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Abstract

Background: Our previous study found that more than 500 transcripts significantly increased in abundance in the
zebrafish and mouse several hours to days postmortem relative to live controls. The current literature suggests that most
mMRNAs are post-transcriptionally regulated in stressful conditions. We rationalized that the postmortem transcripts must
contain sequence features (3- to 9- mers) that are unique from those in the rest of the transcriptome and that these
features putatively serve as binding sites for proteins and/or non-coding RNAs involved in post-transcriptional regulation.

Results: We identified 5117 and 2245 over-represented sequence features in the mouse and zebrafish, respectively, which
represents less than 1.5% of all possible features. Some of these features were disproportionately distributed along the
transcripts with high densities in the 3" untranslated regions of the zebrafish (0.3 mers/nt) and the open reading frames
of the mouse (0.6 mers/nt). Yet, the highest density (2.3 mers/nt) occurred in the open reading frames of 11 mouse
transcripts that lacked 3" or 5" untranslated regions. These results suggest the transcripts with high density of features
might serve as ‘molecular sponges’ that sequester RNA binding proteins and/or microRNAs, and thus indirectly increase
the stability and gene expression of other transcripts. In addition, some of the features were identified as binding sites for
Rbfox and Hud proteins that are also involved in increasing transcript stability and gene expression.

Conclusions: Our results are consistent with the hypothesis that transcripts involved in responding to extreme stress,
such as organismal death, have sequence features that make them different from the rest of the transcriptome. Some
of these features serve as putative binding sites for proteins and non-coding RNAs that determine transcript stability
and fate. A small number of the transcripts have high density sequence features, which are presumably involved in
sequestering RNA binding proteins and microRNAs and thus preventing regulatory interactions among other
transcripts. Our results provide baseline data on post-transcriptional regulation in stressful conditions that has
implications for regulation in disease, starvation, and cancer.

Keywords: Motifs, Sequence features, Post-transcriptional regulation, Stress response, Postmortem gene expression,
Chaos game representation, Zebrafish, Mouse, 5UTR, 3'UTR, ORFs, Molecular sponge

Background

Understanding regulatory circuits and how they
influence transcriptional dynamics are important for
comprehending the response of biological systems to
stress such as starvation, disease, cancer and even
death. Under stressful conditions, most (90%) mRNAs
are regulated post-transcriptionally [1] -- presumably
because it is more energetically favorable than regula-
tion at the transcriptional level [2].
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Two studies have recently shown that hundreds of
transcripts increase in abundance in vertebrate organs/
tissues in response to organismal death [3, 4]. These in-
creases could be due to active transcription and/or
post-transcriptional regulation of the nascent transcripts.
Post-transcriptional regulation involves RNA binding
proteins (RBPs) and non-coding RNAs (ncRNAs) [5, 6]
that form complexes with RNA motifs and regions of
secondary structure within the RNAs [7]. While the
binding of RBPs to specific motifs in a transcript is well
documented [8-10], the binding of ncRNA, in the form
of microRNA (miRNA), circular RNA, or long ncRNA
(IncRNA) to specific motifs within transcripts is less
understood. Apparently, some mRNAs and ncRNAs act
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as “molecular sponges” that bind miRNAs preventing
them from performing their functions. For example,
miRNA-16 is sequestered by mRNAs encoded by the
Tyrosinase-related Protein 1 (Tyrpl) gene [11]. As a
consequence, miRNA-16 tumour-suppressor functions
are lost and cell proliferation occurs [12]. Another
“sponge” example is IncRNA encoded by the Meg3
gene that binds miRNA-664 counteracting its inhibi-
tory effect on production of alcohol dehydrogenase
[6]. These are examples of two RNAs acting as
molecular sponges -- yet, not all of the functions of
ncRNAs are known at this time [13] -- other roles
have been suggested [14—16].

Our previous study revealed that some transcripts
increase in abundance with postmortem time [4]. As a step
forward towards better understanding of possible mecha-
nisms responsible for these increases, our present study
examined sequence features (i.e., short mers) that are over-
or under- represented within these transcripts. We
recognize that short mers are not the only sequence fea-
tures responsible for these increases — we begin with short
mers because they are easily identified. That said other
more complex features are probably yet to be discovered.

We rationalized that some mers are over- or under- rep-
resented in these transcripts because they serve as binding
sites for RBPs or ncRNAs involved in post-transcriptional
regulation. To investigate this phenomenon, we examined
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the presence/absence/ frequencies of mers up to 9 nt in
length and compared them to controls, which consisted of
random draws of transcripts from the rest of the transcrip-
tome (i.e., those not increasing in abundance in response to
stress). The results show that several thousand mers are
over-represented in the postmortem transcripts of the zeb-
rafish and mouse. Further examination of the frequencies
of the mers show that some transcripts have more unique
mers than others, and that the density of the unique mers
varies by transcript and region (i.e, 5UTR, ORE, 3'UTR).

Methods
A schematic overview of the experimental design for the
study is provided in Fig. 1.

Dataset assembly

Messenger RNA transcripts of Danio rerio (GRC210.89)
and Mus musculus (GRCm38.p5) with annotations were
downloaded from NCBI. Transcript sequences contain-
ing ambiguous nucleotides (i.e., ‘N’s) and those less than
100 nt in length were removed. The final “clean” data
sets were used for bioinformatic analyses.

Extracting 2- to 9-mers from transcript sequences

An alignment-free sequence comparison method called
‘Chaos Genome Representation’ (CGR) [17-19] was used
to extract mers from the transcript sequences because it
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Fig. 1 Schematic representation of the study experimental design
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was more practical (computationally efficient) than
string-based search algorithms (see Proof in Additional
file 1). CGR is an iterative mapping technique that pro-
cesses nucleotides in a sequence to find the x-, y- coordi-
nates for their position in a continuous space. The x- and
y- coordinates can then be used to recover sequence,
which in this study were oligomers. Once the coordinates
of a sequence are known, the presence/absence/ frequency
of a mer of any size in a transcript sequence can easily be
determined, as demonstrated below.

Reading a sequence into CGR space

The processing of a transcript sequence involves convert-
ing each nucleotide into x- and y- coordinates and assem-
bling the coordinates into a CGR database. For example,
the sequence AAACC’ is represented by the x- and y-
coordinates of +0.53125 and —0.53125, respectively. The
coordinates are determined by reading the sequence into
CGR space. The space is confined by the four possible
nucleotides as vertices of a binary square with x, y position
(-1, +1) being the vertex A, (+1, + 1) being the vertex T,
(-1, + 1) being the vertex G and (- 1, — 1) being the vertex
C. The position of a nucleotide in the fragment is calcu-
lated by moving a pointer to half the distance between the
previous position and the current binary representation.

An example

Starting at point x, y (0, 0), the first nucleotide ‘A’ is
plotted at half way to the vertex of A (-1, + 1), which
is coordinate (- 0.5, + 0.5). The next nucleotide is also
‘A, therefore half way from the coordinate (- 0.5, +0.5)
to vertex of A (-1, +1) is (- 0.75, +0.75). The next
nucleotide is also ‘A’ so half way from the coordinate
(-0.75, +0.75) to the vertex of A (-1, +1) is the
coordinate (-0.875, +0.875). The next nucleotide ‘C,
so half-way from the coordinate (- 0.875, + 0.875) to
the vertex of C (-1, — 1) is the coordinate (+ 0.0625, —
0.0625) and so on up to the last nucleotide of the
sequence with the last coordinates of x = + 0.53125 and
y=-0.53125. A depiction of reading a sequence into
CGR space is shown in Fig. la of the Almeida et al.
[19] study.

Once all the sequences have been read into CGR space
and their coordinates stored in a database, it is possible
to determine the presence/absence/frequency of mers by
their coordinates and mer length (i.e., 1/resolution),
which is outlined in the Mer analysis section below.

The software for the processing of the nucleotide se-
quences into coordinates and recovering the sequences
from the coordinates is available here: http://peterano-
ble.com/software.html. Details on the mathematics of it-
erative mapping of nucleotide sequences have been
previously published [19].
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Mer analysis
Mer analysis determines the presence/absence/frequency of
a mer of length z (where z is 2 to 9) in a gene transcript.

Finding a specific mer in a transcript

Let us assume that a database of the x-, y- coordinates of
the target sequence has been assembled and we want to
determine the presence/absence of the mer AAACAA
in a target sequence. There are three steps.

