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Abstract

Background: MicroRNA regulation is fundamentally responsible for fine-tuning the whole gene network in human
and has been implicated in most physiological and pathological conditions. Studying regulatory impact of
microRNA on various cellular and disease processes has resulted in numerous computational tools that investigate
microRNA-mRNA interactions through the prediction of static binding site highly dependent on sequence pairing.
However, what hindered the practical use of such target prediction is the interplay between competing and
cooperative microRNA binding that complicates the whole regulatory process exceptionally.

Results: We developed a new method for improved microRNA target prediction based on Dirichlet Process
Gaussian Mixture Model (DPGMM) using a large collection of molecular features associated with microRNA, mRNA,
and the interaction sites. Multiple validations based on microRNA-mRNA interactions reported in recent large-scale
sequencing analyses and a screening test on the entire human transcriptome show that our model outperformed
several state-of-the-art tools in terms of promising predictive power on binding sites specific to transcript isoforms
with reduced false positive prediction. Last, we illustrated the use of predicted targets in constructing conditional
microRNA-mediated gene regulation networks in human cancer.

Conclusion: The probability-based binding site prediction provides not only a useful tool for differentiating
microRNA targets according to the estimated binding potential but also a capability highly important for exploring
dynamic regulation where binding competition is involved.

Keywords: MicroRNA, MicroRNA target prediction, Dirichlet process Gaussian mixture, Machine learning, Bayesian
inference, Dynamic microRNA regulation

Background
MicroRNAs (miRNAs) are important post-transcriptional
gene regulators that silence messenger RNA (mRNA) targets
via mRNA degradation or translational repression [1, 2].
They hybridize with complementary sequences in the 3′-un-
translated regions of mRNA, particularly in the “seed region”
(2nd-8th bases on the 5′ end), for their binding [3]. In
RNA-induced silencing complex, both miRNA and mRNA

are degraded if the miRNA nucleotide sequence has a high
degree of complementarity to the sequence in the mRNA
target [4, 5]; otherwise, the binding of miRNA to mRNA will
halt mRNA translation without causing degradation [5, 6].
The large-scale miRNA-mRNA interactions detected by se-
quencing analyses has shown various interaction patterns,
e.g., many interactions happen via complementary sequences
in discontinuous regions other than seed region [7], indicat-
ing different regulatory mechanisms. In addition, compelling
evidence reveals the dynamic nature of miRNA-mRNA
interaction that multiple miRNAs can bind to the same
mRNA sequence or different copies of the same transcript --
cooperative interactions [8], while multiple different mRNAs,
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possibly also with other types of RNA, e.g., long non-coding
RNAs and circular RNAs [9], can compete for binding to the
same miRNA -- competitive interactions [10]. Furthermore,
other factors, such as genetic mutations [11–14], competi-
tion with RNA binding proteins [15, 16], and conditional ex-
pression of miRNA and mRNA can also affect the status of
miRNA-mRNA interactions. All listed above indicate the
complexity underlying miRNA-mediated gene regulation.
The molecular mechanisms have been partially clari-

fied by extensive studies focusing on miRNA biogenesis
and function [17, 18], which also show the participation
of miRNAs in virtually every aspect of cellular activities
starting with differentiation and development of cells.
MiRNAs affect normal functioning of the cell including
metabolism, proliferation and apoptotic cell death as
well as malfunctions such as viral infection, and tumori-
genesis [19–24]. In humans, it is estimated that 2500+
miRNAs can regulate over 60% of human genes [25]. Re-
search interest in miRNA regulation has been dramatic-
ally increasing, resulting in numerous computational
tools such as TargetScan [26], miRDB [27], miRanda
[28], and mirSVR [29]. The miRNA targets predicted by
these tools can be used to indirectly infer miRNA func-
tion, e.g., through pathway enrichment analysis [23].
However, the complexity of miRNA-mRNA binding, es-
pecially the cooperative and competitive binding modes
observed with miRNAs complicates the target prediction
task. Most methods that focus primarily on finding com-
plementary sequences in the seed region fail to address
this complexity.
Despite the challenges faced in computational prediction,

