional similarity of proteins # and v in category
¢ (i.e., BB, MF or CC). Then, we measure the average of
functional similarity of the entire alignment in category c,
AFS,, by the sum of the semantic similarities of all mapped
proteins, divided by the number of annotated proteins in
the smaller network. That is:

Zuevl SC (u’f(u))

AFS, = A
1

,¢c € {BP,MF,CC}.

Detecting conserved pathways

In addition to the above separated structural and biolog-
ical measures, we further evaluate the quality of align-
ments by a higher-level similarity measure that can com-
bine both the functional and structural information, the
conserved pathways between networks. In fact, many bio-
logical pathways with similar functions exist in different
organisms [3]. The experimentally validated biological
pathways are provided in the KEGG PATHWAY database
[32]. A pathway is a set of proteins, whose name con-
sists of two parts (e.g., hsa03010), the name of a species
(hsa for Homo sapiens) and an pathway ID (03010). Path-
ways with the same ID in different species have similar
biological functions. We show the biological meaning of
the alignment results by retrieving the experimentally
proven protein interactions in pathways from the APID
dataserver [38].

Here, we give the procedure of detecting conserved
pathways between species. First, we find mapped KEGG
pathways through alignment results and thus we get the
common sub-structure in the mapped pathways. Then, we
retrieve the proven common sub-structure between the
mapped pathways by the APID dataserver [38], where all
protein interactions are proven experimentally in exist-
ing publications. Let us take hsa03040 and dme03040
for example. The hsa03040 is a pathway taken from the
human (HS) KEGG database while dme03040 is taken
from the fruit fly (DM) KEGG database. They have the
same number 03040 which means they share similar
biological function. In Fig. 1, the left network is part
of the induced network of proteins in dme03040 while
the right is part of hsa03040. The dotted line repre-
sents the mapping relationship produced by GMAlign.
Then we retrieve the real interactions between them
which were experimentally proven by the APID dataserver
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Fig. 1 The example of hsa03040 and dme03040 aligned by GMAlign. The left network is part of dme03040 while the right is part of hsa03040. The
dotted line denotes mapping relationship produced by GMAlign. The sub-structure marked red is the final common sub-structure between
hsa03040 and dme03040 found by GMAlign and experimentally proved by APID dataserver
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[38]. The sub-structure marked red is the final real
common sub-structure of the dme03040 and hsa03040
pathways. That is, in this example GMAlign finds 3
common nodes and 3 common interactions between
dme03040 pathway of the fruit fly and hsa03040 pathway
of human.

Results

We compare our algorithm GMAlign with GHOST [22],
NETAL [23], SPINAL [24], HubAlign [25], MI-GRAAL
[7], L-GRAAL [2], and MAGNA [27], which are state-of-
the-art methods that are publicly available. For MI-GRA
AL, we investigated the performance of the combinations
of its five similarity measures, and we repeated the align-
ment process 15 times for each combination because of
its randomness to find alignments of the best biological
and topological quality. Following the recommendation
in paper [24], we use mode II in SPINAL. We use the
improved version MAGNA++ [27] instead of MAGNA to
optimize the S$3 score, on a population size of 2000 over
15,000 generations as L-GRAAL does. For all the eval-
uated aligners, we set other parameters at their default
values. For aligners such as GMAlign and L-GRAAL that
can produce alignments using topology or sequence infor-
mation by balancing parameter « € [0, 1], we sample the
balancing parameters from 0 to 1 with step size of 0.1. We
will also evaluate robustness of the different methods by
adjusting the parameter in the same way. We set 6 = 0.5
in GMAlign to balance the topological structure and self-
degree, neighborhood size k to 2, and iteration number
X to 5 in GMAlign to achieve good performance stably
on all the network pairs. All the algorithms run on a PC
with an Intel Core 17-4790 CPU at 3.6GHz with 64GB
memory.