First, we process the mer AAACAA into CGR space to
find it x-, y- coordinates, which are -0.734375 and
0.734375, respectively.

Second, we determine the resolution of the search, which
depends on mer length (ie, resolution = pmer length)) = A
6-mer requires a resolution of 64. The inverse of the reso-
lution (1/resolution) is the CGR space around the coordi-
nates that contain the specific mer. The CGR space around
the coordinates is expressed by the following equation:

1
e
¥=ak oy =yE,

where r is 2mer-tensth,

For the 6-mer AAACAA

1 1
x' = -0.734375 + — |y = 0.734375 + —
64 64

Third, the coordinates and CGR space of the mer is
then used to search the CGR space of the target tran-
script sequence in the database. Any transcript that have
coordinates within the box of x” and y’ of the mer repre-
sents the sequence AAACAA’. Furthermore, one can
tally the number of hits within the box, which represents
the frequency of the mer in a target sequence. We
verified the presence of the mers in the identified target
sequences by textual comparisons.

Statistical and bioinformatics analyses

Analyses were conducted using SAS/JMP (version 7.0.2),
R (version 3.4.0) and Microsoft Excel (versions 14.3.0
and 11.6). Hierarchical two-way cluster analysis was
conducted on the binary matrices using Wards linkage
method in SAS/JMP with default settings for cluster
assignments. The resulting binary matrices were
collapsed by their corresponding cluster assignments
using a custom-designed program in C++. The resulting
files were scaled to an average of zero and standard
deviation of one in MS Excel and transferred to R to
produce the heatmaps with no scaling. Network analysis
was conducted using Gephi 0.9.2.
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Identification of 5'UTR, ORFs and 3'UTR and RNA motifs in
transcripts
RegRNA 2.0 was used to identify functional RNA motifs
and sites in the gene transcripts [20]. The server identifies
splicing sites, splicing regulatory motifs, polyadenylation
sites, transcriptional motifs, translational motifs, UTR
motifs, mRNA degradation elements, RNA editing sites,
riboswitches, RNA cis-regulatory elements, RNA-RNA
interaction regions, and open reading frames using a inte-
grated software package consisting of ~ 20 programs.
Nucleotide sequences of the transcripts were individu-
ally submitted to the server, default search parameters
specified, and tab-delimited results downloaded to a
computer. The downloaded file contained global and
local functions of the motifs and sites, their location in
the transcript sequence, motif length and the sequence
of the motif. Sequences of the unique mers in a tran-
script were matched to the sequence information of the
motifs in the transcripts.

Results

Our previous study on postmortem gene expression dy-
namics [4] used a 60-mer oligonucleotide microarray to
measure transcript levels. These perfectly matched probes
were used in the present study to identify gene transcripts
in the assembled datasets of the mouse and zebrafish
(Additional file 2). A certain portion of the transcripts has
been shown to significantly increase in abundance after or-
ganismal death relative to live controls [4]. Henceforth,
these transcripts are referred to as the over-abundant pool
(OP), and transcripts not in this category are referred to as
transcripts of the control pool (CP). Additional files 3, 4, 5
and 6 contain probes and their corresponding transcripts.
In total, the OP of the mouse and zebrafish consisted of
333 and 230 gene transcripts, respectively, and the CP
consisted of 32,611 and 27,433 transcripts, respectively.

To determine if transcript length was a contributing
factor when comparing different transcripts in the OP to
those in the CP, we randomly selected two sets of
transcripts from the CP (each set consisting of 333 gene
transcripts for the mouse and 230 gene transcripts for the
zebrafish) and compared the lengths of each set to those
from the OP. No significant differences were found (two--
tailed T-tests with unequal variance; alpha = 0.05) in either
the mouse or the zebrafish, which rules out transcript
length as a factor affecting Mer analyses (Additional file 7).

Analysis of the composition of transcripts according to
Esembl standards revealed that 86% of the transcripts in
the OP of the mouse were protein coding, 9% were
non-coding RNA, 3% were pseudogenes and 1% were
unknown. In the OP of the zebrafish, 96% of the tran-
scripts were protein coding, and 1% were long
non-coding RNA, 3% were pseudogenes.
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Screening for sequence motifs (e.g, AU-rich elements
(ARE), cis-regulatory elements of ERPIN, cis-regulatory
elements of Rfam, exon splicing enhancer (ESE), functional
RNA sequences, intron splicing enhancer (ISE), intron
splicing silencer (ISS), long stems, microRNA target sites,
ncRNA hybridization regions, polyadenylation sites (PAS),
rho-independent terminator, transcriptional regulatory
motif, untranslated region (UTR) motifs) was conducted in
all of the OP transcripts of the mouse and 3 sets of random
draws from the CP of the mouse. That is, each transcript
sequence was submitted individually to RegRNA2 [20] and
the outputs were assembled into a dataset. Statistical
analyses of the data using one-tailed T-tests revealed no
significant differences (alpha=0.05) in the number of
instances by motif categories between the OP and CP. Of
note, two categories approached significance, namely “func-
tional RNA sequences” and “ncRNA hybridization regions”
— however, the categories have ambiguous meanings.

In summary, most of the transcripts showing postmor-
tem abundance increase in the zebrafish and mice are
protein coding.

Mer analyses

The occurrences of 2- to 9-mers in gene transcripts of
the OP were compared to those of the controls (i.e., CP).
In the zebrafish, the controls consisted of 2- to 9- mers
found in 30 sets of 230 transcripts that were randomly
drawn (with replacement) from the CP of the zebrafish
(Additional file 8). In the mouse, the controls consisted
of 2- to 9- mers found in 30 sets of 333 gene transcripts
that were randomly drawn (with replacement) from the
CP of the mouse (Additional file 9).

To test the assumption that the 30 sets of random
draws sufficiently represented the diversity of transcripts
found in each organism, we classified an additional 3
sets of 333 and 230 transcripts from the CPs of the
mouse and zebrafish, respectively (without replacement)
(Additional files 10 and 11). Only transcripts not previ-
ously drawn were used in this test and the results are
presented in the section below.

The average count of individual mers from the random
draws of the CPs were tabulated into a spreadsheet and
compared to the counts of individual mers in the OPs of
each organism. The arbitrary criterion used to identify
‘unique’ mers as either under- or over-represented was:
a mer in the OP having less than or greater than 5 times
the standard deviation of the average abundance of a
corresponding mer in the CPs.

Mer counts

Given that 2-mers have 16 possible nucleotide combina-
tions (i.e.,, AA, AT, AC, ... TT) and 3-mers have 64 com-
binations (i.e., AAA, AAT... TTT), all short mers (2 to
3 nt) were anticipated to be present in transcripts of the
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OP and CPs, and therefore, no differences between the
pools should be observed. Differences between the pools
however, should change with increasing mer length
presumably due to real differences or random chance
(i.e., false-positives; FP).

A maximum difference between the OP and CP pools
was 6-mers (n="74 transcripts) for the mouse and
5-mers (n =18 transcripts) for the zebrafish (Table 1,
Fig. 2a). When normalized to the number of possible
mer combinations, the maximum difference was 7-mers
for the mouse and 5-mers for the zebrafish (Fig. 2c).
Hence, mers of 5 to 7 nt in length are optimal for distin-
guishing between the pools.

With increasing mer length, the number of ‘unique’
mers (i.e., over—/under-represented mers in the OP)
increased (Fig. 2b).

To determine the number of FPs as a function of mer
length and test the integrity of the experimental design,
we randomly draw three additional sets of transcripts
from the CP (without replacement) and retained only
transcripts not used in the previous analyses. For the
mouse, each set consisted of 333 transcripts, and for the
zebrafish, each set consisted of 230 transcripts. In this
experiment, ‘over—/under- represented’ mers are FPs
because the transcripts originated from the control tran-
script pool (i.e., the CP). To help explain the results of
this experiment, let us consider the mer ATACCGG in
the mouse. This mer would be considered ‘unique’ if its
count were more or less than 5 times the standard devi-
ation of the average from the CP, which is based on of
30 sets of 333 transcripts (Additional file 11, columns A
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to I). The average and standard deviation in the CP was
8 + 3.5, meaning one would expect to find it an average
of 8 times in random draws of 333 mouse transcripts.
Five times the standard deviation is 17.5, therefore the
range of critical values for the mer count is: - 9.5 and
25.5. In the OP, the mer occurred 31 times and is there-
fore considered ‘unique’ based on the stated criterion
(i.e., the count is greater than 25.5).