novel sequencing techniques has facilitated experimental dis-
covery of a large number of miRNA-mRNA interactions. For
example, the crosslinking, ligation, and sequencing of hybrids
(CLASH) analysis has identified 18,514 miRNA-mRNA in-
teractions where 60% of the interactions were associated
with seed region [7]. Further, the coding regions of mRNAs
were shown to house ~ 60% of the binding sites. The existing
algorithms are designed on the assumption of 3’-UTR cen-
tric binding, new algorithms will need to revise this assump-
tion. Another study using covalent ligation of endogenous
Argonaute–bound RNAs (CLEAR)-CLIP in human hepa-
toma cells corroborated the above results: ~ 26% of the inter-
actions were associated with seed region and ~ 57% are
non-3’UTR interactions [30].
In this study, we designed a new computational method

for miRNA target prediction using Dirichlet Process
Gaussian Mixture Model (DPGMM) [31], with integration
of the large-scale sequencing-detected interactions. The
main aim is to infer interactions along with indicated con-
fidence. Given the large number of interaction patterns
miRNAs and mRNAs can have (to-be-discovered) and the
uncertainty about source of similarity, clustering is the
tool of choice to group similar interactions with respect to

either the miRNA or mRNA involved. In clustering tasks
where the number of clusters are not known ahead of ob-
serving the data, the non-parametric Bayesian method
DPGMM is commonly used [32–36]. DPGMM also has
advantages in accommodating clusters with various sizes
and structures, free specification of the number of clus-
ters, easy computation, and interpretability [20], compared
to other multi-class learning systems, such as SVM,
K-means, and GMM clustering. To accomplish, we first
considered a large number of molecular features related
to miRNA-mRNA binding sites including sequence
pairing [26], evolutionary conservation [37], free energy of
the miRNA-mRNA heteroduplex [38], target site accessi-
bility [39], and the flanking sequence of the target site on
mRNA. A few novel features possibly associated with
binding efficacy were also considered, such as AU-rich nu-
cleotide composition near the binding site, proximity to
sites for co-expressed miRNAs (possibly associated with
cooperative action), proximity to residues pairing at
miRNA nucleotides 13–16, positioning away from the
center of long UTRs [2, 40]. In addition, several statistics
related to binding site were also assessed, e.g., the number
of complementary pairs within seed region and/or within
the whole biding site. Based on these heterogeneous fea-
tures, a feature vector will be constructed for each given
miRNA-mRNA interaction, as input to the model.
For each candidate interaction, the new system can output

an assignment score as posterior probability for each of the
clusters. By assessing all interactions from the same cluster,
one can explore new insights in interactive patterns reflected
by each identified cluster. In addition, based on the sequence
information of experimentally-detected interactions and
aforementioned distinguishing features, this system will
allow one to assess if one miRNA can bind to a specific
splicing transcript, a very unique feature highly useful in
practice when compared to gene-level prediction offered by
existing tools. At last, we demonstrated in a breast cancer
case study the application of predicted target information to
infer conditional miRNA-gene interaction through modeling
dynamic gene regulation while considering multiple other
gene expression regulation mechanisms such as transcrip-
tion factor and copy number variation (CNV).

Methods
Data preparation and feature generation
Table 1 summarizes the miRNA-mRNA interactions used
in this study. Experimentally identified interactions col-
lected from public databases and interactions reported in
sequencing analyses constitute the training and validation
data [41]. For each interaction, an initial set of 2059 features
were generated. Besides general structure and sequence
features reported in the literature [2, 40] [3, 26], we ex-
plored new features such as the length of an interaction
and the flanking sequence of the binding site on mRNA.
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We included the frequencies of all possible k-nucleotide
combinations (k = 1,…,4) on both miRNA and mRNA se-
quence involved in an interaction. RNAFold was used to
calculate the minimum free energy, secondary structure,
and open degree of each binding site [3]. A summary of all
features compiled in this study is given in Fig. 1A, with de-
tails provided in Additional file 1.