Topological analysis

General size PPl network alignment

First, we evaluate the topological quality of the align-
ments on the (g) = 15 network pairs of general size. As
shown in Fig. 2, GMAlign can produce the largest align-
ment with EC of 56.62%, while the EC for NETAL [23],
HubAlign [25] and L-GRAAL [2] are 52.47, 52.10, and
51.61% respectively. We can see that GMAlign has signif-
icant advantage in finding a bigger size in the alignment.
As [2] does, we also measure the statistical significance of
the obtained EC scores using the standard model of sam-
pling without replacement proposed in [5] (We give the
detailed formula in Additional file 1). We can see that,

70
60F . . . ]
501 1

< 40 ]

10 1

GMAlign
NETAL
HubAlign
L-GRAAL
GHOST
MI-GRAAL
SPINAL
MAGNA

Fig. 2 The alignment results for PPI network with general size. All the
comparison are based on the (g) = 15 pairs of networks among
GMAlign, HubAlign, L-GRAAL, NETAL, GHOST, MI-GRAAL, SPINAL and
MAGNA. The results for Edge Correctness
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Fig. 3 The alignment results for PPl network with general size. All the
comparison are based on the (g) = 15 pairs of networks among
GMAlign, HubAlign, L-GRAAL, NETAL, GHOST, MI-GRAAL, SPINAL and
MAGNA.The results for nodes of Largest Common Connected
subgraph

the results produced by GMAlign are statistically signif-
icant, as the probability of obtaining similar or higher
values by chance is always smaller than 0.05. Meanwhile,
Fig. 3 shows the LCC produced by all the algorithms,
we can see that GMAlign, HubAlign and NETAL pro-
duce the least fragmented network alignments, with LCC
of 76.43, 74.69, and 72.71%, respectively. In addition, as
Fig. 4 shows, GMAlign can discover the most number of
conserved edges in the LCC subgraph of the alignment
with LCCe of 50.97%, while the LCCe are only 48.43% for
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HubAlign and 45.95% for NETAL. This shows that GMA-
lign is also capable of finding bigger and denser common
connected subgraph that is biologically important for PPI
networks.

Now we evaluate the measure S3. As shown in Fig. 5,
NETAL [23] achieves the highest value at 34.39%.
L-GRAAL [2] and GMAlign follow behind it, with val-
ues of 30.82% and 26.02% respectively. As we know, S3
is a penalization when aligning sparse regions with dense
regions. However, such penalization is not very reasonable
when it is necessary to map a sparse network to a dense
network, especially when the scales and densities of the
6 evaluated PPI networks are different. Thus, we believe
that S? is only a reference to show the density similarity of
the mapped regions and cannot be considered a principle
measure to evaluate the topological quality. The detailed
results in Figure 2-5 are given in Additional file 2.

Overall, GMAlign, NETAL [23], HubAlign [25], and L-
GRAAL [2] outperform all the other methods in terms
of the topological quality on the general PPI networks.
Among these methods, GMAlign can find the largest
alignment and discover the biggest and densest common
connected subgraphs, which implies that that GMAlign
has a higher possibility to find a biologically meaningful
sub-structure, such as pathways and complexes.

Yeast-human PPl network alignment

We evaluate the algorithms on two large networks, human

(HS) and yeast (SC). Since not all the aligners can finish

the alignment for these two large networks in reasonable

time, we only report the results for the capable aligners.
First, as shown in Table 2, GMAlign still can find larger

alignments of 30.17% for EC, bigger and denser common

GMAlign
HubAlign
NETAL
L-GRAAL
GHOST
MI-GRAAL
SPINAL
MAGNA

Fig. 4 The alignment results for PPl network with general size. All the
comparison are based on the (g) = 15 pairs of networks among
GMAlign, HubAlign, L-GRAAL, NETAL, GHOST, MI-GRAAL, SPINAL and
MAGNA.The results for edges of Largest Common Connected

subgraph
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Fig. 5 The alignment results for PPl network with general size. All the
comparison are based on the (g) = 15 pairs of networks among
GMAlign, HubAlign, L-GRAAL, NETAL, GHOST, MI-GRAAL, SPINAL and
MAGNA.The results for Symmetric Sub-structure Score
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Table 2 Network alignment results for yeast and human'