To further test the experimental design and check for
FPs, mers were counted in three additional random
draws from the CP. The 7-mer ATACCGG, for example,
occurred in 7 of the 333 transcripts in one set, 3 of the
333 transcripts in the second set, and 10 of the 333 tran-
scripts in the third set (Additional file 11, columns K to
V). Since none of these counts are outside the criterion
(the average + standard deviation for this mer was 8.1 +
3.49), there is no FPs for this mer. Of note, this proced-
ure was repeated for all unique mers in the transcript
pools of the mouse and zebrafish, respectively.

The results show that the number of FPs in the OP was
close to zero for mer lengths of up to 8 bp (compare Fig.
2d to b). Therefore, while there is a possibility that some
mers in the OP are FPs, the number was small (e.g,
8-mers: 1.0% are FPs in the mouse and 8.9% are FPs in the
zebrafish).

When the length of mers was 9, however, the number
of FPs significantly increased to an average (+ std) abun-
dance of 1240 + 167.2 for the mouse (31.3% FP) and 571
+ 158.8 for the zebrafish (34.2% FP).

We also calculated the false discovery rate (FDR) using
the formula: number of false discoveries divided by

Table 1 Average + standard deviation of 333 gene transcripts in the mouse and 230 transcripts in the zebrafish that contained
unigue mers by group (OP vs. CP). The absolute difference in unique mer counts by group and mer length is shown

Animal Mer length Num transcripts (OP) Num transcripts (CP) Absolute Difference
Mouse 2 333 £0.25 333 £ 04 0£0.1

3 330 £ 69 32979 2+30

4 304 £ 303 304 + 304 7172

5 227 +56.0 226 =559 13 +95

6 119 £ 525 117 + 50.7 74 £452

7 43+£278 42+ 255 6+73

8 13 +£108 12+ 9.1 3+£42

9 3+£40 2+£19 3+£33
Zebrafish 2 230 £ 00 230 £ 0.1 0£00

3 230+ 06 229+18 1+15

4 220+ 118 211 £ 155 9+£6.1

5 166 + 35.7 148 + 335 18 £ 8.1

6 81+ 349 70 + 294 12+89

7 27 £175 23 £ 142 5+£52

8 8+66 7+£50 2+£25

9 2+24 2+15 1+12
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number of discoveries for each mer size. For the mouse,
the FDR of: 6 mers or smaller was zero, 7 mers was
0.0036, 8 mers was 0.0102, and 9 mers was 0.3124. For
the zebrafish, the FDR of: 7-mers or smaller was zero, 8
mers was 0.0842, and 9 mers was 0.3415. These findings
are aligned with the FP results shown above.

The results are consistent with the notion that unique
mers can be identified in the OP by comparing them to
random draws of mers from the CP. However, FPs and
FDR increased with mer length. Taken together, over-
and under- represented mers were identified in the OP
and many are 5 to 7 nt in length. Since some of the
under-represented mers would have been calculated to
have negative abundances, the remainder of the study
focused on the over-represented ones.

The important finding in this section is that it is pos-
sible to find mers that are over- and under-represented
in the OP compared to CP with statistical confidence.
These mers are the subject of further discussion.

Survey of the unique mers

The survey of the OP identified 5117 unique mers in the
mouse and 2245 mers in the zebrafish (Table 2). Normal-
ized to the total number of combinations of 3- to 9-mers
(n=349,504), this represents ~ 1.5% of the total mers in

the mouse and ~ 0.6% in the zebrafish. Of note, 47 of the
unique mers were common to both organisms (Table 3).

In fact, some of these mers are reverse complements
to one another, which is of interest because they might
form secondary structures and play roles in
post-transcriptional regulation (Table 4). In the mouse,
218 of the 5117 mers (4.3%) reverse complemented one
another. In the zebrafish, 31 of the 2245 mers (1.4%)
were reverse complements.

Number of unique mers per transcript
The distribution of the unique mers was investigated to
determine if they were found in all transcripts of the OP,

Table 2 Number of unique mers in transcripts of the OP by
mer length and organism

Mer length Zebrafish Mouse
4 1 0

5 31 1

6 67 62

7 118 279

8 356 819

9 1672 3956
Sum 2245 5117
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Table 3 Unique mers common to transcripts of the OP for the
zebrafish and mouse

Mer length  Mer

6 AAAUAC, AACGAA, ACAUAA

7 UGUGAAC, AUCUCCA, AAAUACA, UAGGUUA, CAUGAAA

8 CAGAAAGC, GUAAAGUC, GCACAAAG, ACGAAUAC,
AGAAGAGU, CAUGUGAA, AAAUACAU, AUAGGUUA

9 CCAAUGUGG, CUAUGAAGG, AAGUCCCAG, CUGACAGUC,

UUCUCUGUG, GUUUCUGUG, CUAUGUCUG, AUACAAGUG,
GCAAGGUUC, CAUGUGAAC, UCUAUGAAG, AUAGGUUAC,
UCUGGGGCA, CCUGCUGCU, UAUCAUCGA, AAAAGAUCA,
AUUCAAUGU, AAGAAAUCA, ACAAAAUCA, CUUCUCCAU,
CAGAACCAU, UUUAACCAA, CAUGCAGAA, CUGGAAGAA,
AUACAUCAA, AAAGAUCAU, CAGUAUGAA, AGAAAUCAU,
CCUACGAAU, GUCCUGAAA, AACAUGAAA

or just a few. In other words, is the distribution of unique
mers uniform across all transcripts? To address this ques-
tion, we compared their distributions in both transcript
pools (ie., OP and CP). Here we assumed that the corre-
sponding unique mers in transcripts of the CP should ap-
proximate a skewed (Poisson) distribution because they
are relatively rare occurrences. The controls in this experi-
ment were the three sets of random draws (with replace-
ment) from the CP. We also examined the multiple
occurrences of unique mers in the OP since a unique mer
might occur multiple times in the same transcript.

In the zebrafish, the frequencies of the unique mers per
transcript varied between pools (Fig. 3). These findings in-
dicate that not all transcripts in the OP have the same
number of unique mers — i.e., the number of unique mers
in a transcript was not uniform. In the OP, the maximum
bin was 150 while the maximum bin in the CP was 100.
Some transcripts of the OP have more than twice the num-
ber of unique mers in the 200, 250, and 300+ bins than
those of the CP. Therefore, some zebrafish transcripts in
the OP have many more unique mers than others.

In terms of multiple occurrences of unique mers in the
zebrafish, the distributions differed by pool also, with mul-
tiple unique mers occurring within the same transcript
when compared to controls (Fig. 3b). For example, about
87 of the OP transcripts had more than 300 multiple
unique mers compared to about 40 in the CP (Fig. 3d).
Hence, not only are there many more unique mers in the
OP but, in some cases, there are multiple occurrences of
the same mer in the same transcript.

In the mouse, the frequency distribution of unique mers
per transcript was also different between the pools
(Fig. 4a). Specifically, there was almost double the number
of unique mers in the 200 bin of the CP than the OP,
about the same number of unique mers in the 400 bin,
and twice (or more) the number in the 600, 1000, and
1200+ bins of the OP than the CP (Fig. 4c). This finding is
consistent with those of the zebrafish — ie., there are
many more unique mers in the OP than the CP.
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In terms of the multiple mer occurrences in the mouse,
the results were different from the zebrafish; in general,
there was little change between the histogram of the
unique and multiple mers (compare Fig. 4a to b) — mean-
ing that in contrast to the zebrafish, most of the unique
mers did not occur multiple times in the same transcript
sequence. Of note, this was not true for all cases as the
1200+ bin was somewhat bigger in the Fig. 4b than A.
However, when compared to Fig. 3b to a, there is a sub-
stantial difference between unique and multiple mers in
the zebrafish. The presumed reason for this disparity is
that in the mouse, the unique mers tend to be longer in
length than those in the zebrafish (Table 1, Fig. 2c) and
the longer the length, the less frequent its occurrence.

Given the peculiar expression pattern of OPs (i.e., in-
crease in abundance postmortem) it is perhaps quite in-
dicative that the distribution of unique mers in the OP
differs from those in the CP. Furthermore, there appears
to be differences in multiple unique mers of these tran-
scripts in the zebrafish but less so in the mouse.