Classification using mixture model
Positive training data for the classifier consisted of ex-
perimentally identified miRNA-mRNA interactions.
Negative training data was generated to represent
miRNA-mRNA pairs that don’t interact. We summarize
the whole procedures as follows.

1) Negative Data Generation

Negative sample generation was done by sliding a k-mer
window (k = 22) across all known mRNA sequences. The
commonly-used negative interaction set consisting of a
small number of randomly generated interactions is often
biased and not sufficient to represent the entire negative
space. To address this problem, we generated a 4-tiered
negative set with each tier corresponding to a different
level of negative potential. Higher levels of confidence are
captured in higher tiers (Table 2). For instance, level 1
data includes randomly-generated false binding sites
among reported miRNA and mRNA pairs, whereas level 4
data represents interactions randomly synthesized from
unreported miRNAs and mRNAs. There are infinitely
many possible negative interactions between all human
miRNAs and mRNAs; in order to keep the size of the
negative set comparable with the positive set, we selected
~ 8000 interactions from each of the four categories ran-
domly as representative interactions of that category.

2) Building the Classifier

In order to discover unknown binding patterns and
properties, a classifier was first trained to differentiate
positive interactions from negative. The rationale is as fol-
lows. After feature generation, for a given miRNA r and a
set of binding sites I related to r, the ith binding site is rep-
resented with an m-dimensional feature vector xi based
on a set of m features (m = 2059 in the initial analysis).
Feature vectors corresponding to all the n sites in I are
represented by {x1,…, xi,…, xn}. Let nc be the number of
clusters observed in miRNA-mRNA interactions and zi(i

Table 1 Datasets applied in this study

Datasets Content

CLASH data [7] 17,436 interactions on Human kidney cell
(HEK293), associated with Ago1

iPAR-CLIP data [8] 10,566 interactions on HEK293, human
embryonic stem cell, EBV-infected
lymphoblastoid cell lines, and primary
effusion lymphoma cell line,
associated with Ago1 and Ago2

CLEAR-CLIP data [30] 32,711 interactions on Human hepatoma
cell, associated with Ago

mirTarbase [20] 11,002 interactions on Human genome,
predicted by miRanda;
483 validated interactions by non-sequencing
analysis

RefSeq [42] 56,000 human transcripts

Fig. 1 Interaction features used in the model. (a) Breakdown of features according to categories. (b) Recursive feature elimination process. Top
panel shows the performance of the feature elimination process on the initial set of 2059 features. Bottom panel illustrates the distributions of
four discriminative features in the positive and negative datasets
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= 1,…, nc) represent the cluster membership of the inter-
action xi. We then apply Dirichlet Process Gaussian Mix-
ture Model (DPGMM) to obtain interaction clusters. The
Dirichlet Process (DP) is the prior distribution for the
mixture model specifying a distribution of probability dis-
tributions. In this setting, these distributions specify the
parameters of miRNA-mRNA interaction clusters. The
parameters of DP are a base distribution G0 and a positive
concentration parameter α. Base distribution G0 is the ex-
pected value of the process while α determines the disper-
sion of the distributions around G0. A small α results in
distributions that are concentrated around G0. As α in-
creases, the dispersion of distributions increase.
In general, in a Gaussian mixture model with K com-

ponents, the likelihood of data is:

p xjθ1;…; θKð Þ ¼
XK

j¼1

π jN xjμ j; S j

� �

where π denotes the mixing proportions and θj = {πj, μj, Sj}
is the set of parameters; proportion, mean and precision, of
a component in the mixture. (μj, Sj) are drawn from a distri-
bution G that is in turn drawn from a DP(α,G0). Fixed co-
variance and a conjugate Nð0; 1Þ prior on the component
means were used. The optimum value for α was experi-
mentally determined to be 10 (results not shown).
In the clustering setting, we let zi represent the cluster

number for observation xi, 0 ≤ zi ≤ nc, the prior on clus-
ter assignments is

p zi ¼ jð Þ ¼ nj

αþ n−1

for an existing cluster j and

p zi ¼ K þ 1ð Þ ¼ α
αþ n−1

for a new cluster. Here, n is the total number of data
points and nj is the number of data points in cluster j.