Method EC(%) LCC(%) LCCe(%) S3 (%)
GMAlign 30.17 99.49 30.17 16.89
HubAlign 27.46 99.74 27.46 15.20
L-GRAAL 15.74 98.03 15.67 11.91
MAGNA 10.74 7443 10.70 8.26

'The best cases are show in boldface

connected subgraph of 99.49% for LCC and 30.17% for
LCCe. It enhances the conclusion in MI-GRAAL [7] that
there exists a surprising amount of common PPI network
topology between human and yeast. As reported in [7],
for yeast network with 2390 nodes and 16,127 edges and
human network with 9141 nodes and 41,456 edges, MI-
GRAAL finds that 77.7% proteins in the yeast had a
high-confidence PPI subnetwork that is fully contained
within the human high-confidence PPI subnetwork. In
this paper, we use the datasets which are far larger than
those in MI-GRAAL, and GMAlign, HubAlign [25] and
L-GRAAL [2] finds a higher percentage of nodes shared by
yeast and human. Meanwhile, a high percentage of shared
edges (30.17%) was found for the first time by GMAlign.

Second, surprisingly, Table 2 shows that GMAlign can
also find similar sub-structures in the two networks with
S3 of 16.89%, while L-GRAAL only achieves 11.91%. This
is the first time that GMAlign not only produces align-
ment with a larger EC, LCC, and LCCe, but also finds
more sub-structures with similar density. We believe that
the underlying reason is HS and SC have similar densities.

As we can see all above, GMAlign has excellent abil-
ity in producing larger size alignment and finding big-
ger and denser common connected subgraphs. Moreover,
GMAlign has the potential in finding same parts with
similar density in the two networks, which depends on
the properties of the matched networks such as degree
distributions.

Balancing topology and sequence information

We investigate the relationship between the topology
information and sequence information on the (g) = 15
pairs of networks. We compare GMAlign with HubAlign
[25] and L-GRAAL [2] by varying « from 0 to 1, and com-
pute the average value of all the pairwise alignments on
each value of a.

First, as shown in Figs. 6, 7 and 8, when we vary «
from 0 to 1, GMAlign is always stable while HubAlign
and L-GRAAL and drastically decrease when transfer-
ring from topology information to sequence information.
Figure 9 shows that for S3, GMAlign is outperformed
slightly by L-GRAAL for small «, but it outperforms
L-GRAAL for large o because of its stability. In fact,
there might be hidden connections between topology
information and sequence information, and the difficulty
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is how to combine them naturally without too much
conflict. We combine them at the bottom level of node
similarity more naturally while the other two methods
combine them at a very high level with respect to the
whole node set and edge set.

Overall, GMAlign can produce larger size alignment
and find bigger and denser common connected subgraphs
robustly under different parameter settings. All the algo-
rithms achieve the best topological matching quality when
we only use topology information, which is also consistent
with the declaration that topology plays a more important
role than sequence for uncovering functionally conserved
interactions [2].

Biological analysis

The biological analysis is based on the alignments gen-
erated. For methods with tunable parameters between
topology and sequence information, we only used topol-
ogy information. The reason is that very few mapping
nodes are generated when involving sequence informa-
tion, and topology plays a more important role than
sequence as declared in [2].

Functional consistency analysis

We measure the Functional Consistency (FC) based on the
fraction of aligned proteins sharing common GO terms.
We show the FC score for alignment based on the yeast
(SC) and human (HS) PPI networks in Table 3. Both
GMAlign and HubAlign can align more nodes that shares
GO terms. Up to 20.31% aligned nodes have at least one
GO term shared for GMAlign, while the fraction for

L-GRAAL is only 13.67%. GMAlign and HubAlign can
even align some nodes that share more than 5 GO terms.

