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Abstract

Background: Short read DNA sequencing technologies have revolutionized genome assembly by providing high
accuracy and throughput data at low cost. But it remains challenging to assemble short read data, particularly for
large, complex and polyploid genomes. The linked read strategy has the potential to enhance the value of short
reads for genome assembly because all reads originating from a single long molecule of DNA share a common
barcode. However, the majority of studies to date that have employed linked reads were focused on human
haplotype phasing and genome assembly.

Results: Here we describe a de novo maize B73 genome assembly generated via linked read technology which
contains ~ 172,000 scaffolds with an N50 of 89 kb that cover 50% of the genome. Based on comparisons to the B73
reference genome, 91% of linked read contigs are accurately assembled. Because it was possible to identify errors
with > 76% accuracy using machine learning, it may be possible to identify and potentially correct systematic
errors. Complex polyploids represent one of the last grand challenges in genome assembly. Linked read technology
was able to successfully resolve the two subgenomes of the recent allopolyploid, proso millet (Panicum miliaceum).
Our assembly covers ~ 83% of the 1 Gb genome and consists of 30,819 scaffolds with an N50 of 912 kb.

Conclusions: Our analysis provides a framework for future de novo genome assemblies using linked reads, and we
suggest computational strategies that if implemented have the potential to further improve linked read assemblies,
particularly for repetitive genomes.
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Background
The introduction of short-read DNA sequencing tech-
nologies has transformed genomic research by greatly de-
creasing cost while substantially increasing throughput
and delivering high accuracy data. However, short-reads
(100–250 bp) present challenges for the de novo assembly,
haplotyping, and defining genomic structural variations
[1]. These limitations are particularly problematic in ge-
nomes with high repeat content or pervasive structural re-
arrangements such as many crop species [2, 3].
In response to these drawbacks, long-read sequencing

platforms have been developed, such as the single-molecule
real-time (SMRT) sequencing approach from PacBio. Long

reads can be used to span repeat-containing regions of ge-
nomes during assembly, define haplotypes and resolve
structural rearrangements. However, relative to short read
sequencing, SMRT sequencing suffers from high error rates
(~ 15% vs. < 0.5%) [4, 5], higher costs, and more limited
throughput [1]. While hybrid assembly approaches that
combine short- and long-read technologies have been de-
veloped [6], combining information from multiple sequen-
cing technologies increases cost and complexity.
New methodologies are focusing on generating syn-

thetic long reads by taking advantage of the benefits of
short-read technology but incorporating information
from long strands of DNA, such as Hi-C [7] and Illumi-
na’s synthetic long read sequencing [8]. The linked read
strategy developed by 10× Genomics uses emulsion
technology in conjunction with a microfluidics instru-
ment to partition long fragments of DNA into micelles
called “GEMs” (Gel Bead-In-Emulsions). Within each
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GEM, stretches of partitioned long DNA fragments are
amplified, and a barcode unique to that GEM is added to
each of these amplification products. In this way, all frag-
ments derived from a given long DNA fragment are tagged
by a shared barcode. After Illumina sequencing, the bar-
codes are used to identify sequences that are in close prox-
imity in the genome. While each individual DNA fragment
is typically not fully sequenced, information from many
overlapping fragments derived from the same genomic re-
gion can be combined into a read cloud. Hence, long
stretches of the genome can be more accurately recon-
structed based on linked reads than via standard whole gen-
ome shotgun sequencing. The information retained from
long fragments facilitates de novo genome assembly, haplo-
type phasing, and the analysis of structural variants [9].
One of the major benefits of the linked read technology

is determination of haplotypes. For studies using only
linked reads, the LongRanger software is available to align
linked reads to human or pre-defined genomes to assist in
haplotype phasing. The benefit of linked reads combined
with de novo assembly is the generation of a phased de
novo assembly. Thus far, a number of studies have success-
fully phased human haplotypes, particularly in combination
with other read types [9–11]. The latest assembly algorithm
from 10× Genomics, Supernova, has been used to generate
diploid, phased assemblies of seven human samples using
only linked reads [12]. While haplotype phasing is useful in
the assembly of any species, it is likely to prove particularly
valuable in the assembly of complex and/or highly hetero-
zygous genomes. As such, it offers great promise for the as-
sembly of plant genomes, many of which, including many
major crops are polyploid [13, 14]. This is because the as-
sembly of autopolyploid (i.e., those formed via genome
doubling) and allopolyploid (i.e., those formed via the
hybridization of two species) genomes requires the ability
to correctly distinguish between nearly identical sequences
in different regions of the same genome or between two
subgenomes. Both of these challenges can potentially be
overcome by linked read phasing.
While the application of linked reads technology is in

its infancy, 10× Genomics has made the source code for
their assembly and phasing software freely available.
Multiple tools are being developed to take advantage of
linked read data. For example, fragScaff [10] and ARCS
[15] scaffolders have been developed to improve the
many existing draft genomes by the addition of linked
reads data. In addition, a simulator has been developed
to generate and assess the impacts of molecule length,
read number, and other linked read properties on assem-
blies and haplotype phasing in different genomes [16].
VALOR has been developed to assess structural variants
from long range sequencing reads, including 10× Gen-
omics, particularly for complex variants such as inver-
sions and translocations [17].

Pervasive structural variation exists between individ-
uals in many species [18, 19]. Detailed description of
structural variants for any species requires data that are
not based off a reference and has instead primarily relied
upon de novo assembly. Because having additional as-
sembled genomes prevents the biases inherent in basing
genomic analyses on a single reference genome and as-
sists in discovering variation that is not present in the
current reference, efforts have focused on providing add-
itional high-quality reference genomes, including the
“1,000 Genomes Project” [20]. To date, only two
non-human projects have used linked read sequencing:
assembly of the 124 kb chloroplast genome of the Sitka
spruce [21] and improvement of the largest conifer gen-
ome assembled to date, that of Pinus lambertiana [22].
Reports of de novo assembly quality in humans are

confounded by the fact that most assemblies are not
generated on the same cell lines or individuals. In con-
trast, the first report of linked read assembly in humans
used two cell lines that had been sequenced by other
methods [12]. The reported assembly quality for these
lines was high, with an N50 of perfect matches between
the linked read assembly and the corresponding assem-
blies of 19.8 and 16.5 kb; however, the comparison
assemblies were only partial (i.e., 340 and 4 Mb, respect-
ively). To overcome the limitation of having only partial
genomes to compare, assembly error was determined by
examining the inconsistencies in physical locations sepa-
rated by 1 and 10 Mb of assembled de novo contig rela-
tive to the reference genome. For all assemblies, the
inconsistencies were low, between 0.6 and 2%. Linked
read assemblies are also able to resolve complex struc-
tural variants, as validated by mate-pair libraries [23].
These results demonstrate linked read assemblies in
humans can generate relatively complete genomes with
few errors. However, more work is needed to assess the
use of linked reads in non-human genomes and to pro-
vide a global assessment of its assembly quality.
The maize genome serves as an excellent model to as-

sess the quality of a genome assembly strategy such as
one based on linked reads. This is because while the
maize genome is more repetitive and contains more
complex structural variants among individuals as com-
pared to the human genome [3] the availability of genet-
ically stable inbred lines makes it possible to sequence
the same genome multiple time. Further, because these
inbreds are fully homozygous, our analyses were focused
on the accuracy of assembly in the absence of the con-
founding effects of heterozygosity. The maize reference
genome was initially assembled using a BAC-by-BAC
approach that generated a high-quality reference of the
B73 inbred [3].
To assess the application of linked reads to polyploid