Cluster assignments are done using the normalized log
posteriors of clusters. The log posterior is:

log nj
� �þ log

exp −
1
2

x−μð ÞTΣ−1 x−μð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffi
2πΣj jp

for existing clusters and

log αð Þ þ log
exp −

1
2

x−μð ÞTΣ−1 x−μð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffi
2πΣj jp

for new clusters, where x is the feature vector, μ is the
cluster mean vector and is the covariance matrix for
the cluster. Normalization factor is the sum of the log
posteriors. A new observation is assigned to the cluster
with the highest normalized posterior probability. Ties
are broken randomly during cluster assignment.
We trained the DPGMM model on the training set

consisting of positive and negative interactions until the
system converged. 25% of the total dataset was kept out
of training to be used as test data. Each interaction was
assigned to the cluster which has the highest posterior
probability of assignment. This model provides the flexi-
bility of assessing the accuracy of the clustering at differ-
ent levels: 1) whether a new interaction can be correctly
assigned to a positive or negative cluster, or 2) whether a
new interaction is assigned to a cluster that contains the
participating miRNA. Several metrics have been used to
evaluate the performance including the sensitivity, speci-
ficity, accuracy and Matthews correlation coefficient
(MCC). Optimization of the model was done by a grid
search of parameters over a large range. The main par-
ameter of the DPGMM model is the α parameter, for
which the values 10, 30, 60, 90 and 100 were considered.
The model was trained for different number of itera-
tions, namely 10, 30, 60, 90 and 100. Bayesian Informa-
tion Criteria (BIC) [42] were obtained for each possible
combination of the above values of the parameters. The
combination that resulted in the lowest BIC were used
in the final model.

3) Feature Selection

A feature elimination analysis was performed on the
initial set of 2059 features to remove unrelated and noisy
features and search for the minimal set of relevant fea-
tures that optimize classification performance. We per-
formed the first filtering step based on t-test on each
feature between positive and negative data sets where 44
non-discriminative features with p-value > 0.05 were re-
moved from our initial feature list. At this elimination
step, multiple hypothesis correction methods were not

Table 2 The positive and negative datasets

Dataset Statistics

miRNA/mRNA interaction

Pos-1: Interactions reported in
CLASH data

399
7000

17,436

Pos-2: Interactions reported in
iPAR-CLIP data

291
4043

10,567

Neg-1: Interactions generated
on reported miRNA and mRNA pairs

755
9179

8768

Neg-2: Interactions generated on
reported miRNAs and unreported mRNAs

755
20,516

8768

Neg-3: Interactions generated on
unreported miRNAs and reported mRNAs

1833
9179

7332

Neg-4: Interactions generated on
unreported miRNAs and unreported mRNAs

1833
20,516

7332
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applied. Next, an independent logistic regression classi-
fier was built for each of the remaining features. Each
feature was associated with the Area Under the Curve
(AUC) value resulting from its corresponding logistic re-
gression classifier and features were ranked according to
their AUC values. Then we followed a recursive feature
elimination (RFE) procedure to fruther remove features
irrelevant or negligible to our classification goal. The
procedure is as follows: a DPGMM classifier was built
using the remaining features after the first elimination
step and the 5-fold cross validation accuracy of the
model was recorded. Next, we removed the feature with
the lowest AUC value and performed DPGMM classifi-
cation again. We recursively removing the least import-
ant feature and performing DPGMM classification until
a minimal set of features, without losing the classifica-
tion performance, is obtained. The remaining features
were used for the final model.