60 w w w w
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Fig. 6 Balancing sequence and topology information. All the
comparison are based on (g) = 15 pair of networks among GMAlign,
L-GRAAL and HubAlign when « are varied from 0 to 1. The results for

Edge Correctness
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Fig. 7 Balancing sequence and topology information. All the

comparison are based on (g) = 15 pair of networks among GMAlign,

L-GRAAL and HubAlign when « are varied from 0 to 1 .The results for

nodes of Largest Common Connected subgraph

Similar experiments are also conducted on the (g) =15
pairs of networks (see Table 4), and we can obtain the
same conclusion as above. One thing that must be noticed
is that FC reflects the ability of aligners in finding func-
tionally conserved proteins regardless of the topological
structure. For PPI networks, topological structure may
play a more important role in biological function, because
proteins do not work alone but work together. Hence,
when we compare different aligners, we can refer to FC
but not rely on it although GMAlign has competitive FC
values.

Functional similarity analysis
Functional similarity (AFS) provides an alternative way
to describe the biological quality of an alignment, which
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Fig. 8 Balancing sequence and topology information. All the
comparison are based on (g’) = 15 pair of networks among GMAlign,
L-GRAAL and HubAlign when « are varied from 0 to 1. The results for

edges of Largest Common Connected subgraph
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Fig. 9 Balancing sequence and topology information. All the
comparison are based on (g) = 15 pair of networks among GMAlign,
L-GRAAL and HubAlign when « are varied from 0 to 1 .The results for
Symmetric Sub-structure Score

is calculated based on the semantic similarity of the GO
terms associated with the mapped proteins. The AFS
score in each category of BP, MF and CC in the ontology
for the yeast-human network alignment is displayed in
Figs. 10, 11 and 12. Similar results for the alignment of
(g) = 15 network pairs are also provided in Figs. 13, 14
and 15.

We can see that GMAlign outperforms other aligners
in terms of the AFS in the CC category with AFScc of
1.047 (see Fig. 12). Meanwhile, GMAlign and HubAlignv
[25] also perform best in the BP and MF categories (see
Figs. 10 and 11), with AFSgp of 1.333 for GMAlign and
1.362 for HubAlign and AFSr of 0.293 for GMAlign and
0.301 for HubAlign. Similar conclusion can be made from
the alignment results of (g) = 15 network pairs displayed
in Figs. 13, 14 and 15 and we provide all the detailed
data in Additional file 3. Overall, GM Align and HubAlign
outperform all other aligners in terms of the biolog-
ical quality of their alignments, and moreover, GMA-
lign can also achieve the best topological quality of the
alignments.

Table 3 Functional consistency of the alignment for yeast and

human'

No. of shared GO terms ~ GMAlign ~ HubAlign ~ MAGNA  L-GRAAL
> 1 20.31 20.17 14.49 13.67
>2 35 4.1 245 2.01

>3 0.38 0.57 0.26 0.26
>4 0.07 0.14 0.09 0.03

>5 0.03 0.03 0.02 0

The best cases are show in boldface
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Table 4 Functional consistency of alignments for (g) = 15 pair of networks'

No. of shared GO terms GMAlign HubAlign GHOST NETAL MI-GRAAL L-GRAAL MAGNA SPINAL
>1 8.8 8.56 831 8.08 7.82 7.66 7.16 4.20
>2 1.3 1.32 1.21 1.09 113 1.02 091 044
>3 0.18 0.18 0.21 0.13 0.18 0.19 0.08 0.05
>4 0.05 0.04 0.06 0.02 0.06 0.04 0.03 0.02
>5 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0

The best cases are show in boldface

Detecting conserved pathways

We further evaluate the algorithms by the detection of
functional conserved pathways on the largest PPI net-
works, human (SC) and yeast (HS), which have been
investigated a lot in the literature [2, 23, 25, 26]. We
validate our findings by only considering the protein inter-
actions that are already experimentally proven in APID
dataserver [38].