Groups of unique mers in the OP transcripts

Based on the previous analyses, we rationalized that some
transcripts in the OP might share the same unique mers.
To investigate the relationships among the OP transcripts
and the unique mers (in binary presence/absence format),
we constructed matrices and then performed two-way
hierarchical clustering. The matrix for the zebrafish con-
sisted of 230 rows of transcripts by 2245 columns of
unique mers (Additional file 12), and the matrix for the
mouse consisted of 333 rows of transcripts by 5117 col-
umns of unique mers (Additional file 13).

The cluster analysis of the zebrafish identified 14
groups of transcripts and 20 groups of mers with high
similarities, and the analysis of the mouse yielded 16
groups of transcripts and 20 groups of mers. The groups
were collapsed by summation. For example, group A of
the transcripts in the zebrafish consisted of 36 tran-
scripts and Set 1 of the mers consisted of 25 unique
mers. In total, 25 x 36 =900 combinations, out of which
119 were actual occurrences of mers in the said tran-
scripts (Additional file 14), meaning there were 119 oc-
currences in the collapsed group. We summed groups A
to N and mer sets 1 to 20 to form a collapsed matrix of
14 columns of transcript groups by 20 rows of mer sets.
The same procedure was repeated for the mouse. The
collapsed groups were normalized by row (see Materials
and Methods section) to produce the data for the heat
maps. Note, the heat maps were turned 90 degrees to
show transcripts as columns and mer sets as rows.

The number of transcripts in a group and the number
of mers in a set varied substantially for both organisms.
Specifically, in the zebrafish, the number of transcripts
in a group ranged from 1 to 59 (of the 230) (Fig. 5), and
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Table 4 Unique mers that were reverse complements by
length and organism
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Table 4 Unique mers that were reverse complements by
length and organism (Continued)

Organism  Mer Mers Organism  Mer Mers
length length
Zebrafish 5 UGUAU, AUACA UUCUAGAAG, AUCAUCUUC, AUCAUGAAA,
UUCAUACUG, UUGUUUUUY,
6 ib’ﬁg:g' ;’Xﬁ:ﬁﬁ/ UUUUGA, AAAUAC, AUUUUL, AAGUUAUUA, AAAGCCUUU, AAAGGCUUU,
: UUUGCAGGA, UUUGGAGAC, AAAGCUUUU,
7 UGUAUUU, CGUUGUU, CAUUUUG, CAAAAUG, UUUCUCCUG, UUUCUGCAA, UAACUGCUU,
ACAAAAU, AACAACG, AUUGUAU, AUACAAU, UUUCUCUGU, AAAGUCUUU, AAAGACUUU,
AUUUUGU, AAAUACA UUUCAUGAU, AAUGUAACC, AUUCAUACU,
UUACAUUUG, UUUCAAAAA, UAUGUAUUU,
8 CAUUUUGA, UCAAAAUG AAAAGGUUC, AAAAGCUUU, UUUUCUCUG,
9 GGCGGCAAG, CCAGGCUCA, CGUCUAGGU, GCUA AAAUGUAAC, UUUUCAAAA, UUUUGUUUU,
GGGAC, GUCCCUAGC, CUUGCCGCC, ACCUAGACG, UUUUGAAAA, AAAACAAAA, UUUUUGAAA,
UGAGCCUGG, AGUAGGCUA, UAGCCUACU AAAUACAUA, UAAUAACUU, AAAAAACAA,
UUUAUAACA, UUUUAAAAG, UUUUUUUAA,
Mouse 6 CUAUAG, AUGCAU UUAAAAAAA
7 ACCUAUA, AUGACUG, CAGUCAU, GUCUCUA,
UAGAGAC, UAUAGGU, UCUAGAA, UUCUAGA
in the mouse, the number of transcripts by group ranged
8 CCAUGACU, GGUUACAU, CCUAUAGG, GUCUCUAC,

GUAGAGAC, CUUCUAGA, CUAGAAGU, CUAUGACU,
GUAUGAAU, CUAUAGGU, ACCUAUAG, UCUGCAGA,
AGUCAUGG, AGUCAUAG, UCUAGAAG, ACUUCUAG,
UUCUAGAA, AUGUAACC, UUUGCAAA, AAUGCAUU,
AAAGCUUU, AUUCAUAC

9 CGGAGAGAA, GCGAAGACA, CCCUUCUUC, GCUG
CUGCU, CCUGGAACU, CCAGUGUGA, CCUGAGUUC,
CCUCUUCUG, GGUCUUCAA, CCUUGAACU, CCAA
CAUCA, GGUUUCUCU, GGUUACAGU, GGUU
ACAUU, GAGGGCAUC, GUGGCUCAC, CAGGGAAGA,
CUGCUGCUG, CAGCAGCAG, CUCCAGCAU, CUGC
UCUCU, CUGCAGAAG, CAGGAGAAA, CUCCUUCCU,
CAGGAAGCA, CAGGAAGGA, GUGAGCCAC, GuCU
CCUGU, GAGUGGUAG, GUCUCCAAA, CACAGAGAA,
CUGAGUUCA, CAGAGAAAA, GUCUUCGCU, CAGA
AGAGG, CUGAAGACA, GUCUUCAGA, CUGAAGAUG,
CAGAAGAUG, CAGAAAGCA, CAGUAUGAA, GAUG
CCCUC, CUUCCCAUC, GAUGGGAAG, CUACCACUC,
CUUCCUCUU, GAACCUUUU, CUUCUGCAG, CUUG
AGGAA, GAACUCAGG, GAACACACA, GAAGACACA,
CUUCACUUG, CAAGUGAAG, GAAGAAGGG, CAUC
UUCUG, CAUCUUCAG, CUUCUAGAA, GAAGAUGAU,
GAAGAAGAA, CAAAGCCUU, CAAAGACUU, CAAA
CUUCU, GUUACAUUU, GUAAAGACU, CAAAUGUAA,
CUUUUAAAA, UCCCAGCAA, UGGGAAGGA, AGCG
AAGAC, UGCUGGGAA, AGCAGCAGC, UGCUGCUGY,
UCCUGCAAA, UGCAGAAGA, UCCUUCCCA, Uccu
UCCUG, UGCUUCCUG, AGGAAGGAG, UGCU
UUCUG, ACAGCAGCA, ACAGGAGAC, ACACCAACA,
AGAGAGCAG, UCACACUGG, UCUCUGUGU, ACAC
AGAGA, UGUGUCUUC, UGUGUGUUC, ACAGAGAA
A, UGUCUUCGC, UCUGAAGAC, UGUCUUCAG,
ACUGUAACC, AGAGAAACC, ACUGUUUCU, ACAC
AUACA, AGUCAUAGU, AGAGUUUCU, AGUCUUUAC,
UCUUCCCUG, AGUUCCAGG, UGUUGGUGU, UCUU
CUGCA, UGAACUCAG, UCUUCACAA, UGAUGUGUU,
UGAUGUUGG, AGUUCAAGG, UCUAGAAGU, UCAU
CUUCU, UCAUCUUCA, UGUUCUUCA, UGAA
GUUCU, UGAAGAUGA, UGAAGAACA, ACUUCUAGA,
AGUUGUUCU, AGAACUUCA, AGAACAACU, AGAA
GAUGA, AGAAGUUUG, UGUAUGUGU, ACUA
UGACU, AGAAACUCU, AGAAACAGU, AGUAUGAAU,
UCAAAAACA, UGUUUUUGA, UGUUAUAAA, UUCC
CAGCA, AAGGCUUUG, UUGCUGGGA, AUGC
UGGAG, UUCCUCAAG, UUGCAGAAA, AAGCAGUUA,
UUCCUUCUU, AAGAGGAAG, UUCUCUCCG, uuCu
CUGUG, UUGUGAAGA, AACACAUCA, AAGUCUUUG,
AAGAAGGAA, UUGAAGACC, UUCUUCUUC,

from 1 to 124 (of the total of 333) (Fig. 6). Hence, some
transcripts are very similar to one another in terms of
unique mers, while others are distinctly different — there
was no uniformity (i.e, equal number of mers distributed
to equal number of transcripts).