crops we used proso millet (Panicum miliaceum), an orphan
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grain crop which was first domesticated ~ 10,000 BCE in
Northern China, as a model. This cereal crop is cur-
rently grown primarily in eastern Europe, northern
China, and the American west. The species is notable
for its exceptionally high efficiency at converting
water to grain [24]. Proso millet a tetraploid with 18
chromosomes, 2× the 9 chromosomes found in most
Paniceae species and has an estimated genome size of
1 Gb [25, 26]. A recent analysis found that one of
the subgenomes of proso millet likely originated from
a species closely related to P. capillare, while the
other subgenome is shared by a second Panicum spe-
cies P. repens [27]. As such, proso millet is an allo-
polyploid. Based on limited analyses the two
subgenomes are highly similar. For example, the DNA
sequences of the two copies of one gene present in
the both subgenomes are 94% identical [27].
Here we report the generation of de novo assemblies

of the maize B73 and proso millet (var. Huntsman) ge-
nomes using 10× Genomics linked reads technology.
Comparison of the B73 maize assembly to the published
B73 reference genome established that linked reads can
be used to assemble high accuracy contigs and scaffolds.
Comparison of the proso millet assembly to the ge-
nomes of related species demonstrated that linked read
technology can distinguish and separately assemble par-
alogous regions of this genome. These results will guide
the application of linked reads technology for plant gen-
ome assembly.

Methods
High molecular weight DNA preparation, sequencing, and
assembly
Before tissue collection one-month old greenhouse
grown maize plants were transferred to a dark growth
chamber for 48 h to minimize the extraction of chloro-
plast DNA. Maize and millet leaves were separately har-
vested and ground to powder in liquid nitrogen using a
mortar and pestle. DNA was extracted from the result-
ing tissue using the Gentra Puregene Cell Kit [Qiagen
(Valencia, CA), No. 158745] following the manufac-
turer’s protocol modified as follows to reduce the risk of
shearing long DNA molecules. All mixing was accom-
plished via gentle inversion. Briefly, 3 mL of Cell Lysis
Solution were mixed with 100 mg of ground tissue,
followed by a 60-min incubation at 65 °C. RNA was re-
moved by adding 15 uL of RNase A Solution, followed
by incubation at 37 °C for 15 min. Samples were cooled
to room temperature and after adding 1 mL Protein Pre-
cipitation Solution thoroughly mixed before being cen-
trifuged at 2000×g for 10 min, after which the
supernatant was decanted into a new tube containing
3 mL of 100% isopropanol. After gentle inversion, the
sample was centrifuged at 2000 x g for 5 min. The

isopropanol was decanted, and the remaining pellet
washed with 3 mL of 70% ethanol, followed by centrifu-
gation at 2000 x g for 5 min. After decanting the ethanol
and air drying, the pellet was re-suspended in 200 uL of
DNA Hydration Solution. The extracted DNA molecules
were visualized via pulsed field gel electrophoresis on a
CHEF-DR II [Bio-Rad (Hercules, CA)] instrument run at
6 V/cm with a 0.1- to 40-s pulse time for 16 h. Sizes
were determined via comparison to the Lambda PFG
Ladder (New England Biolabs (Ipswich, MA) No.
N0341S) (Additional file 1: Figure S1). This gel image
suggests that the DNA molecules in our input sample
included not only the desired large molecules but also
some that are substantially smaller.
The resulting high molecular weight DNA was pre-

pared for GEM library creation following the standard
protocol from Chromium Genome Reagent Kit User
Guide Rev. A (CG00022 RevA) using the Chromium
Genome Chip Kit [10× Genomics (Pleasanton, CA) No.
PN-120216] and the Genome Library, Gel Bead & Multi-
plex V1 Kit [10× Genomics (Pleasanton, CA) No.
PN-120229] with the modification of using 0.9 ng of
genomic DNA input (~ 355 genome equivalents to
maize). The fragment size of the prepared library was
assessed using a Fragment Analyzer Automated CE Sys-
tem [Advanced Analytical (Ankeny, IA)] with the NGS
High-Sensitivity Analysis Kit [Advanced Analytical (An-
keny, IA), Cat# DNF-486]. Each library was sequenced
on a single lane of HiSeq X Ten, which generated
370,544,466 and 365,707,243,150 bp paired end reads for
maize and proso millet, respectively, which were assem-
bled into scaffolds using the Supernova Assembler ver-
sion 1.1.0 for maize and the Supernova Assembler
version 1.1.5 for proso millet [12], setting the “style” par-
ameter to “pseudohap” for each. Version 1.1.0 and 1.1.5
of the Supernova Assembler generated nearly identical
contigs for the maize assembly. 10× sequencing reads
for both maize and proso millet were deposited into
NCBI Short Read Archive (SRA) under accession
SRP117789.

Alignment to the B73 reference genome
The linked reads were aligned to the nuclear B73 reference
genome AGPv2 [3] using both GSNAP, an alignment
program that does not use linked read information, and
LongRanger V2.1.3 (https://support.10xgenomics.com/geno-
me-exome/software/pipelines/latest/installation), which in-
corporates linked read information. For the paired end
GSNAP alignment, only confidently mapped reads were
used for subsequent analyses. These are defined as those
which were uniquely mapped with at least 50 bp aligned, at
most 2 mismatches every 40 bp and tail of less than 3 bp for
every 100 bp of read length.
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Prior to aligning with GSNAP, the 10× barcodes were
removed from each read using the LongRanger basic
command. These debarcoded reads were then aligned to
the AGPv2 reference genome. Only confidently mapped
reads were used for subsequent analyses, which were
those which uniquely aligned to the genome with at least
50 bp aligned, at most 2 mismatches every 40 bp and
less than a 3 bp tail for every 100 bp of read.
To enable LongRanger alignments, the B73 AGPv2

reference genome was converted to a longranger refer-
ence using the mkref command. The linked reads were
input directly into the software without pre-processing
and without altering the default settings using the align
command and specifying the AGPv2 reference. Genome
coverage for both alignments was determined using the
SAMtools [28] depth command with “-q” set to 15.

Checking assembly quality via comparisons to the B73
reference genome
Because the maize reference genome is based on the B73
inbred line, the quality of the B73 LR assembly could be
assessed via comparisons to the reference genome. As-
sembled scaffolds contain runs of “N”s where the assem-
bler inferred proximity without read coverage in that
region. For comparison with the AGPv2 reference gen-
ome, the scaffolds were split into contigs where “N”s ap-
peared (Fig. 1). Contigs were then aligned to the AGPv2
reference genome using BLAST with e-value set to a
minimum of 1e-10 and percent identity set to a minimum
of 90. The reference genome similarly contains runs of
100 “N”s that represent the junctions between REF contigs
which were also split for subsequent analyses. Removing
the first and last 40 bases of each sequence from the
FASTA file generated trimmed LR contigs.