4) Cascade Model for MiRNA Specific Clusters

Our model offers different levels of clustering results.
Each successive level is more specialized than the previ-
ous level (Fig. 2). After the initial clustering, some clus-
ters are expected to contain exclusively negative
interactions, while others may contain both negative and
positive interactions. Also, the clusters contain different
types of mRNA or miRNAs. For those clusters that were
heterogeneous and had more than 30 examples, we con-
tinued clustering the examples into sub-clusters with
additional DPGMM rounds. Stopping criteria for clus-
tering were: 1) homogeneity of miRNA type, 2) homo-
geneity of mRNA type and 3) size of clusters (Fig. 2). In
case of termination due to criterion 3, the sub-clusters
were excluded from the final model. We construceted a

clustering tree using this recursive procedure. The root
level clusters are the results of the initial clustering, and
the leaf level clusters are the result of the last clustering.
`represent the results of the last DPGMM clustering
round, we expect to see specific clusters that are homo-
geneous with respect to a miRNA or mRNA.
The root level clusters can be used to evaluate if a new

interaction object can be correctly predicted as a real
interaction or not while the lower layers can help us to
evaluate if the object can be assigned to its own cluster.
A certain number of mixed clusters are expected to re-
main in the model corresponding to different miRNAs
that follow similar binding patterns.

Model evaluation and genome-scale target screening
In this study, CLASH and iPAR-CLIP data were used to
train and test the model (75% of the interactions were used
as training set and 25% as testing set). The final model was
decided based on performance using the remaining features
after feature elimination. For independent evaluation, dupli-
cated interactions in CLEAR-CLIP data and mirTarBase
data were removed and the remaining were used.
Next, the RefSeq data [43] were used to screen the

whole human transcriptome for possible binding interac-
tions with miRNAs. To determine if a position on mRNA
is a candidate site for a given miRNA, we locally aligned
the sequences of the candidate site and the miRNA. An
extension of 30 nucleotides on both ends were considered
while computing features for a given candidate binding
site. A candidate binding site and a miRNA pair were
tested for a possible interaction by assigning to a cluster
within the clustering tree model. Leaf level clusters were
considered as final cluster assignments.
An interaction confidence metric (IC) was used to

rank the predicted interactions according to how reliable

Fig. 2 Cascade DPGMM model. (a) Flowchart describing training of the model. (b) Illustrative example of cascade DPGMM. Rectangles represent
mixed clusters (M), circles represent homogeneous clusters (H). Clustering goes on until homogeneous clusters are obtained
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they are. IC for a candidate interaction i and the domin-
ant miRNA k in i’s assigned cluster is ICik = zi * ck,
where zi indicates normalized assignment probability
and ck is the proportion of miRNA k in the cluster.
Last, to demonstrate the use of predicted interactions

under the context of studying dynamic gene regulation,
we have performed a case study of inferring conditional
miRNA regulation associated with cancer progression.
Based on a set of genomic data on breast cancer from The
Cancer Genome Atlas (TCGA) [44] including miRNA and
mRNA expressions, CNVs, and DNA methylation profiles
and a meta-Lasso regression model our group has been
recently developed [45], miRNA regulation associated
with different cancer stages were detected. Previously, the
regression model evaluates the likelihood of interactions
between a pair of miRNA and mRNA based on a regula-
tory score (RS) which is calculated through aggregation of
binding probability and binding affinity [45]. In this study,
we replace the RS score by the DPGMM-derived posterior
probability, the highest assignment score. Along with
other factors such as Transcription factor (TF)-gene regu-
latory potential, Lasso regression was utilized to identify
the TFs and miRNAs that regulate a specific gene under a
given condition.