The number of unique mers in a set ranged from 2 to
876 (of a total of 2245) in the zebrafish (Fig. 5) and from 40
to 1407 (of a total of 5117) in the mouse (Fig. 6). Hence,
some groups of mers are found in the same transcripts
while others are found in different ones. Similar to the situ-
ation with the transcripts, the relationship among the mers
was not straightforward— there appears to be a pattern.

There are unifying features visible in the heatmaps.
For example, all transcript groups in the zebrafish con-
tained relatively similar counts of mers within the mer
sets 5 as well as 19 (Fig. 5). Similarly, in the mouse, all
transcript groups had similar counts of mers within the
mer set 2 (Fig. 6). Hence, despite similarities and differ-
ences of the collapsed data, there are common sets of
mers found within all transcripts.

Zebrafish heatmap
In terms of differences, groups ] and N are dissimilar from
the other transcript groups (Fig. 5) and each group consists
of a single transcript. Group ] represents the transcript
si_ch211-69b7.6, whose function is currently not known, and
Group N represents the transcript Psd2 (Pleckstrin and Sec7
domain containing 2), which is involved in regulating vesicle
biogenesis in intracellular trafficking. The groups differed
from the other groups in terms of the counts of mer sets 2,
3 and 8, which contain 876, 111, and 111 mers, respectively.
There appears to be significant differences between tran-
script group D, G, C, L, Kand M, which consist of 122 tran-
scripts (of the 230 possible) and group A, B, H, [, E and F,
which consist of 106 transcripts (Fig. 5). These groups are
distinct due to subtle differences in mer set 10, which con-
sists of 9 mers and mer set 6, which consists of 60 mers.
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Mouse heatmap

The heatmap of the mouse shows similar variation in
the number of transcripts by group and mer set (Fig. 6).
Transcript group K, B, E, M, H, F, C and L, which repre-
sent 40 transcripts (of a possible 333) is different from
group O, N, J, A, G, P, D, and I (293 of possible 333
transcripts). The mer set responsible for this difference
is mer set 17, which contains 1407 mers. Group O, N, J,
A, G, P, D, and I have a higher relative counts than
group K, B, E, M, H, E, C and L. Interestingly, the 40
transcripts in group K, B, E, M, H, F, C and L are anno-
tated as either zinc finger proteins or predicted coding
genes — and not one of the transcripts encode a protein
with known function.

In the zebrafish, most (192) of the known functional
gene transcripts are dispersed into many groups N, C, L,
K, M, A, B, H, I and F, which represent 83% of the OP
(Fig. 5). In the mouse, most (245) of the known func-
tional gene transcripts are found in groups A and G,
which represent 74% of the OP (Fig. 6).

Without stating any biological significance, there appears
to be underlying patterns in the occurrence of unique mers
in transcripts of the OP. At this stage of the analysis, it is
difficult to quantify the patterns other than visually.

Density of multiple mers by transcript and organism

We examined the number of ‘unique’ mers by transcript
length since longer transcripts might have more mers
(Additional file 15). Indeed, this was found true for the
zebrafish -- there were more ‘unique’ mers with increas-
ing transcript length (Pearson correlation coefficient, r =
0.55, p <0.001). However, this relationship did not hold
for the mouse (and we will show why below).

The averaged (+ stdev) density of multiple mers for the
zebrafish was 0.14 + 0.18 mers/nt (7 =230) and for the
mouse was 0.40 + 0.67 mers/nt (z =333). That is, there
are 14 unique mers for every 100 nucleotides in the tran-
scripts of the zebrafish and 40 mers for every 100 nucleo-
tides in the transcripts of the mouse. Note the high
standard deviations indicating a wide variation in values.

The highest and lowest densities of unique mers also dif-
fered between organisms. In the zebrafish, the highest dens-
ity was ~ 1.0 mers/nt for Pimr gene transcripts, which
corresponds to clusters B and H (Fig. 5), and the lowest
density was ~ 0.04 mers/nt for transcripts found in cluster
A. We plotted the relationship between multiple mers and
transcript length to find that the Pimr gene transcripts are
distinctly different (red dots) from those in the rest of the
transcripts in the OP (black dots) (Fig. 7a). The Pimr genes
encode proto-oncogene serine/threonine-protein kinases
involved in regulating the cell cycle. The remaining tran-
scripts have a linear relationship between multiple mers
and transcript length (y=0.1x; R*=091; with x is tran-
script length and y is multiple mers).

Page 11 of 19

6000 - A
5000 -
4000
3000
2000
g 10004 < o e :
o#,g .e
g 0 Jmae®d " T T .
) 0 5000 10000 15000 20000
— 6000 7
o B .
o p—
g s00q
2 40004 &
30004 .
o 8 °
20004 °
. &£ R y
-1 3 - ° oo
1000 4,* CREFFWOREY L
0 'M T T 1
0 5000 10000 15000 20000
Transcript Length (nt)
Fig. 7 Number of multiple unique mers in transcripts versus
transcript length. a, zebrafish; b, mouse; Red, deviant transcripts. Red
dots in the zebrafish correspond to Pimr transcripts; Red dots in the
mouse represent 47 transcripts (see text)

In the mouse, the highest density was ~ 2.6 mers/nt for
annotated transcripts that do not have a canonical name
(e.g., Gm14410, Gm14305. Gm14434, Gm2026, Gm11007,
Gm2007, Gm4631) and were associated with Cluster B
(Fig. 6) and the lowest density was ~ 0.04 mers/nt in tran-
scripts associated with cluster A. A plot of the multiple
mers by transcript length for the mouse revealed signifi-
cant differences for a subset of the transcripts (red dots)
when compared to the rest (black dots) (Fig. 7b). The red
dots represent 47 annotated gene transcripts, many that
do not have a canonical name and includes those with the
highest mer densities per transcript (mentioned above).
The red dots also include 25 transcripts annotated as zinc
finger proteins, 3 Rik transcripts, 1 unprocessed pseudo-
gene, 1 Fam containing transcript, and 10 functional gene
transcripts. The remaining transcripts have a linear rela-
tionship between multiple mers and transcript length (y =
0.1x; R* = 0.95; with x is transcript length and y is multiple
mers). Hence the reason for the poor correlation between
multiple mers and transcript length in the mouse data
(noted above) was due to 47 transcripts that deviated from
the other 286 transcripts in terms of their mer density.

We used RNAReg2 to determine if there are any
unique molecular features in the 10 functional gene
transcripts: Bpifc, Ifitm7, Ms4a4c, Platr25, Rex2, Spag7,
Stykl, Sva, Tmem239, Tnfrsf9. We specifically looked at
the relationship between the unique mers in the tran-
scripts and the tab-delimited output files from RegRNA2
(Additional file 15).
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While all of the transcripts have ‘ncRNA hybridization
regions’ that matched the unique mers, no patterns could
be found in the AU-rich elements, K-boxes, UNR boxes,
untranslated region motifs, long stem loop structures or
transcriptional regulatory motifs among the 10 functional
genes. Therefore, we concluded that the gene transcripts
contain putative ncRNA hybridization regions — but we
have no supporting evidence that these regions are actu-
ally used by the transcriptional regulation.

We rationalized that the transcripts with high mer dens-
ities might act as molecular sponges to RBPs and ncRNAs
and thus alter their availability in the intracellular pools. If
so, one would expect the profiles (i.e., transcript abun-
dance by postmortem time) of transcripts with high dens-
ities and those transcripts affected by them to be highly
correlated. Moreover, they should share similar unique
mers that serve as putative binding sites. Principal compo-
nent analysis was used to find patterns among transcripts
with high mer densities using the correlations of their
transcript abundance profiles to the rest of the profiles in
the OP of the mouse brain. Network analysis was used to
find shared mer binding sites.

The two axes of the ordination plot accounted for 96%
of the variability (Fig. 8a). There appears to be three dis-
tinct areas in the ordination plot. One location is occupied
by Gm14399, the other location is populated by a group
of 8 gene transcript and the third location is occupied by
Gm14409. The correlations among the transcript profiles
differed by high density transcripts suggesting that certain
groups might regulate different sets of transcripts.

To investigate the connections within the networks, we
took a subset of the transcripts with high R (> 0.95), and
counted the number of shared mers. A network plot re-
vealed that transcripts with high mer densities are con-
nected to many different transcripts and that some shared
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similar mers. For example, Gm14305 shared mers
with Gm11007, Gm2007, Gm14308 and Hhmtl as
wells as many other transcripts (Fig. 8b). This finding
suggests that the number of possible transcripts (and
pathways) that are affected by molecular sponges ap-
pears to be quite vast.