Comparing contig overlaps
The GenomicRanges R package [16] was used to deter-
mine the proportion of bases covered by multiple assem-
blies, the overlap between contigs and MAGI v3.1
contigs [29], and the number of genes covered by the as-
sembly. For comparisons between assemblies and with
the MAGI contigs, the alignment positions to the refer-
ence genome from each set of contigs were compared to
identify overlap. To determine error with the MAGI
contigs, the position of the tail breakpoint for tails ≥5 bp
of MAGI and LR contigs in the genome was identified.
If a contig from the other dataset had an alignment that
covered the tail breakpoint with no tail, this was evi-
dence that the contig with a tail was in error (Additional
file 1: Figure S6). Gene information for AGPv2 was
downloaded from MaizeGDB. The start and stop posi-
tions of the canonical transcripts were used to define the
location of a gene, and these positions were compared to
the initial contig alignments and tail locations.

Simulation of linked reads
The gel image of the input DNA for our empirical
experiment based on the gel image (Additional file 1:
Figure S1) had a modal size of ~ 50 kb, although smaller
molecules were also present. Using LRSim [16] we simu-
lated linked reads from the B73 AGPv2 reference gen-
ome that were similar and larger than our empirical data
(i.e., 50 and 80 kb) and numbers of reads (400 and
800 M). As we were trying to simulate data resembling
the empirical data which is from the same genotype as
the reference genome, we skipped the variant simulation
step by generating a fai file directly from the reference
fasta file using SAMtools and starting the simulation at

Fig. 1 Types of assembled contigs and alignments to REF contigs.
a A contig pair is a pair of contigs which are the only contigs
originating from a single scaffold. b Some scaffolds contain “N”s that
denote scaffolding of contigs from pairs of reads or linked reads
with common barcodes. After removal of “N”s, the remaining
sequences are termed LR contigs or REF contigs, depending on the
origin of the scaffold. Removal of 40 bases from both ends of an LR
contig results in a trimmed LR contig. c Trimmed or untrimmed LR
contigs are aligned to the REF contigs. Alignments are categorized
as fully aligned, where the entire contig aligns to a REF contig;
alignments with tails, where a region of the LR contig aligns to a
REF contig but a region at either or both ends of the LR contig does
not align to the REF contig; or uncategorized, where the LR contig
extends past the edge of a REF contig. d LR contigs with tails are
divided into two regions: the aligned region and the tail region. Tails
can be removed in silico to generate a set of tail-derived contigs.
e LR contigs with tails that fully align to a unique location in the
genome on the same or a different REF contig are termed chimeric
LR contigs
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-u 2. All other parameters were left at their default
values. Following simulation, the three sets of simulated
reads were assembled and quality was assessed as de-
scribed above for the empirical data.

Machine learning
A hybrid machine learning Supernova framework,
shown in Fig. 2, was developed based on the concepts of
Markov modeling [30, 31] and Deep Learning [32] to
classify the maize LR contigs. First, observable Markov
transition matrices [33, 34] are learned from the gene se-
quences. In the context of Markov modeling, a gene se-
quence is inherently discrete, i.e., composed of symbols
from a finite alphabet set Σ = {A,T,G,C} . Therefore, it is
rather straightforward to learn a discrete Markov model
from such sequences. As shown in Fig. 2, we first con-
vert a gene sequence to a state sequence, where states
are defined as a combination of D consecutive symbols.
D is called the depth parameter. Therefore, if there are
|Σ| (in our case, |Σ| = 4) unique symbols in a symbol se-
quence, we have |Σ|Dnumber of possible states. In the
results presented in this paper, we mostly use D = 1.
Upon converting the gene sequence into a state se-

quence, we encode the Markov chain as a probabilistic
finite state automaton (PFSA). Mathematically, a PFSA
is represented by a transition matrix whose elements are
the transition probabilities from one state to another
that can be learnt from data with a frequentist approach.
The transition matrix can be treated as an image that
becomes input to a deep convolutional neural network
(CNN) [35, 36] in order to classify the gene sequences.
In the deep CNN model, multiple convolutional layers
were used with ReLU activations followed by max

pooling layers and finally, a fully connected (FC) layer
was used before the final output layer with ReLU
activation. Dropout and batch normalization techniques
were also used to resolve overfitting issues. The
hyper-parameters (e.g., number of CNN layers and
learning rate) for the CNN model were chosen carefully
via several experiments to obtain high performance in
classification.

ABySS assembly
Linked reads contain long molecule information that
Supernova uses during assembly. To determine the value
of the long molecule information in assembly, LR reads
were debarcoded and then assembled using ABySS Ver-
sion 2.0.2, which does not make use of long molecule in-
formation. The ABySS parameters were as follows: k
(size of k-mer or the span of a k-mer pair) = 85; c (mini-
mum mean k-mer coverage of a unitig) = 10; s (mini-
mum unitig size required for building contigs) = 200 bp;
n (minimum number of pairs required for building con-
tigs) = 10; m (minimum overlap of two unitigs) = 80 bp;
p (minimum sequence identity of a bubble) = 0.95.

Proso millet linked read analysis
Comparisons of the proso millet and foxtail millet ge-
nomes were conducted in GEvo [37] and SynMap [38]
For SynMap, default parameters were used, requiring
syntenic blocks to consist of at least five colinear genes
with a maximum of twenty intervening gene pairs be-
tween adjacent syntenic genes. Adjacent syntenic blocks
were merged using QuotaAlign merge with a maximum
distance of 50 genes and filtered to keep a maximum of
the two highest scoring syntenic blocks for any given

Fig. 2 Illustration of machine learning methodology. A gene sequence is converted to a state sequence that forms a Markov chain; the Markov
chain is encoded using a Probabilistic Finite State Automation (PFSA); the transition matrix of the PFSA is used as an input to the deep
convolutional neutral network (CNN) for classifying the gene sequence
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foxtail millet region using the QuotaAlign algorithm
with a quota setting of 2:1 proso millet:foxtail millet
[39]. The “gene presence rate” was calculated as 2G2þG1

2N ,
where N is the total number of genes under analysis (i.e.,
in this case 20,328), G2 is the number of observed genes
with two syntenic copies in the proso millet LR assem-
bly, and G1 is the number of observed genes with only a
single assembled copy in the proso millet LR assembly.
The gene missing rate is 1 - the gene presence rate. The
expected gene missing rate for a single gene in a pair
was calculated as 2Nip im where im is the missing rate
and ipis the present rate. The expected number of gene
pairs where both copies are identified was estimated as
Ni2p and the expected number of gene pairs where nei-

ther copy was identified was estimated as Ni2m . For dis-
play purposes in Fig. 4, scaffolds mapping to overlapping
portions of the foxtail millet genome were tiled such that
if a scaffold overlapped with a scaffold already displayed
above the foxtail millet chromosome, it was placed
below the foxtail millet chromosome and vice versa.

Results
Linked read alignment to the B73 reference genome
High molecular weight genomic DNA was extracted from
maize B73 leaf tissue (Additional file 1: Figure S1) and
linked read libraries were prepared using the 10× Genom-
ics Chromium Controller and its Genome Kit V1. The
Chromium linked read libraries were sequenced using one
Illumina HiSeqX lane which yielded 370,544,466,150 bp
paired end (PE) reads. Before assembly, we used both our
standard GSNAP alignment pipeline and the 10× Genom-
ics LongRanger alignment pipeline to align reads to the
B73 reference genome to determine coverage across the
genome. Based on the results from GSNAP alignment,
58.5% (433,168,634/741,088,932) of reads uniquely aligned
to the B73 reference genome AGPv2 [3]. These uniquely
aligned reads covered 95.9% (1,962,750,483/2,045,703,061
bases) of the reference genome. The LongRanger align-
ment pipeline mapped a higher percent of reads (86.2%),
which is expected as this pipeline utilizes the linked read

barcodes to further target alignments to defined regions of
the genome. Even though LongRanger mapped 25%
more reads than GSNAP, the LongRanger pipeline
only increased the percent of the reference genome
covered by ~ 3%, to 98.9% (2,020,251,435/2,045,703,061).