Results
An initial training of the model using the whole set of
2059 features and 75% of the CLASH and iPAR-CLIP
data resulted in 34 positive and 38 negative clusters. The
model was tested on the test data (the remaining 25% of
CLASH and iPAR-CLIP) which resulted in 82.0% overall
accuracy. Table 3 shows the promising validation results
on several independent datasets.
Our model performs decently on the majority of data sets

where the interaction discovery was sequencing-based, with
the exception of mirTarBase. The sensitivity for mirTarBase
data is low, 61.0% for the validated interactions and 62.0%
for the predicted ones from other tools, respectively. The
discrepancy can be due to two possible explanations. First,
CLASH and CLIP interactions were detected by
genome-wise sequencing where each miRNA-mRNA pair
often involves many different interactions at different sites

while the mirTarBase only reports a single binding site on a
gene target. Second, predicted targets in mirTarBase were
less reliable compared to the experimentally validated ones.

Selected features
A subset of the initial 2059 features (Methods) that opti-
mized the performance of the model was selected using
5-fold cross validation. A minimal set of discriminative
features were kept that optimized the model by eliminat-
ing the noisy features (Fig. 1B). Feature selection was
based on minimum information loss which represents the
loss of the predictive power. We observed a slight increase
in the overall accuracy on mirTarBase data from 61 to
62% to 64% accuracy after the least important features
were eliminated recursively (with 377 remaining features).
During feature elimination, we observed that sensitiv-

ity and specificity were complementary while the accur-
acy and MCC were relatively consistent. The model
containing 377 features resulted in the highest accuracy
and MCC (see Additional file 1). We used these features
in our final model. An additional table lists the top 30
selected features, ranked by AUC value that reflects the
discerning power (see Additional file 2). For example,
the alignment score on the binding site, the open degree
of the mRNA sequence, and ‘T’ counts in both miRNA
and mRNA sequences are highly distinguishing for
miRNA-mRNA interaction (Fig. 1B).

Final classification model
The final model was trained using the selected 377 fea-
tures and the optimal parameters. The performance of
our method was evaluated in terms of classification per-
formance and clustering coherence as follows.

Classification performance
Table 4 summarizes the prediction performance on train-
ing, testing, and three independent test datasets. Using the
root level clusters, the prediction results in high accuracies
for both the training set and CLEAR-CLIP test set. The
prediction performance for mirTarBase data set was not
as desirable. One explanation for this discrepancy may be
the small size of miRTarBase compared to CLEAR-CLIP

Table 3 Prediction performance on the training, testing, and independent datasets

Dataset Performance

Sensitivity Specificity Accuracy MCC

Training
75% of CLASH, iPAR, and negative

0.78 0.86 0.82 0.64

Testing
25% of CLASH, iPAR, and negative

0.77 0.86 0.82 0.64

Validation-1 CLEAR-CLIP 0.80 – 0.80 –

Validation-2 mirTarbase (validated) 0.61 – 0.61 –

Validation-3 mirTarbase (predicted) 0.62 – 0.62 –
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which is about two times bigger. Our resulting clustering
tree had a depth of 5. As clustering depth increases, more
positive clusters than negative are obtained implying
specialization of clusters to miRNA or mRNA types. The
proportion of positive clusters within a layer increases as
the tree grows in depth. The results of the Leaf layer (Table
4) shows improvement in classification performance. High-
est improvement was obtained on CLEAR-CLIP data set
from 87% accuracy to 92%. Both sensitivities and specific-
ities were improved as well as accuracy. Both the differenti-
ation of positive and negative clusters and separation of
positive interactions into different clusters according to the
sequences involved is more prominent in the deeper levels.
Accordingly, leaf level clusters were selected to be used for
prediction.

MiRNA/mRNA specific clusters
At the leaf level, the final model had 281 clusters, 244 of
which were positive. We observed that 136 (56%) of the
positive leaf clusters consist of only a single type of
miRNA. When the homogeneity level required for each
cluster (percentage of interactions associated with the
same miRNA) drops, the proportion of homogeneous
clusters increases, e.g., up to 73% (178 clusters) at homo-
geneity threshold at 80% and up to 167 (68%) clusters at
homogeneity level 90%. We show an example hierarchy of
clusters in Fig. 3A. At the root layer, the cluster has mul-
tiple miRNA types; miR-30c, miR-15b, miR-26a, and
miR-421 constitute a high proportion of this cluster. In
the subsequent layer, miR-15b and mir-30c are separated
into their own clusters, as well as miR-30b and miR-30d.
In the deeper layers, both miR-26a and miR-421 form
their own clusters. In addition, we observed that the per-
centages of the dominant miRNA (miRNA with highest
presence) in clusters are high (Fig. 3B).