The critical finding of the above analysis is that the
transcripts with high mer densities have the potential to
act as molecular sponges to other transcripts and thus
regulate them post-transcriptionally.

Multiple mer density by region (5'UTR, ORFs, 3'UTR)

To investigate the density of unique mers by region, up
to ten transcripts from each cluster (Figs. 5 and 6) were
compared to determine if there are significant differ-
ences in mer density by region (Additional file 16). Note
that not all transcripts had 5’"UTR and/or 3’'UTR regions
and some lacked ORFs (e.g., ncRNA).

In the zebrafish, for the transcripts having all three re-
gions, the 3'UTR region had significantly more mers/nt
than the other two regions (Table 5, Paired two-tailed
T-tests, p <0.0001). Transcripts lacking 5’UTR, 3'UTR, or
ORFs have low densities (i.e., ~ 0.1 mers/nt), indicating re-
gional effects.

In contrast, the highest unique mer densities in the
mouse were found in the ORFs of transcripts — not the
3UTR region as in the zebrafish (Table 5). In transcripts
having all three regions, the ORFs had significantly
higher densities than the 5'UTR (Paired two-tailed
T-test, p<0.0001). In gene transcripts that have both
5UTR and ORFs (no 3'UTR), or those having neither
5'UTR nor 3'UTR regions (i.e., ORF only) had twice the
mer densities than transcripts having all three regions.
Moreover, higher mer densities were found in the
ORFs than the 5’'UTR (Table 5, Paired two-tailed
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Fig. 8 Ordination plot of transcripts with high mer densities (a) and network of transcripts with shared mers (b). The ordination was based on
the correlations among mouse brain transcript profiles. The network was based on the number of shared mers in subset of the transcript profiles
with high R? (> 0.95) to the transcripts with high mer densities. The network shows that the transcripts with high mer densities (i.e, molecular
sponges) shared mers with many other transcripts
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Table 5 Number of unique mers by nucleotide (transcript length), region and organism. Two-way paired t-test across rows: a,b, p <

0.0001; ¢,d p < 0.01

Organism Regions Number of transcripts 5'UTR ORF 3UTR Non-coding
Zebrafish 5'UTR, ORF, 3'UTR 70 02+026° 02+028° 03+035° -

ORF, 3'UTR 4 - 0.1£0.01 0.1+£0.03 -

5'UTR, ORF 1 0.1 0.1 -

ORF 3 - 0.1+£0.03 - -

Non-coding 1 - - - 0.1
Mouse 5'UTR, ORF, 3'UTR 65 04 +060° 06+070° 05+0.80 -

ORF, 3'UTR 2 - 0.1 £0.00 0.1+£0.00 -

5'UTR, ORF 16 1.4 +0.80° 2.0+0.70¢ - -

ORF 11 - 23£050 - -

Non-coding 10 - - - 04 +0.50

T-tests, p<0.01). One possible reason for these differ-
ences is that the 16 samples having no 3UTR and the 11
samples lacking untranslated regions (i.e., they were all
ORFs) consist of genes annotated as ‘predicted coding
gene’ or ‘zinc finger protein gene’. Hence, gene function
might play a role in these differences.

In summary, the highest mer densities in the zebrafish
were found in the 3’'UTR while the highest densities in
the mouse were found in the ORFs. Perhaps this is not a
surprise given the evolutionary distance between zebra-
fish and mice.

Known motifs

The following motifs are associated with increased
mRNA stability or gene expression: the Hud binding
site, YUNNYUY [21]; the Rbfox binding site, UGCAUG
[10]; and UAUUUAU, GAGAAAA, AGAGAAA, UUUG
CAC, AUGUGAA, UUGCACA, GGGAAGA [22]. We
screened these motifs against the unique mers to identify
transcripts in the OP that might have increased stability
or gene expression due to these motifs.

Three hundred and fourteen of the 333 OP transcripts
(94%) in the mouse and 189 of the 230 transcripts (82%)
in the zebrafish contained one or more of the known
binding motifs associated with increased mRNA stability
or gene expression (Table 6). Most of the transcripts in
the OP of the mouse and zebrafish had at least two

Table 6 Number of transcripts by known protein binding site
and organism. Hud binding site, YUNNYUY [21]; Rbfox binding
site, UGCAUG [10]; and UAUUUAU, GAGAAAA, AGAGAAA, UUUG
CAC, AUGUGAA, UUGCACA, GGGAAGA [22]

Organism  n Protein binding sites
transcripts o

Rbfox  Jacobsen et al.  All three
Mouse 333 287 126 258 314
Zebrafish 230 185 0 106 189

different motifs (Fig. 9). The number of previously re-
ported motifs represents a small fraction of the total
number of unique mers found in our study (180 of the
5117 unique mouse mers (3.5%) and 54 of the 2245 zeb-
rafish mers (2.4%)). Hence, our study identified 4937
and 2191 putatively new motifs in transcripts of the OP
of the mouse and zebrafish, respectively. It remains to
be determined if these new motifs are functional or not.

Finding the known motifs in the OP transcripts gives
the credence to the notion that the OP transcripts are
indeed undergoing some form of postmortem “regula-
tion” or stabilization.

Discussion

The motivation for our study was driven by curiosity
into possible mechanisms responsible for the increase in
transcript abundances with postmortem time, which
have now been reported to occur in the zebrafish,
mouse, and humans [3, 4]. There is a need to under-
stand regulatory features and how they influence tran-
scriptional dynamics in order to comprehend the
response of biological systems to stress. Yet, to our
knowledge, no study has investigated possible reasons
for increases in transcript abundance after organismal
death. Such information is needed to provide baseline
data for gene expression studies involving stressful con-
ditions such as disease, starvation, and cancer.

Unique mers identified in the OP
Our initial hypothesis was that among multiple reasons,
there must be a signal, i.e., a nucleotide sequence that is
responsible for postmortem activation of certain tran-
scripts. Instead, we find sets of ‘unique’ mers in different
groups of transcripts, with most sets consisting of ten to
hundreds of different mers -- not just one or two.

The total number of unique mers in the OP was rela-
tively small compared to all possible mers, ~ 1.5% of the
total combinations of 3- to 9- mers in the mouse and ~
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0.6% in the zebrafish. These small percentages are pre-
sumably due to the arbitrary criterion used to identify
unique mers. The reason the criterion was set to 5 times
the standard deviation of the average count of the mer in
the CP was to ensure that the identified mers were not due
to random chance (i.e., false positives, FPs). Our results in-
dicate that chance of a random mer having a count exceed-
ing the criterion was relatively rare -- but FPs did occur
and their occurrence increased with mer length (Fig. 2d).

The fact that several mers identified in our study have
been previously reported to be involved with increased
gene expression and/or mRNA stability (e.g., Hud, Rbfox,
ARE binding sites; [10, 21, 23]) is consistent with the
idea that our experimental design was effective at identi-
fying ‘unique’ mers in the postmortem transcriptome of
two different organisms.

Unique mers by transcript, region, and organism

The number of unique mers in each transcript of the OP
varied considerably. Some transcripts have a disproportion-
ately high number of mers, while others have much lower
numbers. Interestingly, in the mouse, several of the tran-
scripts with high multiple mer densities have an ORF with
no known function. Other transcripts have known func-
tions, including: Bpifc, which is involved in innate immune
response; Fam160b2, which is involved in phosphorylation
of Hsp70 [24]; Ifitm?7, which is involved in regulation of cell
proliferation and immune response [25]; Ms4a4c, which
regulates receptor signaling and recycling [26]; Spag7,
which is involved in antiviral and inflammatory response
[27-29]; Stykl, which is associated with cancer progression
and promotes the Warburg effect through signaling of the
PI3K/AKT pathway [30—32]; and Tnufrsf9, which is involved
in positive regulation of immune system functions and
leukocyte activation [33]. In the zebrafish, a disproportion-
ately high number of mers occurred in the Pimr gene tran-
scripts, which are involved in cell cycling. These gene
transcripts have common functions: cell survival, prolifera-
tion, cycling, stress compensation, and/or defense. It is

enticing to speculate that the other transcripts (ie., those
with no known functions but with high mer densities)
might also be involved in these functions.