B73 linked read assembly
Next, reads were assembled using the Supernova soft-
ware. The linked read (LR) assembly contained 171,982
contigs and scaffolds ≥1 kb with an N50 of 89 kb (Add-
itional file 1: Figure S2A). For subsequent analyses the
26,443 LR scaffolds that contained runs of “N”s denoting
scaffolding were split into the corresponding LR contigs
(Fig. 1). Some of the LR scaffolds were split into more
than one contig; such split scaffolds/contigs were ex-
cluded from subsequent analyses. In total, after splitting
scaffolds this assembly contained 234,153 contigs and
had an N50 of 14.5 kb (Additional file 1: Figure S2C).

Assessing the quality of the LR assembly
Our first approach to assess the quality of the LR assembly
was to align the LR contigs to the REF contigs using NCBI
BLAST v2.3.0 (Table 1). 222,531 (95.0%) of the LR contigs
aligned uniquely to REF contigs with ≥95% identity. In total,
50.1% (1,038,934,839/2,045,703,061 bp) of the concatenated
length of the REF contigs was covered by at least one LR
contig. 25,936 contigs aligned at the end of a REF contig
and hence the quality of these contigs could not be deter-
mined, and the following analyses did not consider these
LR contigs. 80.8% (156,841) of the remaining LR contigs
were fully aligned to REF contigs, while 20.2% (39,754 con-
tigs) exhibited tails when aligned to REF contigs (Fig. 1).
Most of these tails were, however, short relative to contig
lengths (Additional file 1: Figure S2D).
The second approach for assessing the quality of the

LR assembly was to compare the GC and repetitive
content of the LR contigs and contigs from the B73
reference genome, which will be designed REF contigs
(Fig. 1). To do this, we first split the scaffolded B73 ref-
erence genome into 2526 REF contigs as described above
for the LR scaffolds. The LR and REF contigs had similar

Table 1 Alignment of contigs from different data sets to the AGPv2 reference genome using BLAST. To be classified as aligned,
contigs must match the reference with ≥95% identity

No.
Alignments

No. Contigs (%) from

LR Contigs Trimmed LR Contigs MAGIs Sim 1a Sim 2b Sim 3c ABySS

1 (Unique) 222,531 (95.0) 222,245 (95.1) 109,665 (96.1) 256,255 (98.7) 262,727 (98.8) 257,049 (98.7) 4,614,334 (42.9)

2 2145 (0.9) 2194 (0.9) 1347 (1.2) 1985 (0.8) 2014 (0.8) 1971 (0.8) 1,520,610 (14.1)

> 2 629 (0.3) 535 (0.2) 138 (0.1) 568 (0.2) 488 (0.2) 716 (0.3) 4,268,325 (39.7)

0 8848 (3.8) 8931 (3.8) 3024 (2.6) 762 (0.3) 719 (0.3) 790 (0.3) 350,313 (3.26)

Total 234,153 233,905 114,173 259,570 265,968 260,526 10,753,582
aSimulation 1: 50 kb molecule length and 400 M reads
bSimulation 2: 80 kb molecule length and 400 M reads
cSimulation 3: 50 kb molecule length and 800 M reads
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GC contents (46.0% and 46.9%, respectively). In contrast,
the LR contigs had reduced repetitive content relative to the
REF contigs (65.5% and 76.3%, respectively), as determined
following a repeat masking procedure [40] even though the
REF contigs are longer (Additional file 1: Table S1) suggest-
ing that the Supernova software was less successful at as-
sembling repetitive than non-repetitive sequences.
The third approach for assessing the quality of the LR

assembly was to determine whether scaffolds were de-
rived from single input DNA molecules. To do this we
examined the relative alignment positions to the B73 ref-
erence genome of “contig pairs”, i.e., those originating
from the same scaffold (Fig. 1). If an LR scaffold was
correctly assembled, the contig pairs would be expected
to align to the genome close to each other. Of the 7553
contig pairs, 81.4% (6147/7553) of the contig pairs that
could be aligned well to the reference genome also
aligned to the same chromosome. In addition, the align-
ment positions of 95.0% (5840/6150) of these contig
pairs were within 30 kb of each other (Additional file 1:
Figure S2B) suggesting that they were likely derived from
the same input DNA molecule.

Trimming LR contigs improves assembly quality
Because most of the tails associated with LR contigs are
quite short (median length: 21 bp; Additional file 1: Fig-
ure S2D), we hypothesized that modestly trimming both
ends of all LR contigs would substantially improve as-
sembly accuracy. Many SNP calling pipelines employ a
similar trimming strategy on individual reads to improve
accuracy because the base calls at the ends of reads typ-
ically have higher error rates [41]. A potential trade-off
associated with trimming is data loss. However, we esti-
mated that ignoring 40 bases on each end of each LR
contig would increase the frequency of fully aligned con-
tigs (i.e., those without tails) from 80 to 94% with a loss
of only ~ 1% of the total bases included in LR contigs
(Additional file 1: Figure S3). Hence, we trimmed 40
bases from all LR contigs and aligned these trimmed LR
contigs to the REF contigs. While the percentage of con-
tigs with a unique alignment remained the same (95.0%,
222,245/233,905) (Table 1), the frequency of fully aligned
contigs increased from 79 to 91% (179,237/197,049)

(Table 2). 99.5% (220,150/221,364) of trimmed and un-
trimmed LR contigs aligned to the same genomic region.
All subsequent analyses are based on trimmed LR con-
tigs (Additional file 1: Figure S2E and F).

The nature of assembly errors
As discussed above, 9% of trimmed LR contigs still ex-
hibited an alignment tail. Determining the causes for
these alignment tails has the potential to provide strat-
egies to improve future assemblies and may suggest ap-
proaches to identify contigs that are likely contain
assembly errors. Alignment tails could arise via two
types of assembly errors. First, the tail could be com-
pletely or partially misassembled, potentially as a conse-
quence of repeat content. Second, the tail itself could be
a correct assembly, but the junction between the tail and
the initial aligned region of the contig is incorrect (i.e., a
chimeric contig). To distinguish between these two
possibilities, we asked whether tails could be fully
aligned to other regions of the REF contigs. The tail re-
gion of each LR contig was removed in silico to create a
set of “tail-derived contigs” (Fig. 1). The distribution of
the lengths of the resulting tail-derived contigs is shown
in Additional file 1: Figure S2F. The 11,629 tail-derived
contigs longer than or equal to 30 bp were aligned to
the REF contigs and categorized as described above for
LR contigs. Of these, 56% (8855/11,629) aligned to the
REF contigs uniquely. The percentage of tail-derived
contigs that aligned uniquely to the REF contigs was
lower than for LR contigs (56% vs. 95%), probably at
least in part due to the short lengths of most tail-derived
contigs. The percentages of uniquely aligned tail contigs
(6566/8855, 74.1%) that fully aligned to the REF contigs
was lower than uniquely aligned LR contigs (91%), but
suggests that chimeric assembly is a major contributor
to alignment tails.
The LR contigs that contain a tail-derived contig and

that exhibit full alignment to unique positions in the
genome will be referred to in subsequent discussions as
“chimeric contigs” (Fig. 1). Of the 6566 uniquely aligned
tail contigs mentioned above, 6391 were chimeric con-
tigs (97.3%). We hypothesized that the chimeric contigs
can be generated via the collapse of repeats during