The conserved part of the sce03010 and hsa03010 path-
ways in the alignment obtained by GMAlign is shown in
Figs. 16 and 17. Although there has been a lot of studies
[39] on the relationship between the ribosome biogen-
esis pathway (03010) of yeast and human, it is the first
time we give their mapping details in a global alignment.
Figures 16 and 17 show the structure of hsa03010 pathway
and the sce03010 pathway respectively with the mapped
sub-structure marked red in GMAlign, where hsa03010
has 132 proteins and 1924 interactions, and sce03010 has
175 proteins and 2311 interactions. GMAlign can discover
a large functional conserved sub-structure with 63 pro-
teins and 1406 interactions (details are listed in Additional
file 4), while the best competitor HubAlign [25] can only
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GMAlign
L-GRAAL
MAGNA

Fig. 10 The average functional similarity (AFS) of the alignment of
yeast and human. All the comparison are only for aligners that can
produce results in reasonable time (GMAlign, HubAlign, L-GRAAL and
MAGNA). The average functional similarity (AFS) for category BP

find 58 mapped proteins and 914 mapped interactions
(details are listed in Additional file 5). MAGNA [27] only
discovers 23 common proteins and 123 common interac-
tions (details are listed in Additional file 6), and L-GRAAL
[2] cannot even detect any common protein or interac-
tion between hsa03010 and sce03010 (results are listed
in Additional file 7). Furthermore, we validate sa03010
and sce03010 in the APID dataserver [38], and found
that hsa03010 has 126 proteins and 1748 interactions

experimentally proved by existing publications while
sce03010 only has 165 proved proteins and 192 proved
interactions. Figures 18 and 19 show the validated sub-
structure of the pathways, and GMAlign finds that
hsa03010 and sce03010 share a relatively complete sub-
structure consisting of 26 proteins and 32 interactions
proven by publications. Besides sce03010 and hsa03010,
GMAlign can also discover other small conserved path-
ways, such as mmu05200 and hsa05200 with 4 com-
mon proteins and 3 common interactions, and dme03040
and hsa03040 with 3 common proteins and 3 com-
mon interactions, after the validation of APID dataserver,
while other algorithms fails. We provide the details of
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Fig. 11 The average functional similarity (AFS) of the alignment of
yeast and human. All the comparison are only for aligners that can
produce results in reasonable time (GMAlign, HubAlign, L-GRAAL and
MAGNA). The average functional similarity (AFS) for category MF
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Fig. 12 The average functional similarity (AFS) of the alignment of
yeast and human. All the comparison are only for aligners that can
produce results in reasonable time (GMAlign, HubAlign, L-GRAAL and
MAGNA). The average functional similarity (AFS) for category CC
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conserved pathways discovered in Additional files 4,
5, 6, 7 and 8, and we can find that HubAlign and
MAGNA cannot find any other conserved pathways
except for the pair of yeast and human, and the conserved
pathways discovered by L-GRAAL and NETAL are also
smaller than those discovered by GMAlign. This result
can benefit future biological studies on pathways and
implies the potential of our algorithm in exploring the
relationship of functional components across different
species.
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Fig. 14 The average functional similarity (AFS). All the comparison are
based on (g) = 15 pairs of networks among GMAlign, HubAlign,
L-GRAAL, NETAL, GHOST, MI-GRAAL, SPINAL and MAGNA. The
average functional similarity (AFS) for category MF

Discussion

The purpose of network aligners is to find func-
tional and structural similarities between PPI networks
of different species [40]. Most existing network align-
ment algorithms solve this problem as an optimiza-
tion problem over the convex combination of sequence
and structural similarities between two networks
[2, 5, 19, 25, 41]. They can generally be classified into two
types according to their optimization targets: sequence
similarity tendency and structural similarity tendency
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Fig. 13 The average functional similarity (AFS). All the comparison are
based on () = 15 pairs of networks among GMAIign, HubAlign,
L-GRAAL, NETAL, GHOST, MI-GRAAL, SPINAL and MAGNA. The

average functional similarity (AFS) for category BP
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Fig. 15 The average functional similarity (AFS). All the comparison are
based on (§) = 15 pairs of networks among GMAlign, HubAlign,
L-GRAAL, NETAL, GHOST, MI-GRAAL, SPINAL and MAGNA. The

average functional similarity (AFS) for category CC
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Fig. 16 The structure of hsa03010 pathway. The common sub-structure in sce03010 pathway found by GMAlign is marked red

[33]. The sequence similarity tendency aligners usually
rely too much on the similarity between two pro-
teins, such as BLAST scores to find large conserved
sub-networks. The structural similarity tendency align-
ers can achieve better results in discovering large con-
served subgraphs but their biological accuracy needs to
be improved.