Validation study
Our method was compared with other state-of-the-art
miRNA target prediction tools including TargetScan
[26], miRDB [27], microT [46], and microT-CDS [47],
based on the predicted positive interactions (Additional

file 2). While our method only predicted 22,215 interac-
tions among 550 miRNAs and 7529 mRNAs, others
show significantly higher numbers that are beyond the
census estimation. For example, TargetScan, microT and
microT-CDS all predicted over millions of interactions
among these miRNAs and mRNAs, which implies higher
levels of false positives. When comparing the average
targets per miRNA and average miRNA regulators per
mRNA, our results are closer to reality. On the other
hand, all four exisitng tools reported greater number of
targets for one miRNA. We used the 37,539 positive ex-
amples in our test data to compare the sensitivity of our
method with these tools. Our method achieves consider-
ably higher sensitivity (see Additional file 2).

Transcriptome screening
Clusters in our model specializes to miRNAs as cluster
level becomes closer to the leaves. We leveraged this fea-
ture to not only predict if a candidate pair forms a genuine
interaction but also to assess if the miRNA involved in this
interaction is similar to the dominant miRNA, in terms of
count, in the cluster the interaction is assigned to. The
flexibility offered by our model makes screening the tran-
scriptome at different levels possible. For example, at the
lowest confidence level, where we only consider interac-
tions with non-zero IC’s, our model predicts at least one
miRNA regulator for each gene, and on average 145
miRNA regulators per gene. Figure 4 shows the distribu-
tion of number target of mRNAs per miRNA and number
of miRNA regulator per gene. Considering the functional
study of miRNA is largely dependent on accurate identifi-
cation of its gene target, our prediction method can be
highly useful as a reliable resource to facilitate down-
stream studies on miRNA regulation, which is also dem-
onstrated in the next case study. The list of all predicted
binding sites is available at http://sbbi-panda.unl.edu/miR-
Cript/ (Additional online files unnecessary for review).

A case study of conditional miRNA regulation in Cancer
Based on the aforementioned predicted miRNA target in-
formation, we have applied a regression model [45] with

Table 4 Performance based on the 1st and leaf layer clusters

Dataset Sensitivity Specificity Accuracy MCC

1st Leaf 1st Leaf 1st Leaf 1st Leaf

Training
75% of CLASH, iPAR, negative

0.93 0.94 0.96 0.97 0.95 0.96 0.89 0.91

Testing
25% of CLASH, iPAR, negative

0.93 0.94 0.96 0.97 0.94 0.96 0.89 0.91

Validation-1
CLEAR-CLIP

0.87 0.92 – – 0.87 0.92 – –

Validation-2 mirTarbase (val.) 0.63 0.60 – – 0.63 0.60 – –

Validation-3 mirTarbase (pre.) 0.60 0.58 – – 0.60 0.58 – –
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the DPGMM-derived assignment score representing the
miRNA-mRNA regulatory likelihood. In this case, the
DPGMM approach allows us to assess the binding poten-
tial among different biding sites between a gene and differ-
ent miRNAs, which is important to study the competing
binding among miRNAs and mRNAs. Meanwhile, it also
provides a unique feature compared to other binary classi-
fication strategies. With integration of cancer associated
genomic data, we were able to examine the conditional
miRNA-gene regulation that are associated with tumor
progression. For example, Fig. 5 illustrates the dynamic
miRNA regulation pattern on gene EGFR (epidermal
growth factor receptor), an important tyrosine kinase in-
volving in cell growth and cancer development. Based on
our prediction, 44 miRNAs can potentially bind to EGFR
but only a subset of miRNAs play the roles under a spe-
cific condition. In the figure, we observed that different
sets of miRNAs interact with the target gene across

different cancer stages; some interactions are active all
along during the progression (those in red) while others
are stage specific (those in blue) depending on the avail-
ability of the miRNAs under different conditions. These
findings are in agreement with our understanding of the
dynamic regulation process.