Table 2 Categorization of contig alignments

Category No. Contigs Uniquely Aligned to REF (% of total classified)

LR Contigs Trimmed LR Contigs MAGIs Sim 1a Sim 2b Sim 3c ABySS

Fully aligned 156,841 (79.8) 179,237 (91.0) 101,265 (94.1) 233,396 (94.0) 240,866 (94.3) 233,758 (94.2) 4,532,012 (98.6)

With tails 39,754 (20.2) 17,812 (9.04) 6317 (5.87) 14,785 (5.96) 14,443 (5.66) 14,429 (5.81) 63,859 (1.39)

Unclassified 25,936 25,196 2083 8074 7438 8862 18,463

Total Classified 196,595 197,049 107,582 248,181 255,309 248,187 4,595,871
aSimulation 1: 50 kb molecule length and 400 M reads
bSimulation 2: 80 kb molecule length and 400 M reads
cSimulation 3: 50 kb molecule length and 800 M reads
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assembly. To test this hypothesis, we examined the re-
peat contents of the aligned regions of individual
chimeric contigs, their tails, and the junctions between
the two. Overall, the repetitive content of the fully
aligned contigs was similar to that of the aligned regions
and tail contigs of chimeric contigs (67.9% vs. 62.7% and
60.9%, respectively). However, the percent of junctions
where the base before the breakpoint was located in a repeat
region was quite high at 87.0% (5560/6391). These results
suggest that chimeric contigs are formed between two cor-
rectly assembled sequences as a consequence of the
assembly-induced collapse of repeats. Examining the align-
ments of the two regions of individual chimeric contigs
show that typically both regions contain similar repeats (ex.
Additional file 1: Figure S4).
If the linked read library construction strategy were

successful, chimeric contigs would be expected to be as-
sembled from adjacent regions of genome. To test this
hypothesis, we examined the distance between the align-
ment positions of the two regions of individual chimeric
contigs relative to the reference genome. For 72.2%
(4741/6391) of the chimeric contigs both regions aligned
to the same chromosome. Because the maize genome
contains 10 chromosomes, this would be expected to
happen by chance ~ 10% of the time. Hence, this result
implies that the joining of two contigs into a chimeric
contig is non-random. Consistent with the molecule
lengths we extracted during DNA isolation, for 86.8%
(4117/4741) of chimeric contigs the two regions aligned
within 30 kb of each other relative to the reference gen-
ome. Hence, while the use of linked read libraries clearly
enhances genome assembly, the current assembly algo-
rithms do not fully resolve all repeat-association chal-
lenges in genome assembly.

Using MAGIs to assess quality of LR Contigs
In the analyses reported so far, we attributed all differ-
ences between the LR contigs and the reference genome
to assembly errors in the LR contigs. This approach
makes the assumption that the reference genome is ab-
solutely correct. Given the high quality of the reference
genome that was generated via BAC-by-BAC sequencing
this is not an unreasonable assumption, but we wanted
to examine an independent assembly that would allow
us to use a voting scheme to identify truth and thereby
determine whether assembly errors detected via mis-
alignment between the LR contigs and the reference
genome should be assigned to the LR contigs or to the
reference genome. To do this, we compared the REF
contigs and LR contigs with a gene-enriched assembly
(MAGIv3.1), which predates the reference genome but
that has been shown to exhibit a high degree of assem-
bly accuracy [29]. MAGI contigs are shorter than LR

and REF contigs (Additional file 1: Figure S5A and B). A
total of 114,173 MAGI contigs were aligned to the REF
contigs as described above for the LR contigs. The
MAGI and the LR contigs had similar percentages of
unique alignments (96.2%, 109,665/114,173 vs. 95%, re-
spectively) (Table 1). However, a slightly larger percent-
age of the MAGI contigs fully aligned to the REF contigs
than did the trimmed LR contigs (94%, 101,265/107,582
vs. 91%) (Table 2).
The alignments of all 109,665 MAGI contigs and all

222,245 trimmed LR contigs that aligned to a REF contig
were compared to identify assembly errors. Errors were
detected as illustrated in Additional file 1: Figure S6.
The region of a REF contig to which 15.6% (34,571/
222,245) of the LR contigs aligned at least partially over-
lapped the region of that REF contig to which a MAGI
also aligned. For 8.1% (2792/34,571) of LR contigs,
aligned MAGI sequences provided additional evidence
that the LR contig tail was a true error. MAGI contigs
were more accurate than LR contigs because only 2.6%
(909/34,571) of LR contigs provide evidence of MAGI
sequence error. For only 0.4% (148/34,571) of LR con-
tigs, both the LR contig and MAGI had evidence of a tail
error. This could indicate both the LR contig and MAGI
or the REF contigs are assembled in error. The repeat
content of MAGI contigs was much lower than that of
LR and REF contigs (11.6% vs. 65.5% vs 76.3%). The
error as determined via alignments to MAGIs was simi-
lar to that as determined via alignment to the reference
genome (92 vs. 91%).

Gene content of the LR assembly
The quality assessments described above consider the
entire assembly, but for some applications the coverage
and quality of the assembly of the gene space is most
relevant. We therefore asked about both the proportion
of the gene space covered by the LR assembly and the
accuracy of the gene space assembly. As a proxy for the
gene space, we used the canonical gene transcript posi-
tions defined by the transcription start and stop sites from
the filtered gene set (FGS; ZmB73_5b_FGS), a set of
high-confidence maize genes. In total, 44.0% (17,440/
39,656) of FGS genes were fully or partially covered by LR
contigs, with 33% of the total gene space (54,190,091/
161,243,349 bases) covered by LR contigs. Of those FGS
genes that were fully or partially covered by LR contigs,
66.5% (11,581/17,440) were fully covered by a single LR
contig, 21.1% (N = 3683) were partially covered by a single
LR contig, and 12.5% (N = 2176) were covered by multiple
LR contigs. Many of the FGS genes covered by multiple
LR contigs (68.3%, 1731/2176) were partially covered by
two or more non-overlapping contigs that were not joined
by Supernova.
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The existence of an LR contig tail within a gene is an
indication of an assembly error. 22% (1153) of the 3683
genes partially covered by a single LR contig exhibit a
tail. In 61.8% (713/1153) of these cases the assembly
error is located within an intron. Thus, at least 6.8%
(1153/16,995) of genes with non-overlapping contigs
contain a detectable assembly error, and nearly two
thirds of these errors occur in the introns which are gen-
erally more repetitive than exons. As discussed above,
the accuracy of LR contigs in gene-rich regions covered
by MAGI contigs is only slightly higher than the overall
accuracy of the LR contigs (92% vs. 91%). The finding
that 2/3 of the errors in gene-rich regions occur in re-
petitive introns leads us to conclude that the Supernova
assembles non-repetitive regions more accurately than
repetitive regions.