The density of multiple unique mers was higher in the
ORFs than the 3'UTR in the mouse -- but quite the op-
posite was true in the zebrafish (Table 5). That is, the
zebrafish had a higher mer density in the 3'UTR than
the other regions. In general, the 3" UTR is involved in
subcellular localization and mRNA stability, while the 5°
UTR play roles in translational control [34]. Motifs
within the UTR regions are thought to control functions
by interacting with RBPs [34]. Yet, the highest density of
mers (2.3+0.50 mers/nt) was in 11 transcripts that
lacked UTRs (i.e., they were all ORFs). These findings
are aligned with the notion that binding sites can exist all
along the transcripts and not necessarily restricted to the
UTRs [35]. It is possible that these 11 transcripts act as
large “molecular sponges” in stressful conditions, providing
an additional layer of complexity to post-transcriptional
regulation (which we discuss below).

While the two organisms share 47 unique mers, there
were significant differences in terms of their mer counts,
the multiple mer densities by region, and the number of
mers per transcript by organism. This finding suggests that
post-transcriptional regulation varies significantly by or-
ganism — but this is not surprising since our original study
[4] sampled mRNAs in whole organisms in the case of the
zebrafish and the organ/tissues of the brains and livers in
the case of the mouse. Hence, the samples are not compar-
able and we would not expect post-transcriptional regula-
tion to be the same in different organisms or organ/tissues.

Unique Mers and known binding sites

One set of unique mers with the sequence YUNNYUY ap-
parently binds Hud proteins (Table 6). Hud proteins
stabilize mRNA by binding to AU-rich instability elements
(AREs) in the 3’'UTR and they target transcripts involved
in neuronal differentiation, protein phosphatase regula-
tion, ubiquitin ligation, and the transport, processing and
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translation of mRNAs [21]. Interestingly, Hud proteins
not only target their own mRNA but those of other RBPs,
which  suggests that it forms a network of
post-transcriptional regulators [21]. In the mouse, data
from our previous study [4] showed that Hud transcript
abundance increased upon organismal death to reach
maxima at 12 to 48 h postmortem (Fig. 10a). In the zebra-
fish, the Hud transcript abundance was about the same as
the live controls for up to 4 h postmortem and then it de-
clined and abruptly increased after 48 h (Fig. 10b). These
findings are aligned with the notion that Hud proteins
were involved in stabilizing mRNA in our study.
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gene transcript abundance

48 96
time (h)

Fig. 10 Gene transcript abundances measured by a calibrated
microarray [41, 42] (log transformed) by postmortem time.
Abundances were normalized to flash frozen live controls (L). Black
line, average. (a) Hud transcript in mouse; black dots, averaged
abundance measured by probe A_55_P1990309 (n = 3 replicates for
each dot except 48 h where n =2 replicates); white dots, average
abundance measured by probe A_55_P1990314; (b) Rbfox transcript
in mouse; black dots, average abundance measured by probe
A_55_P195339" (n = 3 replicates for each dot except last where n=2
replicates); white dots, average abundance of probe A_55_P1953400;
(c) Hud transcript in zebrafish; black dots, average abundance of
probe A_15_P119510 (n =2 replicates for each dot); white dots,
average abundance of probe A_15_P120793. Data are from ref. [4]
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Another unique mer with the sequence UGCAUG has
previously been reported to serve as the binding site for
Rbfox proteins that regulate splicing networks, mRNA
stability and miRNA biogenesis [10]. Apparently, the
binding of Rbfox proteins to transcripts inhibits process-
ing of the pri-microRNAs to pre-microRNAs, reduces
expression of the mature miRNAs, and increases expres-
sion of targets normally downregulated by miRNAs [10].
A previous study has shown that the abundance of tran-
scripts with UGCAUG motifs in the 3'UTR positively
correlates with Rbfox expression, and that knockdown of
Rbfox decreases transcript abundances [36]. These find-
ings support the hypothesis that Rbfox enhances mRNA
stability as well as gene expression. In our study, a little
more than a third of the transcripts in the OP of the
mouse have this binding site, but none were found in
the OP of the zebrafish (Table 6). In the mouse, data
from our previous study [4] showed that Rbfox transcript
abundance increased after 30 min postmortem to reach
a maximum at 48 h (Fig. 10c). These findings suggest
that Rbfox proteins were interacting with some of the
mouse transcripts in our previous study.

The following 7 unique mers found in the OP have re-
cently been reported as putative binding sites: UAUU
UAU, GAGAAAA, AGAGAAA, UUUGCAC, AUGU
GAA, UUGCACA, GGGAAGA [34]. These sites have
been correlated with increased gene expression in HeLa
cells transfected with miRNAs. The UAUUUAU binding
site is reported to be an ARE that signals rapid degrad-
ation or increased stability of mRNAs in response to
stress [36]. The Jacobsen et al. [34] study showed that
ARE binding sites and miRNA mediated regulation are
interlinked, which is aligned with a similar study in
Drosophila cells [37]. While the significance and mech-
anistic insights of the 6 other putative binding sites were
not discussed in the Jacobsen et al. study [34], at least
one of the seven binding sites was found in 258 of the
333 transcripts of the mouse and 106 of the 230 of the
zebrafish, indicating that miRNAs might be involved in
“regulating” the postmortem transcriptome (Table 6).

Post-transcriptional regulation of the postmortem
transcriptome
Several possible scenarios could be working in spatial
and temporal combination to increase transcript stability
and/or increase transcript abundance in the postmortem
transcriptome. These scenarios are based, in part, on the
“Competing endogenous RNA hypothesis”, which is pro-
vided at the end of the Discussion. However, without ex-
perimental evidence, we caution that these scenarios are
speculative at best.

One scenario is transcript stability is increased in the
OP because they have more unique mers than the CP
and RBPs bind to regulatory sites of transcripts of the
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OP blocking the binding of miRNAs, which are linked
to degradation pathways. As a consequence, transcript
stability is increased because the transcripts accumulate
in the cells over time.

A second scenario is postmortem genes are upregu-
lated due to miRNA inhibition. Take, for example, tran-
scripts regulated by p53 tumor suppressor that increase
in abundance in response to miR-21 inhibition [38].

A third scenario is that some of the transcripts con-
taining high multiple densities of mers act as molecular
sponges that bind miRNAs and/or RBPs and therefore
affect post-transcriptional regulation in trans. An ex-
ample of this in our study was the 11 gene transcripts in
the mouse with unknown functions and the Pimr tran-
scripts in the zebrafish that had high densities in terms
of mers per nucleotide (~ 2.4 mer/nt and ~ 1.0 mer/nt,
respectively). Such high densities indicate that they con-
tained many unique binding sites to sponge RBPs and/or
ncRNAs. According to the data from our previous paper
[4], all the transcripts with high mer densities in the
mouse increase in abundance right after death (0.5 h)
and continued to increase, reaching a maximum abun-
dance at 12 h, and then slowly decline (Fig. 11a). In the
zebrafish, the Pimr gene transcripts increased slightly
after death (relative to live controls) and abruptly in-
creased after 12 h to maximize at 24 h (Fig. 11b).
One-way to interpret these phenomena are that the
transcripts are depleting the miRNA and/or RBP pools.
In response to the decrease, a select group of genes in-
volved in survival and stress compensation were pas-
sively transcribed, which accounts for the increases in
transcript abundances in our original study.

Further support for this scenario comes from the fact
that most of the functional genes involved in survival
and stress compensation were found in two clusters in
the mouse: Groups A and G (59% of the OP) with low
mer densities of 0.11+0.12 mers/nt and 0.11 +0.05
mers/nt, respectively (Fig. 6). In the zebrafish, most of
the known functional gene transcripts are dispersed into
groups A, C, FE, KL, M, and N (93% of the OP) (Fig. 5),
which have low mer densities (e.g., 0.10 + 0.02 mers/nt).
It is these genes that might have been passively upregu-
lated due to lack of miRNA and RBPs to prevent them.
This scenario makes sense for an evolutionary perspec-
tive because post-transcriptional regulation facilitates
fast changes in response to stress so that cells can adapt
to environmental change.