Discussion
Emerging sequencing technologies has changed the
landscape of research on miRNA target identification.
Availability of data pertaining to genome-scale miRNA
interactome facilitated bioinformatics research im-
mensely. Particularly, use of transcript-level interaction
data combined with mRNA specific features in this
study allows confidence in our model for transcript-level
target prediction. To the best of our knowledge, splicing
transcript specific miRNA binding site prediction is a
novel feature that is lacking in many existing tools.

Fig. 3 Clusters resulting from cascade DPGMM model. (a) Clustering tree shown at bottom left. A section of the tree is enlarged at the top right.
Ellipses are homogeneous clusters. Numbers in parenthesis represent number of examples in the cluster. Striped boxes are mixed clusters, width
of each stripe corresponds to the percentage of a miRNA in the mixture. (b) (top) the distribution of number of examples in clusters over all
clusters; (bottom) distribution of percentages of dominant miRNAs in each cluster. A dominant miRNA has highest presence in a cluster

Fig. 4 Transcriptome prediction statistics. (a) Distribution of number of mRNA transcript targets per miRNA. (b) Distribution of number of miRNA
regulators per gene. y-axis shows the percentage in whole transcriptome
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Moreover, a considerable amount of miRNA-mRNA in-
teractions via complementary sequences have been dis-
covered in gapped regions [11]. These findings suggest
that prediction solely depending on sequence and/or con-
textual features such as binding energy, seed match, and
conservation is not sufficient. As such the static target
prediction tools that utilize only that information have re-
ceived critical skepticism. We addressed this challenge in
our model by incorporating data about various types of
molecular features that differentiate distinct interaction
patterns. Meanwhile, high false prediction miRNA target
prediction rates are still a big concern.
There are several technical challenges that we encoun-

tered during the course of this work. We have used pub-
licly available sequencing data. In compiling the data
derived from different sequencing technologies, the raw
sequence data needed to be reprocessed and a consoli-
dated annotation had to be produced. Another challenge
we faced is a common one in miRNA target prediction re-
search, i.e., the negative set is huge compared to the posi-
tive set 10 times more in our case. To make our negative
set more representative, we devised a new method and
maintained a comparable size with the positive set.
The ambiguity around cooperative and competitive

binding mechanisms adds to the complexity and
semi-stochasticity associated with miRNA-mediated
gene regulation. Our method can be used to infer com-
petitive binding, since it assigns likelihoods to the nu-
merous potential binding sites of a gene to the same
miRNA which can be used to evaluate the binding po-
tential. Our recent study shows that several miRNAs can
affect a given pathway by regulating the same or differ-
ent genes involved in the pathway [45]. For example,
miR-18a-3p, −320a, −193b-3p, and -92b-3p co-regulate
the glycolysis/gluconeogenesis and focal adhesion in
cancers of kidney, liver, lung, and uterus. Similar applica-
tions shed light on miRNA regulatory mechanisms and
novel roles and meanwhile, the functional studies all

highlight the importance and challenges of reliable
miRNA-mRNA interaction prediction.

Conclusions
In this study we developed a new method for predicting hu-
man miRNA-mRNA interactions reliably. This statistical
approach has improved prediction performance compared
to similar existing tools and includes several unique fea-
tures. Importantly, this tool can address practical questions
such as common binding properties across miRNAs. Also,
the interactions are predicted at transcript level which gives
a more detailed view of interaction than the existing tools
that predict gene-level binding sites. In our future work, we
plan to identify miRNA co-binding module by use of condi-
tional mRNA and miRNA genomic data, which will take
the stochastic nature of miRNA-mRNA interaction into
consideration. As such, we believe this study lay out the
groundwork for future research on cooperative miRNA
module and dynamic gene regulation.
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