Linked read coverage of contigs and the genome
As discussed above, only 58% of reads aligned uniquely
to the genome, but 96% of the genome was covered by
one or more uniquely aligned LR reads. In contrast, only
50% of the genome was covered by uniquely aligned LR
contigs, and this percent only increased to 63% if the
concatenated length of the LR contigs is considered.
These results indicate either that the Supernova assem-
bler is not incorporating some reads into contigs or that
some reads are being incorrectly incorporated into con-
tigs, or both.
Regions of the genome with no corresponding LR contig

assemblies may lack sufficient read depth for proper gen-
ome assembly. To check this possibility, we compared the
coverage of uniquely aligned reads to the regions of the
reference genome with aligned contigs and without
aligned contigs. Unsurprisingly, read coverage was higher
in regions of the genome with LR contig alignment (Add-
itional file 1: Figure S7). The depth of coverage may be the
cause of whether or not a certain region of the genome is
assembled. However, it is also possible that the lower
coverage in regions without contigs is because these re-
gions are repetitive with few best alignments.
Reads that align to the reference genome but not to

the LR contigs are likely not being incorporated into
contigs by Supernova. When examining whether reads
align to the reference genome, the LR contigs, or both,
8% of aligned reads (39,081,801/519,248,347) were found
to have a best alignment in the reference genome only.
While these reads may not be used in LR contig assem-
bly, they also aren’t prevalent enough to account for the
~ 45% of the genome that isn’t covered by LR contigs.
An additional 30% (221,840,585/741,088,932) of all reads
do not have a best alignment to either reference genome
or the LR contigs and instead align to multiple locations.
For these reads, it is unclear if they are being incorrectly
incorporated into contigs or not used.

Simulation of linked reads
The results presented thus far are based on a single
linked read library. Certain questions are impossible to
answer with only a single library, such as how often the
same regions are assembled, whether increasing the
length of the input DNA molecules for linked read li-
brary preparation, or whether increasing the number of
reads generated from each linked read library may im-
prove assembly. The 370 M linked reads we generated
were derived from input molecules whose modal length
was estimated to be > 50 kb (Additional file 1: Figure
S1). Recently software (LRSim [16]) has been released to
simulate linked reads. Access to simulated linked reads
allowed us to evaluate if increases in the lengths of input
molecules (e.g., via improvements in DNA purification)
or increased depths of sequencing would affect the qual-
ity of genome assembly. Linked reads were simulated
and assembled using three different sets of parameters:
50 kb molecule length with 400 M reads (Simulation 1,
which was designated to match our empirical data),
80 kb molecule length with 400 M reads (Simulation 2),
and 50 kb molecule length with 800 M reads (Simulation
3). The simulated reads were then assembled as de-
scribed for the empirical linked reads.
The Simulation 1 and empirical assemblies had similar

numbers of LR contigs with similar lengths (Additional file
1: Table S1). However, as compared to the empirical LR con-
tigs, more of the Simulation 1 LR contigs were fully aligned
to REF contigs (Table 1). In addition, fewer contigs couldn’t
be assessed in the simulated LR contigs than empirical LR
contigs due to aligning at the end of a REF contig.
The number of LR contigs from Simulation 1 and

Simulation 2 with increased molecule lengths was simi-
lar with no apparent improvement in repeat content or
molecule length (Additional file 1: Table S1). The quality
of the assembled simulated LR contigs was also very
similar, suggesting increasing the molecule length beyond
50 kb likely will not improve the assembly significantly.
Similar to increasing the input DNA molecule length,
doubling the number of sequencing reads in Simulation 3
relative to Simulation 1 did not appear to improve the
amount of genome covered by the LR assembly (Add-
itional file 1: Table S1) or the quality of the assembled
contigs (Table 2). Trimming the simulation LR contigs as
described for the empirical LR contigs decreased the num-
ber of simulation LR contigs with errors, but to a lesser
degree (~ 2%) than observed for the empirical LR contigs
(~ 10%) (Additional file 1: Table S2).

Overlap of empirical and simulation assemblies
From the empirical data alignments, it is not possible to
determine how evenly the genome was sampled by se-
quencing. However, the simulated data was generated
evenly across the genome. If repeat content precludes
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assembly, the unassembled regions should be
non-random and shared between simulation and empir-
ical data experiments. The union of reference genome
bases covered by aligned LR contigs from the empirical
data and the three simulation experiments is
1,604,257,525. 48% of these bases are covered by LR
contigs in all four data sets (Additional file 1: Figure
S8A), suggesting some regions of the genome are easily
assembled by linked reads. Another 18% of bases are
covered by all simulation experiments but not the em-
pirical data, suggesting there may be some genomic re-
gions that do not have sufficient coverage for assembly
in the empirical data.
In contrast, regions of the genome with errors do not ap-

pear to be shared. As the tail junction may not be identical
in multiple experiments, the aligned regions of the LR con-
tigs with tails were examined for overlap. The overlap be-
tween all experiments is low at 0.3% (201/65,383 contigs
with tails). More than ½ of the LR contigs with tails from
each of the experiments are unique to that experiment
(Additional file 1: Figure S8B). The uniqueness of contigs
with tails to an experiment only decreases by ~ 10% when
the flanking 1 kb on each side of the contig
alignment is also considered. This suggests that while
accurately assembled regions are consistent from ex-
periment to experiment, incorrect chimeric assembly
may not occur predictably.

Distinguishing correctly assembled contigs from chimeric
contigs
Machine learning is the process of developing algorithms
that “learn” the properties of large, complex data, such
as identifying features of genomes [42]. A machine
learning approach (Methods) was applied to the un-
trimmed LR contigs to determine if LR contigs with no
assembly errors could be identified without alignment to
a reference genome. A training set of 40,000 LR contigs,
half with and half without assembly errors (as deter-
mined via alignment to the REF genome), were used as a
training data set for the model. 6000 of the remaining
LR contigs, half with and half without assembly errors,
were tested to determine the accuracy of the model on
the untrimmed LR contigs. The training accuracy and
testing accuracy were 99.07% and 79.80%, respectively.
80% of fully aligned LR contigs without error were cor-
rectly classified as without error, while 71% of LR contigs
with tails were correctly classified as containing errors.
Accuracy of the model on the trimmed LR contigs was
slightly lower (97.1% for training and 76.3% for testing),
potentially due to the smaller number of contigs with
tails for training and testing (32,000 instead of 40,000 for
training and 2000 instead of 6000 for testing). The suc-
cess of this basic implementation of machine learning in
distinguishing between contigs assembled with and

without errors suggests that contigs containing assembly
errors may contain identifiable patterns.

Comparison to an assembly created without long
molecule information
The ABySS assembly software generated 10,753,582 uni-
tigs, which resemble LR contigs in that they contain no
scaffolding “N”s. The contigs from the ABySS assembly
have a mean length of 208 bp with a median of 111 bp
compared to the longer LR contigs which have a mean
length of 5481 bp and a median of 2144 bp (Additional
file 1: Figure S5C). ABySS does not implement a mini-
mum length cutoff unlike Supernova. Even so, the max-
imum length of ABySS contigs is shorter than the LR
contigs (Additional file 1: Figure S5A and C).
While it is clear that Supernova generates longer con-

tigs using the linked read information, we wanted to
confirm whether the quality or coverage of the longer
Supernova contigs was compromised relative to the
ABySS contigs. ABySS contigs align uniquely to the REF
contigs at a much lower rate (48.4 vs 95%) than LR con-
tigs (Table 1). This appears to be primarily a function of
length, as short LR contigs are also less likely to align
uniquely (Additional file 1: Figure S9). The quality of
ABySS assembled contigs was higher with more contigs
aligning fully than LR contigs (99 vs. 91%; Table 2). In
total, the longer LR contigs covered 50.1% of the gen-
ome while the shorter ABySS contigs covered 68.7% of
the genome (1,405,300,342/2,045,703,061 bases). How-
ever, the Supernova assembler does not report scaffolds
less than 1 kb. When requiring a sequence length > 1 kb,
the genome coverage of Supernova contigs was 49.1%
for LR contigs. In contrast, only 42.9% of the genome
was covered by ABySS contigs > 1 kb. In conclusion,
Supernova generates longer contigs than does ABySS
without sacrificing assembly quality or coverage.