Alternative splicing sites might differ under stress

We assumed that the mRNA transcripts downloaded
from NCBI represent dominant isoforms one would ex-
pect to find in nature. However, a recent study [3] sug-
gests that stress increases the production of different
isoforms through alternative splicing. In other words,
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Fig. 11 Gene transcript abundances measured by a calibrated
microarray [41, 42] (log transformed) by postmortem time.
Abundances were normalized to flash frozen live controls (L). Black
line, average. (@) Mouse: Open circle, represents Gm11007, Gm2007,
Gm4631, Gm14434, Gm2026, Gm 14305, Gm14399, Gm14325, Zfp969,
Gm4724, Gm14326 transcripts; closed circle, Zfp967, Zfp969, Zfpo68;
open square, Gm14410; closed square, Gm14305; open triangle,
GmM14322; closed triangle, Gm14308; closed diamond, Gm14412. Al
points are the average of 3 replicates per sample time except the
48 h, which is the average of 2 replicates. (b) Zebrafish: Pimr
transcript. Each point in the zebrafish represents the average of two
individuals per sample time. Data are from ref. [4]

24 48 96

the composition of the transcripts might change in stressful
conditions (i.e., different isoforms are produced). Our ana-
lysis did not account for this, however repeating our experi-
ment using next-generation-sequencing methods might
indeed provide additional insight into post-transcriptional
regulation in postmortem gene expression, which is the
focus of our future research.

Competing endogenous RNA hypothesis

According to the ‘competing endogenous RNA’ hypoth-
esis, all types of RNA transcripts communicate through
regulatory-binding sites and it is these interactions that
regulate gene expression [39]. The binding of miRNAs
to sites represses translation and destabilizes the mRNA,
thus having an overall negative regulatory role on gene
expression. However, in the case when there is a limited
pool of miRNAs to bind the sites or an overabundance
of binding sites in transcripts, there is competition be-
tween targets to sequester miRNA. Thus, a surplus of
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binding sites dilutes the miRNA pool and gene expres-
sion resumes passively. Pseudogenes (i.e., those resem-
bling known genes but are nonfunctional) as well as
other transcripts can dilute the miRNA pool and thereby
regulate their availability, and thus have an overall posi-
tive regulatory role on gene expression.

Missing from the competing endogenous RNA hypoth-
esis is the role of RBPs to compete with miRNA for regu-
latory binding sites. The presumed reason for this
omission was at the time (i.e., 2011) there was a paucity of
information supporting the idea that molecular sponges
interact with proteins. However, proof exists today [22]. A
recent study reanalyzed highthroughput crosslinking and
immunoprecipitation experiments in Human Embryonic
Kidney Cells 293 to show that RBPs and miRNA often
bind to the same or overlapping regulatory binding sites.
The significance of this finding is twofold: (i) it suggests
competition among the regulators (RBPs, miRNA, binding
sites in different targets) and (ii) it suggests the relative
concentrations of the RBPs and miRNAs to the regulatory
binding sites might determine a transcript’s fate [40].

A third significant finding from the same study was
the introduction of ‘hotspot’ binding sites that have high
sequence conservation, accessibility, and enrichment in
AU-rich elements (AREs) (i.e., devoid of guanines) and
function by favoring competition among regulators [40].
Apparently, target sites outside of hotspots have in-
creased expression levels compared to targets sites
within hotspots. Hence ‘hotspots’ are considered func-
tional regulatory elements that provide an extra layer of
regulation of post-transcriptional regulatory networks.

Conclusions

This is the first study to investigate over-abundant mers in
transcriptomic profiles after organismal death and raises
interesting questions relative to post-transcriptional regu-
lation and molecular biology.

Additional files

Additional file 1: Proof that using the ‘Chaos Genome Representation’
method to extract mers from transcript sequences is more practical
(computational efficient) than string-based search algorithms.

(DOCX 20 kb)

Additional file 2: Two sheets in MS Excel file: (i) zebrafish_probes_PM,
and (i) mouse_probes_PM. PM, perfect match probes. Each sheet has
two columns: first column is Agilent Probe ID and second column is DNA
sequence. (XLSX 31 kb)

Additional file 3: Two columns in text file of the over-abundant pool
(OP) for the mouse. One column is Agilent Probe ID linked to Annotated
Gene Name and second column is cDNA sequence. Total of 330 rows.
(FNA 926 kb)

Additional file 4: Two columns in text file of the over-abundant pool
(OP) for the zebrafish. One column is Agilent Probe ID linked to Annotated
Gene Name and second column is cDNA sequence. Total of 230
rows. (FNA 546 kb)
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Additional file 5: Two columns in text file of the control pool (CP) for the
mouse. One column is Agilent Probe ID linked to Annotated Gene Name and
second column is cDNA sequence. Total of 32,611 rows. (FNA 81851 kb)

Additional file 6: Two columns in text file of the control pool (CP) for

the zebrafish. One column is Agilent Probe ID linked to Annotated Gene
Name and second column is cDNA sequence. Total of 27,433 rows.

(FNA 129817 kb)

Additional file 7: Two sheets in MS Excel file: (i) zebrafish, and (ii)
mouse. Each sheet has 4 columns: first column is string length (strlen) of
OP transcript; second column is blank; third column is string length of
the corresponding CP transcript; fourth column is string length of
corresponding CP2 transcript. Rows 1 to 231 in the zebrafish sheet
contain the strlen of 230 transcripts in both OP and CP1 and CP2; rows
233 and 234 contains average and standard deviations of the columns;
row 236 contains the two-tailed t-test results for OP vs CP1 and OP vs
CP2. Rows 1 to 334 in the mouse sheet contain the strlen of 333 transcripts
in both OP and CP1 and CP2; rows 336 and 337 contains average and
standard deviations of the columns; row 339 contains the two-tailed t-test
results for OP vs CP1 and OP vs CP2. (XLS 82 kb)

Additional file 8: Nine sheets in MS Excel file of zebrafish data. The first
sheet provides a detailed Readme that describes the sheets. Basically, first
column is abundance of mer in OP, second column is average abundance
in CP, third column is standard deviation in CP, and remaining 30 columns
are abundances of 30 random draws from CP. Rows differ by mer length.
(XLSX 61046 kb)

Additional file 9: Nine sheets in MS Excel file of mouse data. The first
sheet provides a detailed Readme that describes the sheets. Basically, first
column is abundance of mer in OP, second column is average
abundance in CP, third column is standard deviation in CP, and
remaining 30 columns are abundances of 30 random draws from CP.
Rows differ by mer length. (XLSX 62431 kb)

Additional file 10: 11 sheets in MS Excel file. It is similar to the Online
Resource_8 zebrafish file except the raw data is missing to reduce matrix
size. The purpose of the sheets is to calculate over- and under-abundant
mers that are 5 X the standard deviation of the CP for each mer. The first
sheet provides a detailed Readme that describes the sheets. Rows differ
by mer length. (XLSX 65834 kb)

Additional file 11: 11 sheets in MS Excel file. It is similar to the Online
Resource_9 mouse file except the raw data is missing to reduce matrix
size. The purpose of the sheets is to calculate over- and under-abundant
mers that are 5 X the standard deviation of the CP for each mer. The first
sheet provides a detailed Readme that describes the sheets. Rows differ
by mer length. (XLSX 69035 kb)

Additional file 12: Multiple sheets in MS Excel file. The first sheet provides
a detailed Readme that describes the sheets. Rows differ by mer length. The
matrix file consists of 2245 columns and 230 rows. (XLSX 12475 kb)

Additional file 13: Multiple sheets in MS Excel file. The first sheet provides
a detailed Readme that describes the sheets. Rows differ by mer length. The
matrix file consists of 5117 columns and 333 rows. (XLSX 40047 kb)

Additional file 14: Two sheets in MS Excel file. The first sheet is the
collapsed data of the Zebrafish and the second sheet is the collapsed
data of the Mouse. Each sheet shows how the data was log normalized
for making the heatmaps. The collapsed data was based on two way
cluster groups using Wards linkage methods. (XLS 108 kb)

Additional file 15: Four sheets in MS Excel file. The first sheet provides
a detailed Readme that describes the sheets. The second and third
sheets have the number of mer hits by transcript sequence length for
the zebrafish and mouse. The fourth sheet has the summarize RegRNA2
output for 10 samples. (XLS 117 kb)

Additional file 16: Two sheets in MS Excel file. The first sheet is the
number of mers by region for the zebrafish and the second sheet is the
same for the mouse. (XLS 86 kb)
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