It seems that most current aligners cannot combine
the optimization of both sequence similarity and struc-
tural similarity very well [33]. For example, IsoRank [41]
uses only a function of the node degrees as the struc-
tural similarity combined with the BLAST scores, which
leads to its poor performance in finding structurally and
biologically similar sub-structure. Other state-of-the-art
aligners make considerable progress in considering their
relationship. L-GRAAL [2] adopts graphlets to calculate
the structural similarity. HubAlign [25] adopts minimum-
degree heuristics based on the observation that topolog-
ically important proteins in a PPI network usually are
much more conserved. MAGNA++ [27] can optimize
any alignment accuracy measure but is only restricted to
topological similarity measures. Other aligners, such as

NETAL [23], GHOST [22] and SPINAL [24] have a similar
problem.

GMAlign combines multiple similarities including both
topological similarity and sequence similarity from the
early alignment procedure to the refinement stage to get
more meaningful topological and biological results. Our
experimental results confirm that GMAlign can find big-
ger and denser common connected sub-structures (see
Figs. 2, 3, 4 and 5), which means that there is a large
probability of finding biologically meaningful structures.
Moreover, we prove that GMAlign can achieve better
biological quality (Figs. 10, 11 and 12 and see Figs. 13, 14
and 15). Even more, GMAlign discovers the close rela-
tionship between the sce03010 pathway and the hsa03010
pathway and gives their inner relationship which is proven
using the APID dataserver [38]. Further experiments
about adjusting the ratio between the topological similar-
ity and sequence similarity (see Figs. 6, 7, 8 and 9) confirm
that existing aligners are not as robust as GMAlign.

PPI network alignment is an effective method to
discover the functionally conserved sub-structure
between networks, which is significant for biological
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Fig. 17 The structure of sce03010 pathway. The common sub-structure in hsa03010 pathway found by GMAlign is marked red

studies. As we discussed above, GMAlign outperformed
these aligners in many aspects, but it has its own limita-
tions in terms of efficiency. Thus, we will try to optimize
the computation process and develop a parallel version
of the algorithm to obtain better efficiency in future
work. Moreover, we will try more biological applications
to make full use of GMAlign, such as predicting protein
interactions [5], detecting functional orthologs across
species [4] and understanding the mechanisms of human
diseases [6].

Conclusions

In this article, we propose a new network aligner, GMA-
lign, which first constructs an initial matching by select-
ing anchor pairs, followed by a gradual expansion, and
then iteratively refines current matching to a suboptimal
matching based on vertex cover. We found a way to suc-
cessfully combine the topology and sequence information
at the level of nodes without too much conflict. Experi-
mental comparison of GMAlign with many state-of-the-
art aligners on the PPI networks from BioGRID shows that
GMAlign can produce larger size alignments, and find

bigger and denser common connected subgraphs. Addi-
tionally, to the best of our knowledge, this is the first
time that LCCe has been proposed to evaluate the density
of the largest common connected subgraph found in an
alignment.

Second, GMAlign also performs well in matching func-
tionally conserved proteins using topology information,
as measured by the functional consistency and semantic
similarity. This shows that GMAlign can map many pro-
tein pairs with common GO terms and higher semantic
similarity.

Finally, GMAlign detects a large conserved part of
the pathways across yeast and human, which shows that
GMAlign can integrate sequence and topology informa-
tion in a better way to find structurally and functionally
meaningful components. These results will significantly
benefit the biological studies on the relationship between
the pathways of different species. In the future work,
we will optimize the efficiency of GMAlign and explore
potential applications of GMAlign on predicting protein
interactions, detecting functional orthologs across species
and understanding the mechanisms of human diseases.
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