Linked reads distinguish between the two subgenomes of
proso millet
Using DNA isolated from variety Huntsman, a proso
millet cultivar widely grown in the western United
States, a single 10× Genomics library was created and
sequenced using one lane of an Illumina HiSeq X Ten
instrument, resulting in 365,707,243,150 bp paired end
reads. Using SuperNova Assembler a genome assembly
was generated which included 30,819 scaffolds ranging
in length from 1 kb to 5.6 Mb with a total length of
823 Mb (which represents 83% of the total estimated
size of the proso millet genome [26]. The assembly had
an L50 of 237 scaffolds and an N50 of 912 kb.
To assess the quality of our proso millet assembly,

scaffolds were compared to the published reference gen-
ome of foxtail millet (Setaria italica), a close diploid
relative of proso millet within the Paniceae that has nine
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chromosomes [43]. When two proso millet scaffolds
were identified that correspond to a single region in the
foxtail millet genome, gene content was well conserved
both between the two proso millet subgenomes and be-
tween each subgenome and foxtail millet (Fig. 3). As
shown in Fig. 4, coverage of the foxtail millet genome by
syntenic regions from the proso millet assembly was
highest on the chromosome arms and lowest in centro-
meric and pericentromeric regions. Centromeric and
pericentromic regions tend to be repeat rich and gene
poor. Thus, the observed pattern could result from ei-
ther challenge in assembling high repeat regions, con-
sistent with our observations of reduced repeat content
and repeat-associated errors in maize, or challenges in
identifying syntenic regions in gene-poor regions.
To test the effectiveness of resolving the subgenomes

of proso millet, we used a set of 20,328 genes which are

conserved at syntenic orthologous locations in foxtail
millet and sorghum and can thus be inferred to have
been present in the common ancestor of foxtail and
proso millet. In 8096 cases (40%) the gene was identi-
fied as part of a syntenic block of at least five collinear
genes on two separate proso millet scaffolds, indicating
that for these portions of the genome both proso millet
subgenomes were properly assembled. 6383 additional
genes (31%) were identified as part of a syntenic block
of at least five genes on only a single proso millet scaf-
fold. These situations could have arisen when one copy
of the proso millet genome was either not assembled or
incorrectly assembled, or represent cases of fraction-
ation [44], in which one of two duplicate gene copies
was lost following the whole genome duplication. The
remaining 5666 genes were not identified as part of any
syntenic block in the proso millet assembly (25%, 5017)

Fig. 3 Conservation of gene order between the foxtail millet reference genome and pairs of scaffolds from the proso millet linked read assembly
spanning the same region. The foxtail millet reference genome is shown in the center panel with genes indicated by gray arrows and protein
coding exons by green squares. Proso millet scaffolds are shown above and below the foxtail millet genome. Red and blue lines connect gene
regions from the foxtail millet genome with homologous sequence in the respective proso millet scaffolds

Fig. 4 Coverage of the pseudomolecule level assembly of foxtail millet by syntenic proso millet scaffolds. Green horizontal lines indicate each of
the nine foxtail millet chromosomes. Boxes in red and blue indicate syntenic regions from individual proso millet scaffolds. Boxes are tiled above
(blue) and below (red) in such a way as to avoid double coverage of the foxtail millet genome by multiple scaffolds on the same side (Methods)
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or the gene matched three or more syntenic regions
(4%, 832).
Substantially fewer genes (expected = 9505 vs. ob-

served = 6383; Methods) were identified in one subge-
nome but not the other than would be predicted by the
fraction (42.1%) of conserved genes that were missing,
misassembled, or placed on small contigs containing less
than five genes (Methods). This indicates that the same
regions of both subgenomes tend to be unassembled,
misassembled, or fragmented, consistent with the
observed pattern of coverage for foxtail millet chromo-
somes (Fig. 4, Additional file 1: Figure S10B). In con-
trast, maize appears to have fairly uniform coverage
(Additional file 1: Figure S10A).

Discussion
Quality and coverage of the linked read assembly
We used linked read technology to generate a de novo
assembly of the maize inbred line B73. To the best of
our knowledge this study is the first published descrip-
tion of a de novo assembly of a non-human nuclear gen-
ome from linked reads and as such provides an
opportunity to evaluate the suitability of this technology
for the assembly of non-human genomes which differ
substantially in structure from the human genome.
Maize is an excellent model to assess the quality of an
LR assembly because an independent, high-quality
reference genome generated from the B73 inbred line
via BAC-by-BAC sequencing is available for comparison
to our LR assembly. Even though our linked reads cover
> 95% of the B73 genome, the 171,982 scaffolds in our
LR assembly cover only 50% of the B73 genome and,
surprisingly, less (33%) of the gene space. Detailed QC
of the LR contigs that comprise these scaffolds demon-
strated that they were 10 times longer than contigs gener-
ated in an independent assembly of the same sequencing
data but without reference to linked read information
(Additional file 1: Figure S6). This length and accuracy of
LR contigs and scaffolds is likely at least in part a function
of Supernova’s ability to accurately exploit proximity infor-
mation during assembly (Table 2, Additional file 1: Table
S1). Although most (91%) LR contigs are assembled cor-
rectly, many of those errors that are present are associated
with repetitive sequences, suggesting that at least some
types of repeats are challenging for Supernova. Surpris-
ingly, simulation experiments in which molecule length
was increased (50 to 80 kb) or the number of sequencing
reads was doubled (400 to 800 M) did not substantially
improve the quality of the assembly nor the amount of
genome covered (Additional file 1: Table S1). These find-
ings also suggest that the distributions and/or characteris-
tics of repetitive sequences in the maize genome may be
limiting to the current version of Supernova. Consistent
with this observation is the finding that genes without

repeats are more likely to be fully covered by the assembly
than are genes that contain repeats.
At least 1% of maize genes are estimated to have a

nearly identical paralog (NIP) [45], and approximately
half of the ~ 800 NIPs identified in the maize genome
are within 200 kb of each other [3]. The 445 FGS genes
covered by overlapping LR contigs may represent cases
of assembly-induced collapse of NIPs and totally identi-
cal paralogs (TIPs) in the REF genome. We suspect this
is because Supernova is able to exploit linked read
information to distinguish closely linked copies of NIPs
and TIPs that were not distinguished during the
BAC-by-BAC sequencing used for the assembly of the
maize reference genome.

Comparing linked read assemblies among species
Previously the only nuclear genomes de novo assembled
using LR technology have been human. Even though the
human and maize genomes have similar sizes (~ 2.5 Gb
vs. ~ 2.3 Gb), the human de novo LR assemblies gener-
ated scaffolds with N50 s that were 10× larger [12] than
the N50 s of our maize assembly. Although the human
assemblies were based on 56× coverage, as compared to
our 45× coverage for the maize assembly, as discussed
above, our simulation experiments suggested that cover-
age was not limiting N50 in maize. Instead, we believe
that Supernova is challenged by the nature and/or distri-
bution of at least some repeats present in the maize gen-
ome. The human genome has a much lower proportion
of repeats with different features than the maize genome.
In humans, ~ 50% of the genome is comprised of repeti-
tive content, of which almost half are LINE elements [46].
Half of these are L1 elements, which are only ~ 6 kb when
fully intact [47]. In contrast, ~ 75–85% of the maize
genome is repetitive with ~ 70% of these repeats origin-
ating from ~ 1-2 kb Copia and Gypsy LTR retrotranspo-
sons [3, 48]. While the shorter length of individual
maize LTR retrotransposons would be expected to be
easier to assemble, these repetitive elements are often
found in blocks of 20-200 kb long and form complex
structures of nested repeats [49]. These blocks of re-
petitive content may not be completely spanned by high
molecular weight DNA, and even when they are, within
the blocks the same repeat may be present multiple
times, making resolution of individual repeats more dif-
ficult. Furthermore, the non-repetitive sequences may
be assembled but interspersed with repeats such that
the assembled contigs do not pass Supernova’s mini-
mum length requirement (1 kb). Supporting this hy-
pothesis, the mean distance between masked repeats in
the REF contigs is 431 bp, and the median is only
92 bp. In addition, only 68% of maize transcripts are
longer than 1.5 kb and this may explain the reduced
coverage of genes. Based on the extensive repetitive
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content of maize, the high coverage of the genome by
aligned linked reads may seem surprising. However,
while the complex repeat structure of maize makes
assembly challenging, the same structures make unique
alignments of individual reads more likely to be identified.
The proso millet linked read assembly covered more of

the proso millet genome (83%) as compared to the maize
linked read assembly (50%). The proso millet was se-
quenced to greater read depth (~ 107×) than maize (45×);
however, doubling the number of maize reads in our
simulation experiment did not increase maize genome
coverage. While repeat content has not been assessed in
proso millet, its much smaller genome (1 Gb) with a simi-
lar gene number to that of maize (~ 40,000) suggests that
proso millet has a lower repeat content than maize and is
therefore more similar to the human genome in this re-
spect. The difference in coverage obtained between the
two crops genomes is consistent with the hypothesis that
repeat content limits coverage in Supernova linked read
assemblies.

Strategies to adapt LR technology for assembling
complex plant genomes
Machine learning identifies patterns in complex data
sets [42]. A machine learning strategy was able to distin-
guish with ~ 79% accuracy between LR contigs assem-
bled with and without errors. The success of the
machine learning approach to identifying contigs with
errors suggests there are patterns associated with the as-
sembly errors. Our analyses demonstrate that the quality
of LR data is high and suggest that repetitive sequences
are a major factor limiting accuracy and coverage in the
current assembly approach. If so, LR assemblies could
potentially be further improved via computational ad-
justments to Supernova. Supernova primarily uses LR
barcode information for initial filtering of linked reads
and to extend scaffolds after initial assembly [12]. For
example, contig coverage and quality could potentially
be improved if barcode information were more fully uti-
lized during assembly. For instance, barcode information
could be used to identify regions of scaffolds that align
to more than the expected numbers of barcoded input
DNA molecules, potentially as a consequence of repeat
collapse; these regions could be tagged as potential
errors and/or flagged for additional processing. Add-
itionally, higher stringency during de Brujin graph con-
struction or bubble formation steps of the Supernova
assembly that use individual linked reads also has the
potential to improve the assembly. Improvements to the
assembly of repeats may also improve the coverage of
the assembly. Our data suggest that repeat collapse is
causing regions between pairs of closely linked repeats
to remain unassembled (Additional file 1: Figure S4).
This could result in either of two negative consequences.

First, reads between the pairs of repeats may not be as-
sembled or if the reads between the repeats are assem-
bled the resulting contig may be shorter than the 1 kb
cut-off employed by Supernova. We suspect either or
both of these consequences may account for reduced
coverage of the maize genome in the LR assembly and
in particular the underrepresentation of short genes in
the LR assembly. If so, developing strategies to avoid re-
peat collapse may be applied. For example, methods to
assess coverage could be used to identify and correct po-
tential cases of repeat collapse. The combination of in-
creased use of barcode proximity information, increased
stringency during assembly, and incorporating depth of
read coverage to assess the accuracy of assembled con-
tigs has the potential improve LR assembly.

Conclusions
A large proportion of all plant species are polyploids and
polyploid species have been disproportionately targeted
for domestication [50]. With modern sequencing tech-
nology providing the ability to sequence and assemble
genomes as large as 20 Gb [51], complex polyploids rep-
resent one of the last grand challenges in genome as-
sembly. Here we have demonstrated that linked read
technology is capable of successfully distinguishing the
two subgenomes of a recent allopolyploid, thereby pro-
ducing an assembly in which the two subgenomes have
been correctly resolved. As expected, the two sets of par-
alogous scaffolds exhibit a high degree of collinearity
and conservation with diploid outgroups. With an N50
of nearly one Mb, this assembly is of sufficiently high
contiguity that conventional approaches such as physical
or genetic maps [52], as well as other supplementary wet
lab methodologies would likely produce a pseudomole-
cule level assembly in which the subgenomes are fully
resolved.
Our assemblies of both maize and proso millet were

derived from homozygous inbred lines. It should be
noted however that the Supernova software is capable of
handling heterozygous individuals as evidenced by the
successful application of the linked read strategy to
heterozygous human genomes.

Additional file

Additional file 1: Figure S1. Pulsed field gel electrophoresis image of
B73 high molecular weight DNA after extraction and before LR library
preparation. Figure S2. Length distributions of A) LR scaffolds (N = 171,932),
B) distances between contig pairs (two contigs that comprise a scaffold)
which align to the same chromosome (N = 6566), C) LR contigs
(N = 234,153), D) LR contig tails (N = 64,704), E) trimmed LR contigs
(N = 233,095), and F) trimmed LR contig tails (N = 39,237). Figure S3.
Estimated percent reduction in assembly error (A) and percent bases
remaining following contig trimming (B). Figure S4. Repeat content
at the junction of the aligned portion of a representative LR contig with a
tail and its tail. Figure S5. Length of A) trimmed LR (N = 234,153), B) MAGI
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(N = 114,173), and C) ABySS contigs (N = 10,787,574). Means (x) and medians
(~X) are indicated by vertical lines with the values reported on each plot.
Figure S6. Comparisons of LR, MAGI, and REF contigs. MAGI and LR contigs
were aligned to REF contigs. Figure S7. Coverage of debarcoded reads
uniquely aligned to the reference genome in regions where LR contigs
align (N = 244,649) or do not align (N = 1,324,967). Figure S8. Genomic
overlap of LR assemblies. A) Percent of bases shared between aligned
regions of fully aligned contigs from all LR assemblies. Figure S9.
Relationship between contig length in bins of 1 kb and contig quality for LR
and ABySS assemblies. Figure S10. Genome-wide distribution of maize and
proso millet LR contigs. Table S1. Summary of assemblies. Table S2.
Categorization of trimmed simulation contig alignment. (DOCX 789 kb)
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